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ABSTRACT 

The paper addresses the constrained mean-semivariance portfolio optimization problem with the support of a novel 
multi-objective evolutionary algorithm (n-MOEA). The use of semivariance as the risk quantification measure and the 
real world constraints imposed to the model make the problem difficult to be solved with exact methods. Thanks to the 
exploratory mechanism, n-MOEA concentrates the search effort where is needed more and provides a well formed effi-
cient frontier with the solutions spread across the whole frontier. We also provide evidence for the robustness of the 
produced non-dominated solutions by carrying out, out-of-sample testing during both bull and bear market conditions 
on FTSE-100. 
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1. Introduction 

Portfolio optimization is the process of choosing the as-
sets and their proportions, so that it is attained the maxi-
mum profitability for the risk undertaken. MOEAs tech-
niques applied to the portfolio selection problem have 
become increasingly popular relatively recently. Not only 
because they provide a fast and reliable way of calculat-
ing computationally demanding financial models but also 
why revolutionized the financial modeling research field 
itself by developing innovative algorithmic approaches 
for solving difficult financial problems that in many cas-
es cannot be solved with exact methods. Over the past 
years researchers developed several approaches for the 
solution of the portfolio optimization problem with the 
use of MOEAs. Most of the early work on MOEAs 
adopts the unconstrained Markowitz Mean – Variance 
(MV) model [2, 4]. Obviously, the practical usefulness of 
such a model is limited to academic purposes and cannot 
address the complexity and multiple real world con-
straints faced by portfolio managers. More recent studies, 
incorporate a number of constraints into the optimization 
model, but do not examine how these constraints affect 
the evolutionary search process and the efficient frontier 
formulation. Additionally, still the majority of the studies 
use variance [3] for the quantification of portfolio risk 
although it’s well known undesirable mathematical 
properties [1]. 

Our paper proposes a bi-objective return semivariance 
portfolio optimization model that incorporates a number 
of real world constraints such as cardinality constraints, 
floor and ceiling constraints, non-negativity constraint 
and budget constraint and analyzes their effects on the 
efficient frontier formulation. Finally, we provide em-
pirical evidence for the robustness of the proposed 
methodology by performing, out-of-sample experiments 
during both bull and bear market conditions on FTSE- 
100. 

The paper is organized as follows. Section 2 provides 
a formal introduction of the proposed multi-objective 
portfolio optimization model and the various constraints 
applied. Section 3 provides an analytical description of 
the proposed MOEA model, focusing especially on the 
applied techniques for the efficient exploration of the 
search space. Finally, section 4 evaluates the robustness 
of the proposed algorithm by carrying out a number of 
out-of-sample tests during both bull and bear market 
conditions. 

2. Problem Definition 

The Portfolio optimization problem seeks to optimize 
two conflicting objectives, portfolio return and risk (Ta-
ble 1) subject to a set of constraints. In multi-objective 
optimization, and particularly when the objectives are 
conflicting, there is not a single solution that can opti-
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mize all objectives simultaneously. Thus, in reality we 
are trying to find good compromises or “trade-offs” be-
tween the different objectives. This “trade-off” between 
the different objectives was expressed for first time by 
Francis Edgeworth and generalized by Vilfredo Pareto. 
Nowadays, is known as Pareto optimality. Let   be the 
search space. Consider 2 objective functions 1 2,f f  
where  and . :if  

     Table 1. The Portfolio Optimization Problem 
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and m = 100 equal to the number of stocks in FTSE-100. 
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where 
i
 represents the semivariance of security i. sv RT  

represents the target return, equal to zero in this occasion 
and t R  the difference between realized return and 
target return. 
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2.1. Constraints to the Problem 

Budget constraint or summation constraint 
1

1
m

i
i

w


   

requires all portfolios to have non-negative weights 
(

i
) that sum to 1.

 
The non-negativity 

constraint indirectly implies that short selling is not al-
lowed. 
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Floor and ceiling constraints . 
Where ai = the minimum weighting that can be held of 
asset i (i = 1, …, n ), bi = the maximum weighting that 
can be held of asset i(i = 1, …, n ) and  
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2.2. Pareto Optimality Definitions 

We make use of Pareto optimality framework in order to 
determine the solutions in this multi-objective optimiza-
tion problem. In particular we use the following defini-
tions: 

Definition 1 (Pareto dominance) 
Consider a maximization problem. Let x, y be two de-

cision vectors (solutions) from Ω. Solution x dominate y 
(also written as x > y) if and only if the following condi-
tions are fulfilled: (i) The solution x is no worse than y in 
all objectives ii  (ii) The solu-
tion x is strictly better than y in at least one objective 

nyfxf ,...,2,1),()( 

}: ( ) ( )j jf x f y{1,2,...,j n   .
 
