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ABSTRACT 

We introduce the notion of a graph derangement, which naturally interpolates between perfect matchings and Hamilto- 
nian cycles. We give a necessary and sufficient condition for the existence of graph derangements on a locally finite 
graph. This result was first proved by W. T. Tutte in 1953 by applying some deeper results on digraphs. We give a new, 
simple proof which amounts to a reduction to the (Menger-Egerváry-König-)Hall(-Hall) Theorem on transversals of set 
systems. We also consider the problem of classifying all cycle types of graph derangements on m × n checkerboard 
graphs. Our presentation does not assume any prior knowledge in graph theory or combinatorics: all definitions and 
proofs of needed theorems are given. 
 
Keywords: Graph Derangement Cycle Perfect Matching 

1. Introduction 

1.1. The Cockroach Problem 

An interesting problem was conveyed to me at the 
Normal Bar in Athens, GA. The following is a mathe- 
matically faithful rendition, although some of the details 
may be misremembered or mildly embroidered. 

Consider a square kitchen floor tiled by 25 5 5   
square tiles in the usual manner. Late one night the 
house’s owner comes down to discover that the floor is 
crawling with cockroaches: in fact each square tile 
contains a single cockroach. Displeased, she goes to the 
kitchen cabinet and pulls out an enormous can of roach 
spray. The roaches sense what is coming and start skitter- 
ing. Each roach has enough time to skitter to any 
adjacent tile. But it will not be so good for two (or more) 
roaches to skitter to the same tile: that will make an 
obvious target. Is it possible for the roaches to perform a 
collective skitter such that each ends up on its own tile? 

This is a nice problem to give undergraduates: it is 
concrete, fun, and far away from what they think they 
should be doing in a math class. 

1.2. Solution 

Suppose that the tiles are painted black and white with a 
checkerboard pattern, and that the center square is black, 
so that there are 13 black squares and 12 white squares.  

Therefore there are 13 roaches who start out on black 
squares and are seeking a home on only 12 white squares. 
It is not possible—no more than for pigeons!—for all 13 
cockroaches to end up on different white squares. 

1.3. A Problem for Mathematicians 

For a grown mathematician (or even an old hand at 
mathematical brainteasers), this is not a very challenging 
problem, since the above parity considerations will 
quickly leap to mind. Nevertheless there is something 
about it that encourages further contemplation. There 
were several other mathematicians at the Normal Bar and 
they were paying attention too. “What about the 6 6  
case?” One of them asked. “It reminds me of the Brou- 
wer fixed point theorem,” muttered another1. 

One natural follow-up is to ask what happens for 
cockroaches on an m n  rectangular grid. The preced- 
ing argument works when  and  are both odd. On 
the other hand, if e.g. 

m
m n

n
2   it is clearly possible 

for the cockroaches to skitter, and already there are 
several different ways. For instance, we could divide the 
rectangle into two dominos and have the roaches on each 
domino simply exchanging places. Or we could simply 
have them proceed in a (counter)clockwise cycle. 

Dominos are a good idea in general: if one of  and 
 is even, then an 

m
n m n  rectangular grid may be tiled 

1Unfortunately, a connection with Brouwer’s theorem is not achieved 
here, but see [1]. 

*Thanks to Mariah Hamel, Josh Laison, and the Math Department at 
Willamette University. 
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with dominos, and this gives a way for the roaches to 
skitter. Just as above though this feels not completely 
satisfactory and one naturally looks for other skittering 
patterns: e.g. when , one can have the roaches 
in the inner  square skittering clockwise as before 
and then roaches in the outer ring of the square skittering 
around in a cycle: isn’t that more fun? There are many 
other skittering patterns as well. 

4m n 

V

1v
v v

2 2

E

I found considerations like the above to be rather 
interesting (and I will come back to them later), but for 
me the real problem was a bit more meta: what is the 
mathematical structure underlying the Cockroach Pro- 
blem, and what is the general question being asked about 
this structure?  

Here we translate the Cockroach Problem into graph- 
theoretic terms. In doing so, we get a graph theoretic 
problem which in a precise sense interpolates between 
two famous and classic problems: existence of perfect 
matchings and existence of Hamiltonian cycles. On the 
other hand, the more general problem does not seem to 
be well known. But it’s interesting, and we present it 
here: it is the existence and classification of graph 
derangements. 

2. Graph Derangements and Graph 
Permutations 

2.1. Basic Definitions 

Let  be a simple, undirected graph: that is, 
we are given a set  of vertices and a set  of edges, 
which are unordered pairs of distinct elements of . For 

, we say that  and 2  are adjacent if 
 and write 1 2 . In other words, for a set 

, to give a graph with vertex set  is equivalent to 
giving an anti-reflexive, symmetric binary relation on , 
the adjacency relation. A variant formalism is also 
useful: we may think of a graph as a pair of sets 

 ,G V

1 2 V
 1 2v v E

E
V

,v v
,

V

v

V
V

 ,V E  
and an incidence relation on V . Namely, for E
x V  and , e E x  is incident to  if e x e , or, 
less formally, if x  is one of the two vertices comprising 
the endpoints of . If one knows the incidence relation 
as a subset of  then one knows in particular for 
each  the pair of vertices  1 2  which are 
incident to  and thus one knows the graph . 

e
V 

E
 ,G V E

 , E

E

 v V

e E ,v v
G

For  and , the degree of  is the 
number of edges which are incident to . A degree zero 
vertex is isolated; a degree one vertex is pendant. 

 v
v

A graph is finite if its vertex set is finite (and hence its 
edge set is finite as well). A graph is locally finite if 
every vertex has finite degree. 

