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ABSTRACT 

Data granulation is a good tool of decision making in various types of real life applications. The basic ideas of data 
granulation have appeared in many fields, such as interval analysis, quantization, rough set theory, Dempster-Shafer 
theory of belief functions, divide and conquer, cluster analysis, machine learning, databases, information retrieval, and 
many others. In this paper, we initiate some new topological tools for data granulation using rough set approximations. 
Moreover, we define some topological measures of data granulation in topological I formation systems. Topological 
generalizations using δβ-open sets and their applications of information granulation are developed. 
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1. Introduction 

Granulation of the universe involves the decomposition 
of the universe into parts. In other words, the grouping 
individual elements or objects into classes, based on 
offering information and knowledge [7,14,21,40,44,45]. 
Elements in a granule are pinched together by indiscerni- 
bility, similarity, proximity or functionality [42,43]. One 
can thus form a granulated view of the universe. The 
theory of rough sets can be used for constructing a 
granulated vision of the universe and for interpreting, 
representing, and processing concepts in the granulated 
universe. It offers a more actual model of granular 
computing. The starting point of the theory of rough sets 
is the indiscernibility of objects or elements in a universe 
of concern [15-22]. The customary approach for model- 
ing indiscernibility of objects is through an equivalence 
relation defined based on their attribute values with 
reference to an information system [16]. Two objects are 
comparable if they have exactly the same description. 
The induced granulation is a part of the universe, i.e., A 
family of pairwise disjoint subsets. It is studied widely in 
mathematics under the name of quotient set. The notion 
of indiscernibility can be generalized by any general 
binary relation. 

The original rough set theory was based on an 
equivalent relation on a finite universe U. For practice 
use, there have been some extensions on it. One 
extension is to replace the equivalent relation by a 
arbitrary binary relation ; the other direction is to study 
rough set via topological method [8,14]. In this work, we 
construct topology for a family covering rough sets. 

After that, we study the relationship among upper 
approximations based on this topological space so that 
we can study data granulation by method of topology. 

In [40] Y.Y. Yao addressed four operators on a 
knowledge base, which are sufficient for generating new 
knowledge structures. Also, they addressed an axiomatic 
definition of knowledge granulation in knowledge bases. 
Rough set theory, proposed by Pawlak in the early 1980s 
[17-20], is an expansion of set theory for the study of 
intelligent systems characterized by inexact, uncertain or 
insufficient information. Moreover, this theory may serve 
as a new mathematical tool to soft computing besides 
fuzzy set theory [42-45], and has been successfully 
applied in machine learning, information sciences, expert 
systems, data reduction, and so on [30-38,40]. In recent 
times, lots of researchers are interested to generalize this 
theory in many fields of applications [1-6,16,22]. 

But, partition or equivalence relation is still limiting 
for many applications. To study this matter, several 
interesting and having an important effect generalization 
to equivalence relation have been proposed in the past, 
such as tolerance relations, similarity relations [51], 
topological bases and subbases [1,2,6,22,23,27-29] and 
others [3,4,16,20,25,26,33]. Particularly, some researchers 
have used coverings of the universe of discourse for 
establishing the generalized rough sets by coverings 
[11,15]. Others [9-12,16,27] combined fuzzy sets with 
rough sets in a successful way by defining rough fuzzy 
sets and fuzzy rough sets. Furthermore, another group 
has characterized a measure of the roughness of a fuzzy 
set making use of the concept of rough fuzzy sets 
[9,10,14,15,21,41,42]. They also suggested some possi- 
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ble real world applications of these measures in pattern 
recognition and image analysis problems [13,24,30]. 

Topology is a significant and interesting area of 
mathematics, whose study introduces you to new 
concepts ( semi-open, pre open, δβ-open sets and others) 
and theorems, which are very useful in many applica- 
tions .Topological notions like semi-open, preopen, 
  open sets are as basic to mathematicians of today as 
sets and functions were to those of last century 
[14,15,17]. Then, we think the topological structure will 
be so important base for knowledge extraction and 
processing. 

