
Applied Mathematics, 2013, 4, 70-77 
http://dx.doi.org/10.4236/am.2013.410A3009 Published Online October 2013 (http://www.scirp.org/journal/am) 

A Spectral Integral Equation Solution of the 
Gross-Pitaevskii Equation* 

George Rawitscher 
Physics Department, University of Connecticut, Storrs, Connecticut, USA 

Email: george.rawitscher@uconn.edu 
 

Received August 8, 2013; revised September 8, 2013; accepted September 15, 2013 
 

Copyright © 2013 George Rawitscher. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

The Gross-Pitaevskii equation (GPE), that describes the wave function of a number of coherent Bose particles contained 
in a trap, contains the cube of the normalized wave function, times a factor proportional to the number of coherent at- 
oms. The square of the wave function, times the above mentioned factor, is defined as the Hartree potential. A method 
implemented here for the numerical solution of the GPE consists in obtaining the Hartree potential iteratively, starting 
with the Thomas Fermi approximation to this potential. The energy eigenvalues and the corresponding wave functions 
for each successive potential are obtained by a spectral method described previously. After approximately 35 iterations 
a stability of eight significant figures for the energy eigenvalues is obtained. This method has the advantage of being 
physically intuitive, and could be extended to the calculation of a shell-model potential in nuclear physics, once the 
Pauli exclusion principle is allowed for. 
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1. Introduction 

The phenomenon of Bose-Einstein condensation of an 
assembly of atoms, predicted in 1924 [1-3], was finally 
observed experimentally in 1995 [4,5] for atoms con- 
fined in a trap at very low temperatures. An approximate 
non-linear equation that describes the Bose-Einstein 
Condensate (BEC) wave function was established in 
1961 by E. P. E. Gross [6,7], and independently by L. P. 
Pitaevskii [8]. This is a Schrödinger-like equation, now 
called the Gross-Pitaevskii equation (GPE), describes the 
wave function of  Bose particles interacting coher- 
ently and confined in an atomic trap. In this equation 
only the short range part of the interaction between the 
atoms is included in terms of the scattering length of two 
colliding atoms. Numerical solutions of this non-linear 
GPE began to be obtained in the middle 60’ies, both for 
the time independent form [9], as well as for the time 
dependent form [10]. An extensive review of the early 
work is given in [11], and both experimental as well as 
theoretical work continues actively today. On the theo- 
retical side various diverse methods for the solution of 
the GPE have been developed. Amongst them, some 
based on mathematical theorems [12,13], others based on 

spectral expansions [14], others using extensive numeri- 
cal methods [15], and others that also include the interac- 
tion of the BEC atoms with the surrounding non-con- 
densed atomic medium [16-20]. 

N

One aspect emphasized in the present study is the 
description of the coherent interaction of the atoms in the 
BEC in terms of a related Hartree potential, HV . This 
potential arises naturally in the GPE, due to the presence 
of the third power of the wave function   in that 
equation, by rewriting the term  as HV3   . This 
potential contains the square of the wave function, hence 
is nonlinear, and is proportional to the number of coher- 
ent atoms times the scattering length of the interacting 
atoms. Such a term was introduced previously [21], and 
in the context of nuclear physics where it is called the 
Hartree-Fock potential since it incorporates the effect of 
the Pauli exclusion imposed on the fermions [22-24]. 

If HV  were known, then the GPE could be written as 
an ordinary linear  equation, that could be 
solved by conventional means for the ground or excited 
states of 

dingeroSchr 

 . Since HV  is not known, it can neverthe- 
less be obtained iteratively, by starting from a good ap- 
proximation to HV  solving for the corresponding wave 
function that in turn defines a better approximation to 

HV , and so on. To demonstrate the viability of this *PACS numbers: 02.70.-c; 03.75.Gg; 67.85.-d. 
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scheme, and to exhibit values of HV  both for the ground 
and several excited states of the BEC, is the purpose of 
the present paper. A very related study by Esry [25] is to 
be noted. That paper also emphasizes the Hartree poten- 
tial, and also uses it for a different iterative procedure. 
However, that study is more general, in that it includes 
correlations between pairs of particles, as well as ex- 
change contributions, and further, the potential HV  is 
not displayed. Furthermore, the numerical method of the 
present study is different, in that it uses a spectral Che- 
byshev expansion for the solution of the integral equation 
associated with the differential GPE. 