If  and G V  , EG V






 are graphs with 
, we say  is an edge subgraph of : it has 

the same underlying vertex set as G  and is obtained 
from  by removing some edges. If G V  and 

E  E

G

G G

 , E

 ,G V E    are finite graphs with V  and V  E  
equal the set of all elements of  linking two vertices 
in 

E
V  , we say G  is an induced subgraph of .  G

For a graph  ,G V E , a subset X V  is in- 
dependent if for no 1 2,x x X  do we have 1 2x x .  

Example 2.1: For , we define the checker- 
board graph ,m n . Its vertex set is 

,m n 
R    m n1, ,,  1,  , 

and we decree that   , 2,1 2 1x x y y  if  

1 1x y 2 2 1x y    .  
Example 2.2: More generally, for  and  

1

n 
, ,m mn

 
1 , , nm mR 



 we may define an n-dimensional an- 
alogue  of . Its vertex set is  ,m nR

1
1,

n

i
, im  , and we decree that  

   1 1, ,m m, ,x x y y    if 
1

Example 2.3: For  we define the cylinder 
checkerboard graph ,m n . This is a graph with the 
same vertex set as  and having edge set consisting 
of all the edges of ,m n  together with 

1
m

i ii
x y


 

1n 
.  

2,
C

,m nR
R

m

   , ,1x n x  
for all 1 x m  . We put ,1m , the cycle graph. 
The checkerboard graph  is an edge subgraph of 

. 

mC 
,m nR

, 2m n 

C

,

Example 2.4: For  we define the torus 
checkerboard graph ,m n . Again it has the same vertex 
set as ,m n  and contains all of the edges of  
together with the following ones: for all 1

m nC

T
R ,m nR

x m  , 
   ,x n  ,1x  and for all 1 y n  ,    1, y,m y

T

 . 
The cylinder checkerboard graph ,m n  is an edge 
subgraph of the torus checkerboard graph . 

C

,m n

For a graph  , EG V  and  x V , we define the 
neighborhood of x as  xN y V x   y . More 
generally, for any subset X V  we define the neigh- 
borhood of X as  

     such that  xx X
NN X y V x X x y


      .  

Remark 2.5: Although ,xx N X  and  N X  need 
not be disjoint. In fact,  iff  X N X   X  is an 
independent set. 

Now the “cockroach skitterings” that we were asking 
about on  can be formulated much more generally. 
Let 

,m nR
 ,G V E  be a graph. A graph derangement of 

 is an injection G :f V V  such that  f v  v  for 
all v V . Let  be the set of all graph derange- 
ments of . 

DerG
G

Example 2.6: If nG K  is the complete graph on the 
vertex set    1, ,n  n , then a graph permutation of 

 is nothing else than a permutation of G  n . A 
derangement of nK  is a derangement in the usual sense, 
i.e., a fixed-point free permutation. Derangements exist  

iff  and the number of them is asymptotic to > 1n
!n

e
  

as . n 
It is natural to also consider a slightly more general 

definition. 
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For a graph , a graph permutation of  
is an injection 

 ,G V E
:

 G
f V V  such that for all v V , 

either  f v  v   or f v

v V

v
G

 

 . Let  be the set 
of all graph permutations of . Thus a graph derange- 
ment is precisely a graph permutation which is fixed 
point free: for all , 

PermG

f v v . 
Lemma 1 Let  be a graph.  ,G V E
1) If  has an isolated vertex, . G DerG  
2) If  has two pendant vertices adjacent to a com- 

mon vertex, . 
G

DerG  
Proof. Left to the reader as an exercise to get com- 

fortable with the definitions.  
Remark 2.7: If  is an edge subgraph of G , any 

graph derangement (resp. graph permutation) 
G

  of G  
is also a graph derangement (resp. graph permutation) of 

. G

2.2. Cycles and Surjectivity 

Given a graph , we wish not only to decide whether 
 is nonempty but also to study its structure. The 

collection of all derangements on a given graph is likely 
to be a very complicated object: consider for instance  

G
DerG

Der nK , which has size asymptotic to 
!n

e
. Just as in the  

case of ordinary permutations and derangements, it seems 
interesting to study the possible cycle types of graph 
derangements and graph permutations on a given graph 

. Let us give careful definitions of these. G
First, let  be a set and V :f V V  an function. For 

, let m  mf f  f  be the mth iterate of f . 
We introduce a relation  on  as follows: for  V