The topology induced by binary relations on the 
universes of information systems is used to generalize 
the basic rough set concepts. The suggested topological 
operations and structure open up the way for applying 
affluent more of topological facts and methods in the 
process of granular computing. In particular, the notion 
of topological membership function is introduced that 
integrates the concept of rough and fuzzy sets [17,42-45]. 

2. Essentials of Rough Set Approximations 
under General Binary Relations 

For any approximation space ( , )A U R , where  is 
an equivalence relation, lower and upper approximations 
of a subset 

R

X U , namely ( )R X  and ( )R X  are 
defined as follows: 

( ) { :[ ] }RR X x U x X   , 

( ) { :[ ] }RR X x U x X    . 

The lower and upper approximations have the 
following properties: 

For every ,X Y U  from the approximation space 
( , )A U R  we have: 

1. ( ) ( ),

2. ( ) ( ) ,

3. ( ) ( ) ,

4. ( ) ( ) ( ),

R X X R X

R U R U U

R R

R X Y R X R Y

  

 

 

 

 

 

5. ( ) ( ) ( ),

6. ( ) ( ) ( ),

7. ( ) ( ) ( ),

8. ( ) ( ),

9. ( ) ( ),

10. ( ( )) ( ( )) ( ),

11. ( ( )) ( ( )) ( ),

12. , ( ) ( )

( ) ( ) .

R X Y R X R Y

R X Y R X R Y

R X Y R X R Y

R X R X

R X R X

R R X R R X R X

R R X R R X R X

If X Y then R X R Y

and R X R Y






  

  

 

 

 


 

 
 

 

The equality in all properties happens when 
( ) ( )R X R X X  . The proof of all these properties can 

be found in [17-20]. 
Furthermore, for a subset X U , a rough membership  

function is defined as follows: 
[ ]

( )
[ ]

R
X

R

x X
x

x
 


,  

where X  denotes the cardinality of the set X . The 
rough membership value ( )X x  may be interpreted as 
the conditional probability that an arbitrary element 
belongs to X  given that the element belongs to [ ]Rx . 

Based on the lower and upper approximations, the 
universe  can be divided into three disjoint regions, 
the positive , the negative  and the 
boundary , where: 

U
( )POS X

( )BND X
( )NEG X

( ) ( )

( ) ( )

( ) ( ) ( )

POS X R X

NEG X U R X

BND X R X R X



 

 

 

Considering general binary relations in [18,52] is an 
extension to the classical lower and upper approxima- 
tions of any subset X  of U . { : }xR x X    is the 
base generated by the general relation defined in [18,52]. 
The general forms based on   are defined as follows: 

( ) { : , }xR X B B B X    , 

( ) { : , }xR X B B B X      ,  

where { :x B x B}    . 

For data granulation by any binary relation, in [8] a 
rough membership function is defined as follows:  

( )
( ) x

X
x

X
x







 


 . 

3. Data Granulation Using Equivalence and 
General Binary Relations 

By generalizing equivalence relations to general binary 
relations, one may obtain a different granulation of the 
universe. For any kind of relations, a pair of rough set 
approximation operators, known as lower and upper ap- 
proximation operators can be defined in many ways 
[17-20]. 

Let  be an equivalence relation on finite 
non-empty universe U . The equivalence class, 

R

R U U 

{ : ( ,[ ] ) }x y U x y R    consists of all elements 
equivalent to x , and is also the equivalence class con- 
taining x . The relation R induces a partition of the uni- 
verse  namely U / {[ ] :Rx x U}U R   . 

The partition  is regularly known as the quotient 
set and provides a granulated view of the universe under 
the equivalence classes of U . Naturally speaking, the 
available knowledge only allows us to talk about an 
equivalence class as a single unit. In other words, under 
the granulated view, we consider an equivalence class as a 
whole instead of individuals. The pair 

/ RU

( , )A U R  is 
referred to as an approximation space, indicating the in- 
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tended application of the partition  for approxima- 
tion. Each equivalence class is called a simple granule. 