If any of the above con-

ditions is violated the solution x does not dominate the 
solution y.

 
Definition 2 (Global Pareto-Optimal set) 
The non-dominated set of the entire feasible search 

space Ω is the global Pareto-optimal set. 
Definition 3 (Local Pareto-Optimal set) 
Let S  be a subset of the search space. All solu-

tions which are not dominated by any vector of S are 
called non-dominated with respect to S. Solutions that 
are non-dominated with respect to S,  are called 
local Pareto solutions or local Pareto regions.

 

S 

Definition 4 (Strong dominance) 
A solution x strongly dominates a solution y, x > y, if 

solution x is strictly better than solution y in all m objec-
tives. 

Definition 5 (Weak dominance) 
A solution x weakly dominates y, if ( ) ( ), 1,2,...,i if x f y n   

and there is no x  such that ( ) ( ), 1,2,...,i if x f y i n  
Definition 6 (Non dominated solutions) 
A solution x is called non-dominated if x is either a 

strong non-dominated or a weak non-dominated. 
Figure 1 we provide a schematic illustration of the 

dominance in a bi-objective optimization (portfolio re-
turn and risk), where a higher value is better for f1(w) = 
“Return objective function” and a lower value is better 
for f2(w) = “Risk objective function” 

In this example solution A1 strongly dominates solu-
tion A2, A3 and B since the f1(w) and f2(w) of solution A1 
are strictly better than the f1(w) and f2(w) of solution A2 , 
A3 and B respectively. Solution A and C are weakly 
dominated by solution A1 where the value of one of the 
objectives functions of the dominated solution is equal to 
the corresponding value of solution A1. 

3. The Proposed Methodology 
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This section is dedicated to the presentation of the pro-
posed MOEA. The n-MOEA is summarized in the fol-
lowing steps. 

Algorithm_n-MOEA() 

 

Figure 1. Pareto optimization in mean-risk portfolio opti-
mization problem. 

 
1) INITIALIZATION of the population 
2) WHILE termination criterion not fulfilled 
3) EVALUATE each portfolio of the population using 

Pareto Optimality 
4) ARCHIVE add the Local non-dominated portfolios 

into the archive 
5) EVALUATE_ARCHIVE according to Pareto Op-

timality conditions 
5a. DOMINATED_SOLUTIONS removed from 

ARCHIVE 
5b. NON_DOMINATED remain into the ARCHIVE 

as 
Global Non-dominated solutions 
6) REPRODUCTION_FITNESS assign reproduction 

fitness to the Global non-dominated portfolios according 
to the Euclidian distance between them. 

7) CREATE_NEW_POPULATION new population 
is created probabilistically from the Global non-domi- 
nated solutions in the ARCHIVE according to the fitness 
assigned to each portfolio. 

8) MUTUTION operation applied to the new popula-
tion to variate the portfolios 

9) CROSSOVER operation applied to the new popu-
lation to preserve population diversity. 

10) GO TO step 2 
Below we provide analytical description of the key 

elements of the proposed algorithm. 

3.1. Reproduction Fitness Assignment 

As soon as, we identify the Global non-dominated solu-

tions, we arrange them into the Cartesian system. Thus, 
for any solution into the system we know the two neigh-
bor solutions (portfolios). Please, note that the most left-
ward and rightward points (E and D in this occasion) 
have one neighbor solution. Next, we calculate the Eu-
clidian distance for each Global non-dominated solution 
(portfolio) in the Archive (see Figure 2). 

where: 2 2( ) (AB A AB Breturn riskd return    )risk  

2 2( () )A C AAC
return return risk riskd     C  

Generally, the distance between two points x = (x1,…, 
xn) and y = (y1,…, yn) in Euclidean n-space is given by: 
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We assign reproduction fitness to each Global non- 
dominated solution. The reproduction fitness points sum 
up to 1% or 100%. The reproduction fitness is assigned 
according to the Euclidian distance of the solution from 
its neighbor solutions. Thus, the higher the Euclidean 
distance of the solution, the higher gets the assigned re-
production fitness. The reproduction fitness assigned to 
the Global non-dominated Archive solutions will guide 
the exploratory process. 