,x y V , x y
n

 iff there are  such that ,m n 
mf x f y . This is an equivalence relation on : the 

reflexivity and the symmetry are immediate, and as for 
the transitivity: if 

V

, ,x y zV  are such that x y  and 
 then there are a b c  with y z , , ,d  a bf x f y  

and c df y f
a c

z
c a

 , and then 

.b c b d b d

c b b cf x f f x f f y f y

f f y f f z f z

  

  

 
 

 

 

Now suppose f is injective: we now call the  -equi- 
valence classes cycles. Let x V , and denote the cycle 
containing x  by xC . Then: 
 xC  is finite iff x  lies in the image of f  and there 

is m   such that mf x x . 
 xC  is singly infinite iff it is infinite and there are 

y V , m   such that mf y x  and y  is not 
in the image of f . 

 xC  is doubly infinite iff it is infinite and every 

xy C  lies in the image of f . 
These cases are mutually exclusive and exhaustive, so 

f is surjective iff there are no singly infinite cycles. 
Suppose  ,G V E  is a graph and Permf G . We 

can define the cycle type of f as a map from the set of 
possible cycle types into the class of cardinal numbers. 
When V is finite, this amounts to a partition of  in 
the usual sense: e.g. the cycle type of roaches skittering 
counterclockwise on a 

#V

5 5  grid is  . A graph 
permutation is a graph derangement if it has no -cycles. 
We will say a graph derangement is matchless if it has 
no 2-cycles. 


1

1,8,16

Proposition 2 Suppose that a graph G admits a graph 
derangement. Then G admits a surjective graph derange- 
ment. 

Proof. It is sufficient to show that any graph derange- 
ment can be modified to yield a graph derangement with 
no singly infinite cycles, and for that it suffices to con- 
sider one singly infinite cycle, which may be viewed as 
the derangement 1n n   on the graph   with 

1n n   for all n 

, 2



1 2n

. This derangement can be 
decomposed into an infinite union of 2-cycles:  
1 2, 3 4, ,n     .  

2.3. Disconnected Graphs 

Proposition 3 Let  be a graph with components G
 iG

i I
, and let Permf G . 

1) For all  i iG,i I f G  .  
2) Conversely, given graph permutations if  on each 

i , G :ii I
f f G




Der
G
Deri

 is a graph permutation. More- 
over if G f G    for all . i I

E

The proof is immediate. Thus we may as well restrict 
attention to connected graphs. 

2.4. Bipartite Graphs 

A bipartition of a graph  is a partition 

1 2  of the vertex set such that each iV  is an 
independent set. A graph is bipartite if it admits at least 
one bipartition. 

 ,G V
V V V 

For k  , a k-coloring of a graph  E,G V  is a 
map  : 1, ,kC V   such that for all ,x y V ,  

   x y C x  C y
2

2



G

. There is a bijective corres- 
pondence between -colorings of  and bipartitions 
of : given a -coloring  we define  

G
C

  V x V C x ii    , and given a bipartition we define 
  iC x   if ix V . Thus a graph is bipartite iff it 

admits a 2-coloring. 
Remark 2.8: For a graph  ,G V E , a map  

 : 0,C V  1  is a 2-coloring of G  iff its restriction to 
each connected component i  is a 2-coloring of i . It 
follows that a graph is bipartite iff all of its connected 
components are bipartite. 

G G

Remark 2.9: Any subgraph  of a bipartite graph G 
is bipartite. Indeed, any 2-coloring of  restricts to a 
2-coloring of 

G
G

G . 
Example 2.10: The cycle graph  is bipartite iff  

is even. 
mC m
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Corollary 4 Let G be a bipartite graph, and let 
DerG  . Then every finite cycle of   has even 

length.  
Proof. Since a subgraph of a bipartite graph is bipartite, 

a bipartite graph cannot admit a cycle of odd finite 
degree2.  

Example 2.11: 
1) The n-dimensional checkerboard graph 

1, , nm m  
admits a graph derangement iff  are not all 
odd. 

R 

1, , nm m

2) The cylinder checkerboard graphs ,m n  all admit 
graph derangements. Hence, by Remark 2.7, so do the 
torus checkerboard graphs . 

C

,m n

3) For odd , the square checkerboard graph ,n n  
admits graph permutation with a single fixed point. For 
instance, by dividing the square into concentric rings we 
get a graph permutation with cycle type 

T
n R

1
1,8,16, ,8

2

n  
  

  
 

. 

3. Existence Theorems 

3.1. Halls’ Theorems 

The main tool in all of our Existence Theorems is a truly 
basic result of combinatorial theory. There are several (in 
fact, notoriously many) equivalent versions, but for our 
purposes it will be helpful to single out two different 
formulations. 

Theorem 5 (Halls’ Theorem: Transversal Form) Let 
 be a set and 

i I
 be an indexed family of 

finite subsets of . The following are equivalent: 
V  iS

V
1) (Hall Condition) For every finite subfamily J I ,  

# # i
i J

.J S


   

2)  ,V I  admits a transversal: a subset X V  
and a bijection :f X I  such that for all x X , 

 f xx S . 
We will deduce Theorem 5 from the following refor- 

mulation. 
Theorem 6 (Halls’ Theorem: Marriage Form) Let 

 be a bipartitioned graph in which every 
 has finite degree. The following are equivalent: 

 1 2, ,G V V E
v V


1

1) (Cockroach Condition) For every finite subset of 
, . 1V  1 1# #V N V
2) There is a semiperfect matching, that is, an in- 

jection 1 2:V V   such that for all 1x V ,  x x
V

. 
Proof. We follow [2]. Step 1: Suppose  is finite. 