/U R

A topological space [1,2,25] is a pair ( , )X   
consisting of a set X  and a family   of subset of X  
satisfying the following conditions: 

(1) , X  , 
(2)   is closed under arbitrary union, 
(3)   is closed under finite intersection. 
The pair ( , )X   is called a topological space. The 

elements of X  are called points . The subsets of X  
belonging to   are called open sets. The complement of 
the open subsets are called closed sets. The family   of 
all open subsets of X  is also called a topology for X . 

 is called ( ) = { a i }cl A F nd F :F X s closedA   - 
closure of a subset A X . 

Obviously,  is the smallest closed subset of ( )cl A X  

which contains A . Note that A  is closed iff 
= ( )A cl A .  ( ) =int A { : a is openG X nd G }G A 

is called the  -interior of a subset A X . Manifestly, 
 is the union of all open subsets of ( )int A X  which 

contained in A . Make a note of that A  is open iff 
= ( )A int A .  is called the ( ) = ( ) (cl A int )Ab A  - 

boundary of a subset A X . 
For any subset A  of the topological space ( , )X  , 

,  and  are closure, interior, and 
boundary of 

( )cl A ( )int A ( )b A
A  respectively. The subset A  is exact if 

( )b A = , otherwise A  is rough. It is clear that A  is 
exact iff . In Pawlak space a subset ( )cl A = int( )A
A X  has two possibilities either rough or exact. 

In later years a number of generalizations of open sets 
have been considered [22,23]. We talk about some of 
these generalizations concepts in the following defini- 
tions. 

Let  be a finite universe set and  is any binary 
relation defined on , and  be the set of all el-
ements which are in relation to certain elements 

U R
)xU (rR

x  in 
 from right for all U x U

;


, )
, in symbols  

where 
( ) { }x xR U,x rR

{ : ( , }xR y x y R x y U . 
Let   be the general knowledge base (topological 

base) using all possible intersections of the members of 
. The component that will be equal to any union of 

some members of 
(rR x)

  must be misplaced. 

4. Topological Granulation of Topological 
Information Systems 

Let ( , )A U R  be an approximation space where  is 
any binary relation defined on . Then we can define 
two new approximations as follows: 

R
U

( ) ( ( ))X X R   R X , 

( ) ( ( ))X X R   R X . 

The topological lower and the topological upper ap-

proximations have the following properties: 
For every ,X Y U  and every approximation space 

( , )A U R  we have:
 

1. ( ) ( )X X X   , 

2. ( ) ( )U U U   , 

3. ( ) ( )       , 

4. ( ) ( ) ( )X Y X      Y , 

5. ( ) ( ) ( )X Y X  Y     , 

6. ( ) ( ) ( )X Y X      Y , 

7. ( ) ( ) ( )X Y X  Y     , 

8. ( ) ( )X X     , 

9. ( ) ( )X X     , 

10. ( ( )) ( )X X     , 

11. ( ( )) ( )X X     , 

12. , ( ) ( )If X Y then X Y     

( ) ( ).and X Y    

Given that topological lower and topological upper 
approximations satisfy that: 

( ) ( ) ( ) ( )R X X X X R X U        

this enables us to divide the universe  into five dis- 
joint regions (granules) as follows: 

U

1. ( ) ( )POS X R X  , 

2. ( ) ( ) ( )POS X X R X    , 

3. ( ) ( ) ( )BND X X X      , 

4. ( ) ( ) ( )NEG X R X X     , 

5. ( ) ( )NEG X U R X   . 

The following theorems study the properties and rela- 
tionships among the above regions namely boundary, 
positive and negative regions. 

Theorem 4.1 let ( , , )RIS U A   be a topological in- 

formation system and for any subset X U  we have: 
1. ( ) ( )BND X X     , 

2. ( ) ( )BND X NEG X      , 

3. ( ) ( ) ( )X X BND      X , 

4. ( ), ( )X NEG X    and ( )BND X   are dis- 

joint granules of . U
Proof: directly. 
Theorem 4.2 let ( , , )RIS U A   be a topological in- 

formation system and for any subsets ,X Y U  we 
have: 

1. ( )BND U   , 

2. ( ) ( )BND X BND U X     , 

3. ( ( )) (BND BND X BND X )      , 
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( ) ( ) (BND X Y BND X BND Y )         