3.2. Generation of New Population 

Then, probabilistically are selected the solutions (portfo-
lios) that will be included in the new population. Obvi-
ously, the higher fitness solutions have more chances to 
be picked up. Depending on the size of population and 
the number of Global non-dominated solutions in the 
Archive, many copies of Solution A may be reproduced 
in the new population. For example if the population size 
is 50 and the non-dominated solutions in the Archive are 
10, and assuming that solution A had much higher fitness 
(see Figure 3) than any other solution in the Archive, 
then we would expect solution A to be reproduced more 
 

 

Figure 2. Calculation of the Euclidian distance between the 
Global non-dominated solutions for the assignment of re-
production fitness. 
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Figure 3. Global non-dominated solution A is assigned a 
higher reproduction fitness, due to its higher Euclidian dis-
tance from the rest non-dominated solutions. 
 
than 5 times (average reproduction) in the new popula-
tion due to the higher reproduction fitness. 

3.3. The Mutation Mechanism 

The number of mutants is determined by the portfolio 
size and the mutation rate. For determining which stocks 
will exist the portfolio is calculated the Inverse Fitness. 
The Inverse Fitness is calculated as follows: 

Inverse Fitness = Maximum Stock Fitness 
– Stock Fitness 

where: Maximum Stock Fitness: The stock with the high-
est fitness among the stocks on FTSE-100 and Stock Fit-
ness: The fitness of each individual stock that is included 
in the portfolio. 

That means that the highest fitness stock of FTSE-100 
has an Inverse Fitness of zero. As soon as we calculate 
the portfolio’s Inverse Fitness, we probabilistically select 
the stocks to exit the portfolio. Obviously, the highest 
fitness stock will not exit the portfolio as has an Inverse 
Fitness of zero. Stocks with higher inverse fitness and 
thus lower fitness are more probable to be removed from 
the portfolio. This is an elitism mechanism that gives 
probabilistic advantage to the higher fitness stocks to 
remain into the portfolio. 

Having decided which stocks will exit the portfolio, 
and then we have to determine which stocks will enter 
the portfolio as mutants. In this case all the stocks of the 
index are taken into account, according to their fitness. 
Again, cardinality constraints and lower and upper bounds 
are taken into account during this process. Taking stocks’ 
fitness into account means that stocks with higher fitness 
are more probable to enter the portfolio as mutants. 

3.4. The Crossover Mechanism 

At this stage, the population already has been variated 
through the mutation process. In order to maintain diver-

sity in the population and avoid convergence to a single 
solution we make use of the crossover mechanism. The 
crossover between the various solutions (portfolios) is 
random, but within the maximum and minimum cross-
over rates that we have specified at an earlier stage. For 
example if we specify maximum crossover rate = 90% 
and minimum = 70%, that means that randomly will be 
selected a crossover rate within these limits let’s say 80%. 
A crossover rate 80% simply means that 80% of portfolio 
A will be crossover with 20% of portfolio B and 20% of 
portfolio A will be crossover with 80% of portfolio B. 
Please note that the pairs to be crossover are selected 
randomly. 

3.5. Efficient Frontier Formulation 

Next, we present the process of efficient frontier formu-
lation by quoting experimental results based on historical 
data of FTSE-100. For the first experiment, as a training 
set we use 63 daily historical observations of FTSE-100 
from 30-Nov-2011 till 29-Feb-2012. The configuration 
of the n-MOEA for this experiment is: population size 70, 
maximum number of generations 200, floor constraint 
5%, ceiling constraint 31%, Cardinality constraint 20 
stocks, crossover rate between 70% and 90% and muta-
tion rate 20%. Below, we provide two figures with the 
Efficient Frontier formulation at different stages of the 
algorithm execution. 

Figure 4 displays the exploratory process of n-MOEA. 
It is evident even from Figure 4(a) at generation 50 that 
the algorithm pusses the exploratory process towards the 
left and upward corner of the figure where the most effi-
cient solutions reside i.e. solutions that command higher 
return and lower risk. At generation 200 as it is evident 
from Figure 4(b) the region surrounding the efficient 
frontier has been turned solid grey, meaning that given 
the constraints imposed has been exhausted the possibil-
ity to move the efficient frontier further towards the left 
and upward corner of the figure. 