We go by induction on . The case 1  is trivial. 
Now suppose that 1  and that the result holds 
for all bipartitioned graphs with first vertex set of car- 
dinality smaller than . It will be notationally con- 
venient to suppose that , and we do so. 

1

#V
#V n

n

1 

#V

n

Case 1: Suppose that for all , every - 
element subset of 1  has at least  neighbors. Then 
we may match n to any element of 2V  and semi- 
perfectly match 

1 <k n
1k 

k
V

 , 1n1,   into the remaining ele- 
ments of  by induction. 2

Case 2: Otherwise, for some , , there is a 
-element subset 1

V
k 1 <k n

k X V  such that  #N X k . The 
subset X  may be semiperfectly matched into 2V  by 
induction, say via 1 2: X V  , so it suffices to show that 
the Hall Condition still holds on the induced biparti- 
tioned subgraph on   X1 2\ ,V 1 . Indeed, if not, 
then for some h, 

\
k

V X
1 h n  

ha
, there would be an h- 

element subset Y ving fewer than h  neig  
bors in 

1 \V X  h-
 2 1\V  en  ) , but thX

          
 

# # # #

# .

N X Y N X N Y N X N Y

k h X Y

  

  

 


 

Step 2: Suppose  is infinite. For 1V 1x V , endow  

xN  with the discrete topology; endow 
1

xx V
N N


   

with the product topology. Each Nx is finite hence com- 
pact, so N is compact by Tychonoff’s Theorem. For any 
finite subset 1X V , let 

  , .X i x yH n n N n n x y X        

Then XH  is closed in  and is nonempty by Step 1. 
Since  is compact, there is , and any such 

 is a semiperfect matching.  

N
G XX

n H
n

Remark 3.1: Theorems 5 and 6 are equivalent results: 
Assume Theorem 5. In the setting of Theorem 6, take 

2V V , 1I V  and  x x I
. The local finiteness 

of the graph means each element of  is finite, and the 
assumed Cockroach Condition is precisely the Hall 
Condition, so by Theorem 5 there is 

N


2X V  and a 
bijection  such that :f X I   xx X f  x N . 
Let 1

1:f V X . Then for , let 1Vy  y x , so 
   x f y y  x . 

Assume Theorem 6. In the setting of Theorem 5 take 

1V I , 2V V , and  the set of pairs E  ,i x  such 
that ix S . Since each i  is finite, the graph is locally 
finite, and the assumed Hall Condition is precisely the 
Cockroach Condition, so by Theorem 6 there is a semi- 
perfect matching 

S

: I V  . Let  X f I , and let 
 be the inverse function. For :f X I x X , if 

 xi f ,  x i , so  i f xx S S  . 
Remark 3.2: Theorem 5 was first proved for finite I  

by Philip Hall [3]. Eventually it was realized that equi- 
valent or stronger versions of P. Hall’s Theorem had 
been proven earlier by Menger [4], Egerváry [5] and 
König [6]. The matrimonial interpretation was introduced 
some years later by Halmos and Vaughan [2]. Never- 
theless, with typical disregard for history the most com- 
mon name for the finite form of either Theorem 5 or 13 
is Hall’s Marriage Theorem. 

1
1>

1,V  ,
2Conversely, a graph with no cycles of odd degree is bipartite, a famous 
result of D. König. 
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Remark 3.3: The generalization to arbitrary index sets 
was given by Marshall Hall Jr. [7], whence “Halls’ 
Theorem” (i.e., the theorem of more than one Hall). 

Remark 3.4: M. Hall Jr.’s argument used Zorn’s 
Lemma, which is equivalent to the Axiom of Choice 
(AC). The proof supplied above uses Tychonoff’s Theo- 
rem, which is also equivalent to (AC) [8]. However, all 
of our spaces are Hausdorff. By examining the proof of 
Tychonoff’s Theorem using ultrafilters [9], one sees that 
when the spaces are Hausdorff, by the uniqueness of 
limits one does not need (AC) but only that every filter 
can be extended to an ultrafilter (UL). In turn, (UL) is 
equivalent to the fact that every Boolean ring has a prime 
ideal (BPIT). (BPIT) is known to be weaker than (AC), 
hence Halls’ Theorem cannot imply (AC). 

Question 1 Does Halls’ Theorem imply the Boolean 
Prime Ideal Theorem? 

Remark 3.5: The use of compactness of a product of 
finite, discrete spaces is a clue for the cognoscenti that it 
should be possible to find a nontopological proof using 
the Compactness Theorem from model theory. The 
reader who is interested and knowledgeable about such 
things will enjoy doing so. The Compactness Theorem 
(and also the Completeness Theorem) is known be equi- 
valent to (BPIT). 