Proof: (1) and (2) is obvious, by definitions. 
( ( ))

( ( ) ( ))

( ( ) ( ))

( ( ( ) ( ))

( ) ( )

( ) ( )

( ) ( )

BND BND X

BND X U X

X U X

U X U X

X U X

BND X BND X Y

)

X Y U X Y

 

  

  

 

 

 

  

  

  

 
 

 

 

   

  

   

  
   

    

 

Theorem 4.3 let ( , , )RIS U A   a topological infor- 
mation system and for any subset ,X Y U  we have: 

1. ( )U NEG   , 

2. ( ) ( )NEG X U X    , 

3. ( )X NEG X    , 

4. ( ( ))NEG U NEG X NEG X( )       ,�

( ) ( ) (NEG X Y NEG X NEG Y )         

( ) ( ) (NEG X Y NEG X NEG Y )         

Proof: (1), (2), (3) and (4) are obvious. 
( )

( ) ( ( ) (

( ( )) ( ( ))

( ) ( )

( ) ( )

( ( )) ( ( ))

( ( ) ( ))

( ) ( ).

NEG X Y

U X Y U X Y

U X U Y

NEG X NEG Y

NEG X NEG Y

U X U Y

U X Y

U X Y NEG X Y

 

 

 

 



))



 

 
 

 

 

 

 

 

     

   
   
  

   

  

      



 

Example 4.1 let 1 2 3 4 5 6 7  be the 
universe of 7 patients have data sheets shown in Table 1 
with possible dengue symptoms. If some experts give us 
the general relation 

{ , , , , , , }U u u u u u u u

R defined among those patients as 
follows: 

1 1 1 7 2 2 3 3

3 6 4 4 5 5 6 6 7 7

{( , ), ( , ), ( , ), ( , ),

( , ), ( , ), ( , ), ( , ), ( , )}.

R u u u u u u u u

u u u u u u u u u u


 

Table 1. Patients information system. 

Conditional Attributes ( C) Decision (D)
Patients (U ) 

Temperature Flu Headache Dengue 

u1 Normal No No No 

u2 High No No No 

u3 Very High No No Yes 

u4 High No Yes Yes 

u5 Very High No Yes Yes 

u6 High Yes Yes Yes 

u7 Very High Yes Yes Yes 

 
The topological knowledge base will take the follow- 

ing form: 

1 7 2 3 6 4 5 6 7{{ , },{ },{ , },{ },{ },{ },{ }}u u u u u u u u u  . 

  For some patients 2 3 7{ , , }X u u u  the upper and 

lower approximations based on the topological 
knowledge base are given by: 

1 2 3 6 7( ) { , , , , }R X u u u u u  , and 2 7{ , }R u u  . 

By using the lower and upper approximations, the 
granules of universe are three disjoint regions as follows: 

2 7( ) ( ) { , }POS X R X u u   , 

1 3 6( ) ( ) ( ) { , , }BND X R X R X u u u     , 

4 5( ) ( ) { , }NEG X U R X u u    . 

According to the topological knowledge base we can 
easily see that: 

1 2 3 7( ) { , , , }X u u u u  , 2 3 7( ) { , , }X u u u  . 

Then we have the following granules of the universe: 
1. ( ) { 2, 7}POS X u u  , 

2. ( ) { 3}POS X u   , 

3. ( ) { 1}BND X u   , 

4. ( ) { 6}NEG X u   , 

5. ( ) { 4, 5}NEG X u u   

5. Conclusions and Application Notes 

The rough set approach to approximation of sets leads to 
useful forms of granular computing that are part of com-
putational intelligence. The basic idea underlying the 
rough set approach and their topological generalizations 
to information granulation are to discover to what extent 
a given set of objects (these objects can be pixels of an 
image) approximates another set of objects of interest. 
Objects of definite universe are compared by considering 
their descriptions. The recent generalization of rough set 
theory has led to the introduction of topological rough set 
approaches [24-26,35] and a consideration of the affini-
ties (topological nearness) of objects. 
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