4. Robustness of n-MOEA 

In relevant literature there are different views about ro-
bustness. Some scholars define robustness as the consis-
tency of results between different runs of the algorithm; 
others define robustness as the insensitivity of solution to 
small changes in the decision variables. We will examine 
the robustness of the proposed algorithm from a practical 
point of view. Specifically, we will test the robustness of 
the obtained solutions in out-of-sample environments. 
For this experiment we use a training set of 63 daily his-
torical observations of FTSE-100 from 30-Nov-2011 till 
2 9 - F e b - 2 0 1 2 .  T h e  c o n f i g u r a t i o n  o f  t h e      
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Figure 4. Exploratory process of n-MOEA. 
 
n-MOEA for this experiment is: population size 70, 
maximum number of generations 200, floor constraint 
5%, ceiling constraint 31%, Cardinality constraint 20 
stocks, crossover rate between 70% and 90% and muta-
tion rate 20%. The objective of this experiment is to test 
whether the non-dominated solutions emerged during the 
in-sample testing remain robust in out-of-sample testing. 
It is well known that portfolio managers of large funds in 
order to succeed satisfactory diversification and achieve 
better returns, keep in their portfolios stocks from every 
component of FTSE-100 index. However, this strategy 

can be followed only by big players and is associated 
with high administrative costs. 

The purpose of this experiment is to find out if it is 
possible to outperform the FTSE-100 index performance 
by formulating an efficient portfolio that consist a small 
chunk of the whole index. If the experiment is successful 
it will mean that we are able to command combinations 
of higher return and lower risk than the FTSE-100 index 
with just a small proportion of the investment require-
ment and administrative costs associated with index 
portfolios. Please notice that during the out-of-sample 
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testing period of six months (March to August 2012) we 
do not rebalance our efficient portfolio. Table 2 presents 
the Efficient portfolio and the corresponding stocks and 
weights as these emerged during the optimization process. 
For carrying out the test we separate the out-of-sample 
period of six months into twelve intervals. For the calcu-
lation of return and risk have been taken into account 30 
observations, with ending observation the one that appear 
on the title of each graph of Figure 5. Thus, for example 
in Figure 5(e) for the calculation of return and risk    
of both Efficient portfolio and FTSE-100 index alike, are 

Table 2. The Efficient Portfolio and the corresponding 
stocks and weights 

Efficient Portfolio 
stock weight 

ABF.L 29.81% 

BNZL.L 30.64% 

GFS.L 8.92% 

SN.L 11.27% 
DGE.L 19.36% 

taken into account 30 observations, with last observation 
the 27-April-2012 (same as the title of the graph) and 
first observation if we count 30 trading days backwards 
the 15-March-2012. From the Figure 5 it is evident that 
Efficient portfolio strongly dominates FTSE-100 index 
return and risk combinations in 9 out of 12 cases. Even 
six months after its formulation, the efficient portfolio, 
strongly dominates FTSE- 100 index return and risk as it 
appears clearly in Figure 5(k). In only, 3 situations 
(Figures 5(b), (i) and (l)) efficient portfolio and 
FTSE-100 index are non-dominated which means that 
efficient solution is not strictly or weakly better than 
FTSE-100 index. It is worth mentioning that in none 
situation FTSE-100 index performance dominates effi-
cient portfolio performance during this six months 
out-of-sample testing period. This is a strong indication 
of the robustness of the solution produced by the 
n-MOEA. Finally, we should highlight that the six 
months out-of-sample testing period includes both bull 
and bear market periods and as it is evident from Figure 
5, the n-MOEA Efficient portfolio proved robust in both 
upward and downward market conditions. 

 

     
(a)                                       (b) 

     
(c)                                      (d) 
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(e)                                      (f) 

     
(g)                                      (h) 

     
(i)                                      (j) 

     
(k)                                      (l) 

Figure 5. Out-of-sample testing of n-MOEA.   
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5. Conclusions 

In this paper, we have proposed a novel MOEA for the 
solution of the constrained mean-semivariance portfolio 
optimization problem. The algorithm can handle suc-
cessfully downside risk measures like semivariance and 
real world constraints and formulate well spread frontiers 
thanks to an elitism mechanism applied in the mutation 
process that give a reproduction advantage to the higher 
fitness stocks, and an exploratory mechanism that uses 
the notion that good solutions are more probable to be 
found near other non-dominated solutions. At the same 
time another mechanism calculates the Euclidian dis-
tance between the various non-dominated solutions in 
order to assign reproduction fitness. That way, we safe-
guard that the exploratory effort is concentrated where is 
needed more and the solutions are spread across the en-
tire frontier. Also, the crossover process enhances the 
population diversity, by combining randomly two 
non-dominated solutions to produce two new off-springs. 
The robustness of the proposed algorithm is verified for 
short and mid-term by carrying out a number of 

out-of-sample tests during both bull and bear market 
conditions on FTSE-100. 
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