Example 3.6 ([10], pp. 288-289): Let 1  be the set of 
non-negative integers and let 2V  be the set of positive 
integers. For all positive integers 1

V

x V , we decree that 
x  is adjacent to the corresponding positive integer in 

2  and to no other elements of 2 . However, we decree 
that 1  is adjacent to every element of . It is clear 
that there is no semiperfect matching, because if we 
match 0 to any 2 , then the corresponding element 

1  cannot be matched. But the Cockroach Condition 
holds: for a finite subset 1

V

n

V
0 V

V

Y

n V

X V , if 0 X  then 
 1#N V  1#V , whereas if 0 X  then  1 2VN V  . 

3.2. The First Existence Theorem 

Theorem 7 Consider the following conditions on a 
graph  ,G V E

DerG  
: 

(D) . 
(H) For all subsets X V ,  # #X N X . 
(H′) For all finite subsets X V ,  # #X N X . 
1) Then (D)  (H)  (H′).  
2) If  is locally finite, then (H′)  (D) and thus 

(D)  (H)  (H′). 
G 

 
Proof. a) (D)  (H): If  DerG   and X V , 

then :V V   is an injection with    X N X . 
Thus  # #X N X


. (H)  (H′) is immediate. 

G3) (H′)  (D) if  is locally finite: for each 
x V , let x x , and let S N  x x V

. Since G  is 
locally finite, 

I S



I  is an indexed family of finite subsets of 

. By assumption, for any finite subfamily V J I , 

 # # # # :x i
x J i J

J N J N S
 

     

this is the Hall Condition. Thus by Theorem 5, there is 
X V  and a bijection  such that for all :f X V
x X ,  f xx N , i.e.,  x f x . Let  

1 :f V X  . Then for all y V ,  
    y f y  y , so DerG  . 
Remark 3.7: Example 3.3 shows (H) need not imply 

(D) without the assumption of local finiteness. The graph 
with vertex set  and such that every  x  is 
adjacent to every integer  satisfies (H′) but not 
(H). 

>n x

Lemma 8 Let  be a locally finite graph which 
violates the cockroach condition: there is a finite subset 

G

 X V G  such that  # > #X N X
Y X

. Then there is an 
independent subset  such that  # > #Y N Y . 

Proof. Let  be the subset of all vertices which 
are not adjacent to any element of 

Y  X
X , so  is an in- 

dependent set. Put 1

Y
#m Y , 2 , and   \m X Y#

1 2n m m #X   . By hypothesis,  
 # <N X n 1 2m m  ; since    \\X Y N X N Y , we 

find   1 2# <N Y m m 2 1

Combining Proposition 2, Theorem 7 and Lemma 8 
we deduce the following result. 

< #m Ym  . 

Theorem 9 (First Existence Theorem) 
For a locally finite graph, the following are equivalent: 
1) For every finite independent set X  in , G

 # #X N X
G

. 
2)  admits a surjective graph derangement. 
Remark 3.8: Theorem 9 was first proved by W.T. 

Tutte ([11], 7.1). Most of Tutte’s paper is concerned with 
related—but deeper—results on digraphs. The result 
which is our Theorem 9 appears at the end of the paper 
and is proven by passage to an auxiliary digraph and 
reduction to previous results. Perhaps because this was 
not the main focus of [11], Theorem 9 seems not to be 
well known. In particular, our observation that one need 
only apply Theorem 5 appears to be new. 

3.3. Bipartite Existence Theorems 

A matching on a graph  is a subset 
 such that no two edges in  share a common 

vertex. A matching  is perfect if every vertex of  
is incident to exactly one edge in .  

 ,V G E





E

 G

A graph permutation is dyadic if all of its cycles have 
length at most 2. 

Proposition 10 Let  be a graph. G
1) Matchings of  correspond bijectively to dyadic 

graph permutations. 
G

2) Under this bijection perfect matchings correspond 
to dyadic graph derangements. 

Proof. 1) Let  be a matching. We define E
SymV   as follows: if x  incident to the edge 
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 ,e x y , we put x y  . Otherwise we put x x  . 
This is well-defined since by definition every vertex is 
incident to at most one edge and gives rise to a dyadic 
graph permutation. Conversely, to any dyadic graph per- 
mutation SymV  , let X V  be the subset of ver- 
tices which are not fixed by   and put  

 , x X
x x 


. Then     and    

are mutually inverse. 
2) A matching  is perfect iff every vertex  x V  

is incident to an edge of  iff the permutation  

E

 is 
fixed-point free.  

 , ,G V V

 1 2 ,V V E
, , E

Let 1 2  be a bipartitioned graph. A semi- 
perfect matching on G  is a matching  such 
that every vertex of 1  is incident to exactly one ele- 
ment of . Thus a subset  is a perfect match- 
ing on  iff it is a semiperfect matching on 
both  and on   . 

E

V








V V



G

, ,V V E1 2 2 1

A semiderangement of  1 2  is an in- 
jective function 

, ,VG V E
21:V V   such that  x x  for all 

1x V



. 
But in fact we have defined the same thing twice: a 

semiderangement of a bipartitioned graph is nothing else 
than a semiperfect matching. 