One advantage of the present method is that HV  has 
intuitive significance, excited states can also be obtained 
easily, and the method can be generalized to the case that 
the interaction between two of the atoms has a finite 
range, in contrast to the zero-range assumption of the 
GPE. Further, the binding energies and wave functions 
for each successive value of HV  are obtained by a spec- 
tral integral equation method (S-IEM) that is not a varia- 
tional method. Spectral methods [26-28] are becoming 
increasingly significant in modern numerical approaches 
for their accuracy and computational economy. In the 
S-IEM the full radial domain is divided into partitions, 
and in each partition the wave function is expanded in a 
series of Chebyshev polynomials, whose coefficients are 
calculated by solving linear equations [29,30]. The S- 
IEM has been applied to the solution of several physics 
problems [31-40], and a pedagogical description is avail- 
able in [41,42]. 

A future envisaged application of this method is in the 
calculation of a shell model potential in nuclear physics. 
In this case several (but not many) nucleons occupy a 
given “shell”, but the confining potential will turn out to 
be different for each shell. Hence the shell potential be- 
comes non-local, and it is hoped that the present method 
may facilitate the formulation of this non-locality. Simi- 
larly, the optical model potential describing nucleon-nu- 
cleus scattering is also non-local, (but for more reasons) 
and efforts to determine its nature are in progress [43- 
45]. 

The present investigation is limited to a spherically 
symmetric confining well, and only the partial wave cor- 
responding to an angular momentum  is included. 
The confining well is assumed to be harmonic, but other 
forms can also be considered. The organization of this 
paper is as follows: In Section 2 the formalism of the 
GPE is reviewed, a physically justified set of input pa- 
rameters is proposed, and the Thomas-Fermi approxima- 
tion to 

0L 

HV  is implemented. Section 3 contains results 
for HV  and the corresponding excitation energies, and 
Section 4 contains the summary and conclusions. 

2. Formalism 

The three-dimensional form of the GPE can be written 

[11] 

     
2
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 
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where  is Planck’s constant divided by ,  is 
the mass of the Boson, ext  is the confining trap poten- 
tial, usually written as a sum of three harmonic potentials 



x y

2π m
V

2 2
zx y  z  , and g  is a constant proportional 

to the number  of particles in the trap times the scat- 
tering length  of two of the Bosons. This constant can 
be written as [9] 

N
a
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2
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A stationary solution      , expt i t    r r  
obeys [9] 
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If one now assumes that  i.e., that the 
trap potential is spherically symmetric, makes a partial 
wave expansion of 

  ,extV V r

  r , and retains only the angular 
momentum 0L   part of the expansion, 

       4π ,r r r   r           (5) 

then  r  satisfies the radial Equation [9] 
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Here   r  describes the wave function of one of the 
particles, and since the probability of finding this particle  

is unity, i.e.,   2 3d 1  r r ,  one finds, in view of 

Equation (5), 

  2

0
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The first, second, etc., iterations of  are denoted 
as 

 r
     1 2, , , n   , the corresponding Hartree potentials 

are denoted as 
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and the iterative equations are 
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The functions  n  all go to zero at the origin of r , 
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decay to zero as gaussians as  if extV  is as- 
sumed to be harmonic, and obey the normalization 
condition (7) for each iteration. For each fixed value of 

, the eigenfunctions 

r 

 n  1n   and eigenvalues  1n   
of Equation (9) are determined iteratively by a Hartree 
procedure described previously, both for bound states [39] 
as well as for Sturmian eigenvalues [40]. The feature that 
the function  and the eigenvalue    1n r   1n  are 
determined simultaneously in each new iteration is what 
makes the present approach different from other iterative 
approaches. In summary, two nested iterations are per- 
formed: 1) One that finds the solutions of Equation (9) 
for each value of , and 2) The iterative progression 
from 

 n
 n

30 ,u

 to  The latter proceeds non-mono- 
tonically, as seen in the numerical example given further 
on, and the first has been used successfully in several ap- 
plications [41,42]. This double iteration procedure is dif- 
ferent from the procedures cited above [9,10,12,13,20,46, 
47]. Another difference from previous calculations is that 
the differential Equation (9) is transformed into a Lip- 
pmann-Schwinger integral equation, that is solved with 
the use of Green’s functions in configuration space [29, 
39]. These functions require wave-numbers, rather than 
energies as input parameters. The calculations are done 
by means of a semi-spectral Chebyshev expansion me- 
thod that gives a reliable accuracy [31-38]. 

 1 .n 

2.1. Numerical Inputs 

In order to solve Equations (8) and (9), two steps are 
required. First a set of physically reasonable values for 
the potentials have to be established, and subsequently a 
transformation of variables is made so as to render the 
equations more transparent, and all quantities become 
expressed in terms of new distance and energy units. 

