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ABSTRACT 

Starting from the symbolic computation system Maple and Riccati equation mapping approach and a linear variable 
separation approach, a new family of non-traveling wave solutions of the (1 + 1)-dimensional Burgers system is de- 
rived. 
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1. Introduction 

Exact solutions of nonlinear partial differential equations 
(NPDEs) have been of a major concern for both mathe- 
maticians and physicists [1-4]. Many efforts have been 
made on the study of NPDEs [5-8]. In the past few dec- 
ades, many significant methods have been presented such 
as Bäklund transformation, Darboux transformation, the 
extended tanh-function method, and the F-expansion me- 
thod, Lie group analysis, homogeneous balance method, 
Jacobi elliptic function method, and the mapping method, 
etc. [9-15]. The mapping approach is a kind of classic, 
efficient and well-developed method to solve nonlinear 
evolution equations, the remarkable characteristic of 
which is that we can have many different ansatzs and 
therefore, a large number of solutions. In the past, we 
have solved the exact solutions of some nonlinear sys- 
tems via the Riccati equation  2       mapping 
method, such as (1 + 1)-dimensional related Schrödinger 
equation, (2 + 1)-dimensional Generalized Breor-Kaup 
system, (3 + 1)-dimensional Burgers system, (3 + 1)- 
dimensional Jimbo-Miwa system, (2 + 1)-dimensional 
modified dispersive water-wave system, (2 + 1)-dimen- 
sional Boiti-Leon-Pempinelli system, (2 + 1)-dimen- 
sional Korteweg de Vries system, (2 + 1)-dimensional 
asymmetric Nizhnik-Novikov-Veselov system et [16-19]. 
In this paper, via a mapping equation we find some new 
non-traveling wave solutions of the (1 + 1)-dimensional 
Burgers equation: 

0.t x xxQ QQ Q               (1) 

2. Non-Traveling Wave Solutions of the 
Burgers System 

As is well known, to search for the solitary wave solu- 
tions for a nonlinear physical model, we can apply dif- 
ferent approaches. One of the most efficient methods of 
finding soliton excitations of a physical model is the so- 
called mapping approach. The basic ideal of the algo- 
rithm is as follows. For a given nonlinear partial differ- 
ential equation (NPDE) with the independent variables 
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 and the dependent variable 
, in the form 
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where  is in general a polynomial function of its ar- 
guments, and the subscripts denote the partial derivatives, 
the solution can be assumed to be in the form 
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with 
2 ,                            (4) 

where   is a constant and the prime denotes the dif- 
ferentiation with respect to . To determine  explic- 
itly, one may substitute (3) and (4) into the given NPDE 
and collect coefficients of polynomials of 

q Q

 , then 
eliminate each coefficient to derive a set of partial dif- 
ferential equations of i, ,A B  and , and solve the sys- 
tem of partial differential equations to obtain 

q
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. Finally, as (4) is known to possess the solutions q
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Substituting ,iA    and (5) into (3), one obtains 
the exact solutions to the given NPDE. 

,iB q

Now we apply the projective equation approach to (1). 
By the balancing procedure, the ansatz (3) becomes 

        
  

,
, , ,

,

h x t
Q f x t g x t q x t

q x t



   ,



   (6) 

where  and  are functions of hgf ,, q  ,x t  to be 
determined. Substituting (6) and (4) into (1) and collect- 
ing coefficients of polynomials of  , then setting each 
coefficient to zero, we have 
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Based on (7), (13) and (8), we have 
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with 
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where    ,x t      are two arbitrary variable 
separation functions of x  and of , respectively. Based 
on the solutions of (4), one thus obtains following exact 
solutions of Equation (1): 
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3. Summary and Discussion 

In summary, with the help of a projective equation 
 2      and a linear variable separation method, 
we find some new exact solutions of the (1 + 1)-dimen- 
sional Burgers system. Because of wide applications of 
the Burgers equation in physics, more properties are 
worthy to be studied such as its Lax pair, symmetry re-
duction, bilinear form, and Darboux transformation, etc. 
All these properties are worthy of studying further. 
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