Theorem 11 (Semiderangement Existence Theorem) 
Consider the following conditions on a bipartitioned 
graph :  E1 2

(SD) There is an injection 
, ,G V V

1 V2:V   such that for all 

1x V ,  x x . 
(H) For every finite subset 1J V ,  # #J N J . 
Then (SD)  (H), and if G  is locally finite, (H) 
 (SD). 




Proof. This is precisely Theorem 6 stated in the 
language of semiderangements.  

Theorem 12 (Königs’ Theorem) Let  1 2, ,V E

2V

G V

1 1:V

 
be a bipartitioned graph, which need not be locally finite. 
Suppose there is a semiderangement  

V
 of 

 and a semiderangement 2 2 1 1 2, ,V V E  :V   of 

2 1 . Then  admits a perfect matching, i.e., a 
bijection  such that 
 , ,V V E 

1:f V 
G

2V  x f x  for all 

1x V . 
Proof. Let 1 2 . Then 1 2  is a 

graph derangement. The injection 
V V V :V V 

  partitions V  into 
finite cycles, doubly infinite cycles, and singly infinite 
cycles. For each cycle C  which is finite or doubly 
infinite, 1 1 2: C V C V    and 2 2 1: C V C V    
are bijections. Thus if there are no singly infinite cycles, 
taking 1f   we are done. If C  is a singly infinite 
cycle, it has an initial vertex 1x . If 1 1x V , then 

21 1: C V C V 
2

  is surjective; the problem occurs if 

1x V : then 1x  does not lie in the image of 1 . We 
have 1 2 2 1x x V  ,  3 1 2 2x x V , and so forth. So 
we can repair matters by defining 1  on 2 4  by 

2 1

, ,x x
x x , 4 3x x , and so forth. Doing this on every 
singly infinite cycle with initial vertex lying in V2 a 

bijection 1 . Moreover, since 2:f V V 2  is a semi- 
derangement and  2 1 2n nx x   for all n  , we 
have  2 2 1 2n n nf x x  

V

x f

1V
, so  is a bijection. 

Remark 3.9: Suppose  and 2  are sets and 

1 1 2

V
:V   and 2 2 1:V V   are injections between 

them. If we apply Theorem 12 to the bipartitioned graph 
on  1 2,V V  in which  1 2 1x V y V x y     or 
 2 y x  , we get a bijection 1 2 : this is the 

celebrated Cantor-Bernstein Theorem. As a proof of 
Cantor-Bernstein, this argument was given by Gyula 
(“Julius”) König [12] and remains to this day one of the 
standard proofs. His son Dénes König explicitly made 
the connection to matching in infinite graphs in his 
seminal text [13]. 

:f V V

Theorem 13 (Second Existence Theorem) Let 
 1 2, ,V EG V

G
G
G

  be a locally finite bipartitioned graph. 
The following are equivalent: 

1)  admits a perfect matching. 
2)  admits a dyadic graph derangement. 
3)  admits a graph derangement. 
4) For every subset J V ,  # #J N J . 
Proof. 1)   2) by Proposition 10.  
2)  3) is immediate.  





3)  4) is the same easy argument we have already 
seen. 

4)  1): By Theorem 11, we have semiderange- 
ments 1 1 2:V V   and 1V22 :V  . By Theorem 12 
this gives a perfect matching.  

Remark 3.10: The equivalence 1)  4) above is due 
to R. Rado [14]. 



3.4. An Equivalence 

Theorems 9 and 13 are “equivalent” in the sense that 
they were proved using equivalent formulations of Halls’ 
Theorem (together with, in the case of Theorem 13, a 
Cantor-Bernstein argument). In this section we will show 
their equivalence in a stronger sense: each can be rapidly 
deduced from the other. 

Assume Theorem 9, and let  be a 
locally finite bipartitioned graph satisfying the Cock- 
roach Condition: for all finite independent subsets 

1 2

 1 2 , ,V EG V

J VV #NJ  , . Then Theorem 9 applies to 
yield a surjective graph derangement f. A cycle  
admits a dyadic graph derangement iff it is not finite of 
odd length; since G is bipartite, no cycle in f is finite of 
odd length. Thus decomposing f cycle by cycle yields a 
dyadic graph derangement. 

#J
C

Assume Theorem 13, and let  ,G V E  be a locally 
finite graph satisfying the Hall Condition: for all finite 
independent subsets J V #NJ, . Let #J

 2 2, ,V E
V

2 1G V
V V

 be the bipartite double of : we put 

1 2

G
  . For x V , let 1x  (resp. 2x ) denote the 

copy of x  in  (resp. ). For every 1V 2V  ,e x y  E ,  
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we give ourselves edges    1 2 1 2 2, , ,x y y x E

G
G

2f

. Then 

2  is locally finite bipartitioned, and it is easy to see 
that the Hall Condition in  implies the Cockroach 
Condition in 2 . By Theorem 13, 2  admits a dyadic 
graph derangement . From  we construct a graph 
derangement  of : for 

G

G

f
2f
G x V 1, let x  be the 

corresponding element of 1 ; let V  2 2 1y f x
y

, and let 
 be the element of  corresponding to 2 . Then we 

put 
y V

 f x  y . It is immediate to see that  is a graph 
derangement of . It need not be surjective, but no 
problem if it isn’t: apply Proposition 2. 

f
G

Remark 3.11: Our deduction of Theorem 9 from 
Theorem 13 is inspired by an unpublished manuscript of 
L. Levine [15]. 