The atoms in the trap are assumed to have a mass 
 and the scattering length  The con- 

fining trap potential is assumed to be harmonic 
m  3 nm.a 

,r2
extV                 (10) 

and the value of the coefficient   is obtained by re- 
quiring that at a distance of  from the center of the 
trap the value of  with .T  This 
yields  Next, both sides of Equation (6) 
are multiplied by 

1 μ
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m
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22m , a new unit of distance  is 
chosen 

D
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and by further multiplying by  Equation (9) is 
transformed into dimensionless units 
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and the normalization Equation (7) is changed to 
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The energy unit 0  is thus 

1 22 2
12

0 2

1
4 5 10  

2 2m mD
   

    
 

 
eV .    (16) 

In order to solve Equation (12) numerically, a constant 
 is subtracted from both sides 0V

0 20V   

with the result 
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2
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and where the dimensionless Hartree potential is given 
by 

    2
0.016 .HV x N x x           (20) 

The effect of 0V  is to move the bottom of the har- 
monic well to a negative energy, but   still measures 
the eigenvalue energy above the bottom of the well. To 
this, thus moved harmonic potential, is added the Hartree  

potential   2
N x x  , which is positive (repulsive) if  

the scattering length a  is positive. The advantage of 
having subtracted 0V  is that the wave number  re- 
quired as input to the Green’s function 

k
x , ,k x   be- 

comes purely imaginary,  and thus the asymp- 
totic value of   decreases exponentially. However, 
since the potential V  continues to grow positively as 

,k i

x  increases, the asymptotic form of  x  should de- 
crease to zero like a Gaussian function. This behavior is 
indeed found to be the case in the numerical evaluations. 

2.2. The Thomas-Fermi Approximation 

This approximation to HV  is obtained by dropping the 
kinetic energy term from the GPE (4) or (6). As already 
noted previously [48,49], this approximation, denoted as 

 gets better the larger the number  of coherent ,TFV N
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atoms in the trap. However, since the function TFV  
drops abruptly to zero at the outer edge of TF , it is dif- 
ficult to incorporate this function into the numerical cal- 
culations [15,25]. This difficulty is overcome in the pre- 
sent investigation, by fitting to TF  a smooth extension 
that decreases to zero exponentially, and subsequently 
using this fit for the start of the iterations for 

V

V

HV . The 
derivation of  will be repeated here for complete- 
ness. 

TFV

By discarding the second order derivative in Equation 
(12), one obtains 

2 2 2 ,N x x     
1

4 
            (21) 

where the maximum value of x  is  1 2
4 .M  The 

value of 
x 

  is not known until one takes into account 
the normalization condition (13). The integrals can be 
done analytically for the case that the confining potential 
is harmonic, with the result 

 2 5

. 
15

16TF N   
             (22) 

The corresponding value of Mx  is 
 1 5

15
2

16Mx N    
.             (23) 

A numerical example for the case that 250N   is 
illustrated in Figure 1. 

3. Results 

As described in Section 2 the calculation consists of two 
nested iterations. For each Hartree potential  the 
corresponding eigenvalue  and eigenfunction 

 n
HV

 1n 

   1n x   is calculated by a hybrid iterative method, 
implemented by means of a spectral Chebyshev expan- 
sion described in [39]. The resulting Hartree potential 
 

 

Figure 1. The Thomas Fermi aproximation to  for N = 

250 and 
HV

0.016  is represented by the solid line. The 
Woods-Saxon fit to this potential is represented by open 
circles, while the final non linear Hartree potential for the 
ground state is represented by the thick line. These poten- 
tialds are given in units of ,0  Equation (16). 

 1n
HV  , given by    

21 ,nN x   x  is thus obtained,  

and so forth. Two different methods are used in order to 
initiate the procedure. 

The first starts from the eigenfunction of the harmonic 
potential, in the absence of ,HV  the resulting function  

   
21 x x  is fitted with a Woods-Saxon form, and  

after multiplication by N  the value of  1
HV  is ob- 

tained, and the process is repeated for subsequent itera- 
tions. Results with this method for the values  

   
2n x x  are illustrated in Figure 2 for the ground  

state solutions. The convergence is oscillatory, and the  

gap between successive values of    
2n x x  gradually  

decreases. The corresponding values of the ground state 
excitation energy are illustrated in Figure 3 by the points 
labelled as “H”, which also shows the oscillatory nature 
of the convergence. The first point, close to 1.4, corre- 
sponds to the excitation energy for the pure harmonic 
oscillator, which is smaller than the final excitation en- 
ergy, close to 2.0. That increase is due to the repulsive 
nature of the Hartree potential. 