Remark 3.12: Recall that Theorem 13 implies the 
Cantor-Bernstein Theorem. The above equivalence thus 
has the following curious consequence: Cantor-Bernstein 
follows almost immediately from the transversal form of 
Halls’ Theorem. 

3.5. Dyadic Existence Theorems 

One may ask if there is also an Existence Theorem for 
dyadic derangements in non-bipartite graphs. The answer 
is yes, a quite celebrated theorem of Tutte. A later result 
of C. Berge gives information on dyadic graph per- 
mutations. 

Let  be a graph. For a subset  ,G V E  X V , we 
denote by  the induced subgraph with vertex set 

. 
\G X

\V X
Theorem 14 (Third Existence Theorem) For a finite 

graph , TFAE:  ,G V E
G


1)  has a dyadic graph derangement.  
2) For every subset X V , the number of connected 

components of  with an odd number of vertices is 
at most 

\G X
#X . 

Proof. See [16]. 
Remark 3.13: Theorem 14 can be generalized to 

locally finite graphs: see [17]. 
A maximum matching of a finite graph G  is a 

matching  such that  is maximized among all 
matchings of . Thus if  admits a perfect matching, 
a matching  is a maximum matching iff it is perfect, 
whereas in general the size of a maximum matching 
measures the deviation from a perfect matching in . 





#
GG

G
For a finite graph H , let  odd H  be the number of 

connected components of H  with an odd number of 
vertices. 

Theorem 15 (Berge’s Theorem [18]) Let  be any 
finite graph. The size of a maximum matching in  is 

G
G

1
# odd( \ ) # min

2G
X V

B X G X V


   .  

We immediately deduce the following result on dyadic 

graph permutations. 
Corollary 16 Let  be a finite graph. Then the least 

number of fixed points in a dyadic graph permutation of 
 is 

G

G # 2 GV B . 

3.6. Matchless Graph Derangements 

Let  ,G V E  be a finite graph with . Then a 
graph permutation of cycle type  is called a Hamil- 
tonian cycle (or Hamiltonian circuit). 

#V n
 n

From the perspective of graph derangements it is clear 
that Hamiltonian cycles lie at the other extreme from 
dyadic derangements and permutations. Here much less 
is known than in the dyadic case: there is no known 
Hamiltonian analogue of Tutte’s Theorem on perfect 
matchings, and in place of Berge’s Theorem we have the 
following open question. 

Question 2 Given a finite graph G , determine the 
largest integer  such that  admits a graph per- 
mutation of type 

n G
 ,1, ,1n . Equivalently, determine the 

maximum order of a vertex subgraph of  admitting a 
Hamiltonian cycle. 

G

A general graph derangement is close to being a 
partition of the vertex set into Hamiltonian cycles, except 
that if x and y are adjacent vertices, then sending x to y 
and y to x meets the requirements of a graph derange- 
ment but does not give a Hamiltonian subcycle because 
the edge from x to y is being used twice. Let us say a 
graph derangement is matchless if each cycle has length 
at least 3. The above Existence Theorems lead us na- 
turally to the following question.  

Question 3 Is there an Existence Theorem for match- 
less graph derangements? 

As noted above, there is no known Existence Theorem 
for Hamiltonian cycles. Since a Hamiltonian cycle is a 
graph derangement of a highly restricted kind, one might 
hope that Question 3 is somewhat more accessible. 

4. Checkerboards Revisited 

4.1. Universal and Even Universal Graphs 

Let G be a graph on the vertex set   1, ,n n    such 
that DerG   . As in §2 , it is natural to inquire 
about the possible cycle types of graph derangements 
(and also graph permutations) of G. We say G is uni- 
versal if for every partition  of  there is a graph 
derangement of  with cycle type . For instance, the 
complete graph 

.2

p n
pG

nK  is (rather tautologously) universal. 
If  and G  is bipartite, by Corollary 4 G is not 

universal, because the only possible cycle types are even. 
Thus for graphs known to be bipartite the more interest- 
ing condition is that every possible even partition of 

5n 

 n
G

 
occurs as the cycle type of a graph derangement of : 
we call such graphs even universal. 
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4.2. On the Even Universality of Checkerboard 
Graphs 

Proposition 17 For all n  , the checkerboard graph 
 is even universal. 2,nR

Proof. This is an easy inductive argument which we 
leave to the reader.  

Proposition 18 Let  be an even number. Then: 4n 
1) If  are even numbers greater than 2 such  1, , ka a

k
that , then there is no graph derangement  

1
4 ii

a


  3n









of  of cycle type . 3,n

2) It follows that  is not even universal. 
R  1, , , 4ka a

3,n

Proof. 1) A -cycle on any checkerboard graph must 
be a -square. By symmetry, we may assume that 
the -square is placed so as to occupy portions of 
the top two rows of ,m n . The two vertices immediately 
underneath the square cannot be part of any Hamiltonian 
cycle in the complement of the square, so any graph 
derangement containing a -cycle must also contain a 

-cycle directly underneath the -cycle. Thus the cycle 
type  is excluded. 

R
4

4
4

2 2
 2 2

a a
n

R



4

3n

2 4

1

2) Since  is even,  is even and at least , 
so there are even partitions of  of the above form: 

 if  is divisible by 4 ;  
otherwise.  

, , ,k

12

, 4
3n

4,4, , 4  n 6,4,4,

Proposition 19 If  is odd and  is divisible by 
, then  admits no graph derangement of cycle 

type  and is therefore not even universal. 

m n
4 ,m nR

 4, , 44,
Proof. Left to the reader.  

Example 4.1  : There are 3,4G
12

11
2

p
   
 

 even  

partitions of 12 . By Proposition 19, we cannot realize 
the cycle types ,  by graph derangements. 
We can realize the other nine: 

 8,4 4,4,4



           
     
12 , 10, 2 , 8,2,2 , 6,6 , 6,4,2 , 6, 2, 2, 2 ,

4,4, 2, 2 , 4,2, 2, 2, 2 , 2,2, 2, 2, 2,2 .
 

Example 4.2 : Of the  4,4G
16

22
2

p
   
 

 even parti-  

tions of , we can realize : 16 20

          
       
16 , 14, 2 , 12,4 , 12, 2, 2 , 10, 4, 2 , 10,2,2, 2 ,

8,8 , 8,6, 2 , 8,4, 4 , 8,4,2,2 ,







 

      
     
8,2,2, 2 , 6,6, 2, 2 , 6,4,4,2 , 6, 4, 2,2,2 ,

6, 2,2,2, 2, 2 , 4,4, 4, 4 , 4,4, 4, 2, 2 ,
 

    4,4,2, 2, 2, 2 , 4,2,2,2, 2, 2, 2 , 2,2,2,2, 2, 2, 2, 2,2 .  

We cannot realize: 

   10,6 , 6,6, 4 .  

Indeed, the only order 6 cycle of a checkerboard graph 
is the  checkerboard subgraph. Removing any 6- 

cycle leaves one of the corner vertices pendant and hence 
not part of any cycle of order greater than . 

2 3

2

Example 4.3  3,6G : There are 
18

2
 

30p  even   
 

partitions of . We can realize these 23 of them:  18

        
    
18 , 16,2 , 14, 2,2 , 12,6 , 12, 4,

12,2,2, 2 , 10,6,2 , 10, 4, 2, 2 ,




2 ,
 

       
     
10,2, 2, 2, 2 , 8,8,2 , 8,6, 2,2 , 8 , 2,2 ,

8,2,2, 2, 2,2,2 , 6,6,6 , 6,6,4,2 ,

, 4, 2
 

     
  
6,6, 2, 2,2 , 6,4,4, 2, 2 , 6,4,2,2, ,

6, 2,2,2,2, 2, 2 , 4,4, 4, 2, 2,2 ,
2, 2

 

   
 
4,4, 2, 2,2,2,2 , 4,2,2, 2, 2,2,2,2

2,2, 2, 2,2,2,2, 2, 2 .

,
 

We cannot realize the following ones: 

      
    
14,4 , 10,8 , 10, 4, 4 , 8,6,4

8,4,4, 2 , 6, 4, 4,4 , 4, 4, 4,4

 ,
, 2 .

 

Of these, all but  10,8  and  4,4, 24, 4,  are ex- 
cluded by Proposition 18, and we leave it to the reader to 
check that these two “exceptional” cases cannot occur.  

Example 4.5  4,5G : There are 
20

2
 

42p  even   
 

partitions of . We can realize  of them. We 
cannot realize: 

20 39

    8,8,4 , 8, 4, 4,4 , 4, 4, 4,4, 4 .  

No  8,8,4 : to place a 4-cycle in 4,5  without 
leaving a pendant vertex, we must place it in a corner, 
without loss of generality the upper left corner. The only 

-cycle which can fit into the remaining lower left 
corner is the recantagular one, and this leaves a pendant 
vertex at the lower right corner. 

G

8

No  8,4,4, 4 : Any placement of three -cycles in 

4,5  gives two of them in either the top half or the 
bottom half, and without loss of generality the top half. 
Any such placement leaves a pendant vertex in the top 
row. 

4
G

No  4,4, 4, 4, 4 : This follows from Proposition 19. 
Alternately, the argument of the previous paragraph 
works here as well. 

Example 4.6 (  4,6G ): There are 
24

12
 

77p  even   
 

partitions of . They can all be realized by graph 
derangements:  is even universal. 

24
G4,6

By analyzing the above examples, we found the fol-
lowing additional families of excluded cycle types. The 
proofs are left to the reader. 

Proposition 20 Let 2 1n k   be an odd integer 
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