The second method starts the iteration with a smooth- 
ed fit to the Thomas Fermi potential, as shown by the 
open circles in Figure 1. The corresponding excitation 
energies are displayed by the open circles in Figure  
 

 

Figure 2. Iterative values of     2n x x   as a function of 

the dimensionless radial distance x r D , for the ground 

BEC state. The iteration number  is shown in the legend. 
The iterations start with the ground-state solution 

n
  of 

the harmonic potential , that, in view of 
Equation (20) with 

220 
250

0.2x
N  , provides the first value to 

 and hence of HV  ,V x  defined in Equation (20). The 

functions      
2n x x  for  are fitted by hand 

with a combination of Wood-Saxon functions in order to 
obtain an approximation to the next Hartree potential. For 

each iteration the normalization of 

, ,n  ,71

 n  is given by 

  0
 2

d 1n x  . 
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3. It is clear that the Thomas Fermi form for the Hartree 
potential provides a much better starting approximation 
for the iterations than the harmonic oscillator eigenfunc- 
tion. 

Not only the ground state of the GPE can be obtained 
with this iterative method starting from the fitted Thomas 
Fermi (TF) approximation to the Hartree potential, but 
with the same TF potential the higher excited states can 
also be obtained iteratively. The results for the ground, 
first and second excited states are displayed in Figure 4. 

The excitation energies for the GPE lie above the val- 
ues for the pure Harmonic potential well, confirming that 
the corresponding Hartree potentials are repulsive. It is 
interesting to note that for a larger value of the number 

 of coherent particles, the excitation energies are 
slightly lower. According to Equation (15) these energies 
are given in units of 

N

0 , Equation (16) .  
 

 

Figure 3. The ground state energies above the bottom of the 
attractive trap well, as a function of the number  of 
iterations. The iterations labeled “H” were started with the 
eigenfunction of the Harmonic well, while the ones labelled 
“TF” where started with a fit to the Thomas-Fermi ap- 
proximation to the Hartree potential. The conditions are the 
same as in Figure 2, and the energies are given in terms of 

n

0 . 

 

 

Figure 4. The final energies, in units of ,0  of the ground, 

first and second excited states. The lowest set of points cor- 
respond to the harmonic well alone, and the other points 
are for the GP cases with N = 250 and 1000, respectively. 
The ground, first and second excited states are located on 
the x-axis at the points 0, 1, and 2, respectively. 

The Hartree potentials, when added to the harmonic 
trap potential, are displayed in Figures 5 and 6 for the 
values of 250N   and 1000 , respectively. The prop- 
erties of the Hartree potentials can be inferred from these 
graphs: as  increases, these potentials increase pro-  N

portionally, but the functions   2
x x  do not change 

significantly. 

Computational Details 

The calculations are done with MATLAB on a desk PC 
using an Intel TM2 Quad, with a CPU Q 9950, a fre- 
quency of 2.83 GHz, and a RAM of 8 GB. For the case 
of 250,N   forty iterations take between 6 and 7 sec- 
onds. Table 1 of energy values for the ground and first 
excited states (in units of 0 )  indicates the rate of con- 
vergence. 

4. Summary and Conclusion 

A method is presented of solving for the 0L   partial 
wave function of the the Gross Pitaevskii nonlinear dif- 
ferential equation. A Hartree potential HV  is used as a 
key vehicle for performing the iterations that converge 
for a low number of  of atoms in the trap. This po- 
tential is defined as the wave-function squared times a 
factor proportional to the number  of coherent atoms  

N

N
 

 

Figure 5. The sum of Harmonic and converged Hartree 
potentials for the ground, first and second BEC excited 
states, for N = 250, in units of 0 . 

 

 

Figure 6. Same as Figure 5 for N = 1000 Please note the 
change in scale of the y-axis. 
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Table 1. Convergence of the excitation energies given in 
units described in the text. 

Iteration grnd. st. 1’st exc. st. grnd. st. 

#  250N   250N   1000N   

1 2.1 4 2 

5 2.14  3.8  2 

10 2.14  3.77  1.95  

15 2.139  3.768  1.952  

20 2.1388  3.768  1.9525  

25 2.13882  3.76775  1.95250  

30 2.138821  3.767749  1.952498  

35 2.1388211  3.7677496  1.9524984  

 
and the (positive) scattering length. The parameters of 
the equation are determined from physical considerations. 
The Hartree potentials and binding energies are obtained 
for the ground, first and second excited states for 

 and 1000.  It is found that the start of the 
iterative process based on the Thomas-Fermi approxima- 
tion to 

250N 

HV  is more efficient than when the iterations are 
started from the eigenfunction of the harmonic well, as is 
shown in Figure 3. The iterations that lead from one HV  
to the next, as described in Equation (9), converge rather 
slowly. After each 5 iterations the stability of the excita- 
tion energy increases approximately by one significant 
figure, but the computational complexity is not excessive. 
The knowledge of HV  is suggestive for future applica- 
tions, such as for refining a mean-field potential for nu- 
cleons in a nucleus, once the Pauli exclusion principle for 
the nucleons is taken into account. This approach may 
lead to different nuclear mean field potentials for differ- 
ent shells. 
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