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ABSTRACT 

We present sixteen-component values “sedeons”, generating associative non-commutative space-time algebra. The 
generalized relativistic wave equations based on sedeonic wave function and space-time operators are proposed. We 
demonstrate that sedeonic second-order wave equation for massive field can be reformulated as the quasi-classical 
equation for the potentials of the field or in equivalent form as the Maxwell-like equations for the field intensities. The 
sedeonic first-order Dirac-like equations for massive and massless fields are also discussed. 
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1. Introduction 

The application of multicomponent hypercomplex num- 
bers and multivectors in classical and quantum field the- 
ory has a long history. In particular, the simplest gener- 
alization of electrodynamics and quantum mechanics was 
developed on the basis of quaternions [1-6]. The struc- 
ture of quaternions with four components (scalar and 
vector) corresponds to the relativistic four-vector ap- 
proach that allows one to reformulate relativistic relation 
in terms of quaternionic algebra. However, the essential 
imperfection of the quaternionic algebra is that the qua- 
ternions do not include pseudoscalar and pseudovector 
components. The consideration of space symmetry with 
respect to spatial inversion leads to the eight-component 
structures enclosing scalar, pseudoscalar, vector and 
pseudovector. There are a lot of works on application of 
different eight-component values such as biquaternions 
and octonions in classical electrodynamics and relativis- 
tic quantum mechanics [7-17]. However, a consistent 
relativistic approach implies equally the space and time 
symmetries that require the consideration of the extended 
sixteen-component space-time algebras. 

There are a few approaches in the development of field 
theory on the basis of sixteen-component structures. One 
of them is the application of hypernumbers sedenions, 
which are obtained from octonions by Cayley-Dickson 
extension procedure [18-22]. But as in the case of oc- 

tonions the essential imperfection of sedenions is their 
non-associativity. Another approach is based on the ap- 
plication of hypercomplex multivectors generating asso- 
ciative space-time Clifford algebras. The basic idea of 
such multivectors is an introduction of additional non- 
commutative time unit vector, which is orthogonal to the 
space unit vectors [23,24]. However, the application of 
such multivectors in quantum mechanics is considered in 
general as one of abstract algebraic schemes enabling the 
reformulation of Klein-Gordon and Dirac equations for 
the multicomponent wave functions but does not touch 
the physical entity of these equations. 

Recently we have developed an alternative approach 
based on our scalar-vector concept [25-28] realized in 
eight-component octons and sixteen-component sedeons. 
In particular, in Ref. [28] we considered a variant of six- 
teen-component sedeonic space-time Clifford algebra 
with non-commutative vector basis and commutative 
space-time units that allowed us to reformulate the equa- 
tions of relativistic quantum mechanics in terms of sca- 
lar-vector wave function. However, obtained equations 
have some asymmetry and contain the special non-se- 
deonic operators of space-time conjugation. In this paper 
we present a new version of the sedeonic space-time al- 
gebra with non-commutative bases and demonstrate 
some of its application to the symmetric reformulation of 
the basic equations of relativistic quantum mechanics as 
the equations for the field potentials and field intensities. 
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2. Sedeonic Space-Time Algebra 

The sedeonic algebra encloses four groups of values, 
which are differed with respect to spatial and time inver- 
sion. 
 Absolute scalars  V  and absolute vectors  V


 are 

not transformed under spatial and time inversion. 
 Time scalars  Vt  and time vectors  V


t  are 

changed (in sign) under time inversion and are not 
transformed under spatial inversion. 

 Space scalars  Vr  and space vectors  V

r  are 

changed under spatial inversion and are not trans- 
formed under time inversion. 

 Space-time scalars  Vtr  and space-time vectors 
 V


 are changed under spatial and time inversion. tr

Here indexes  and r  indicate the transformations 
(  for time inversion and r  for spatial inversion), 
which change the corresponding values. All introduced 
values can be integrated into one space-time sedeon , 
which is defined by the following expression: 

t
t

V

V V V V V V V V       
  

t t r r tr tV


r .      (1) 

Let us introduce scalar-vector basis 0 , 1 , 2 , 3 , 
where the value  is absolute scalar unit and the 
values 1 , 2 , 3  are absolute unit vectors generating 
the right Cartesian basis. We introduce also four space- 
time scalar units 0e , 1 , , 3 , where value 

a a a a

1

10a
a

e

a a

2e e 0  
is a absolute scalar unit; 

e
1e te

e
 is a time scalar unit; 

r  is a space scalar unit;  is a space-time 
scalar unit. Using space-time scalar units 

2e e 3 tre

je
2,3

 
 and scalar-vector basis k   

we can introduce unified sedeonic components V
 0,j 1, 2,3 a  0,1, k

jk  in 
accordance with the following relations: 
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tr 3 0

tr 3 1 2 3

e a

e a a a

e a

e a a a

e a

e a a a

e a
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







           (2) 

Then the sedeon (1) can be written in the following 
expanded form: 

 
 
 
 

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33 .

V V V V

V V V V

V V V V

V V V V

   

   

   

   

0 0 1 2 3

1 0 1 2 3

2 0 1 2 3

3 0 1 2 3

V e a a a a

e a a a a

e a a a a

e a a a a



     (3) 

The sedeonic components Vjk  are numbers (complex 
in general). Further we will use symbol 1 instead of units 

 and  for simplicity. 0a 0

The multiplication and commutation rules for sedeonic 
absolute unit vectors 1 , 2 , 3  and space-time units 

1 , 2 ,  are presented in Tables 1 and 2 respec- 
tively. 

e

a a a
e e 3e

In the tables and further the value  is the imaginary 
unit 

i
 2i 1  . Note that sedeonic units 1e , 2 , 3  

and unit vectors , ,  generate the anticommu- 
tative algebras: 

e e

1a 2a 3a

,

,

 
 

n m m n

n m m n

a a a a

e e e e
                 (4) 

for  and n  1, 2,3 m n

1a 2a 3a
m , but , ,  com- 

mute with , , : 
1e 2e 3e

n m m na e e a ,                  (5) 

for any  and . n m
Thus the sedeon V  is the complicated space-time 

object consisting of absolute scalar, time scalar, space 
scalar, space-time scalar, absolute vector, time vector, 
space vector and space-time vector. 



Introducing the designations of scalar-vector values 

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

,

,

,

,

V V V V

V V V V

V V V V

V V V V

   

   

   

   

0 0 1 2 3

1 0 1 2 3

2 0 1 2

3 0 1 2 3

V a a a a

V a a a a

V a a a a

V a a a a
3

        (6) 

we can write the sedeon (3) in the compact form 

 
0 0 1 1 2 2 3 3V e V e V + e V + e V .          (7) 

On the other hand, introducing the designations of 
space-time sedeon-scalars 

00 10 2 20 3 30V V V V   0 0 1V a e e e , 

01 11 2 21 3 31V V V V   1 0 1V a e e e ,        (8) 

 
Table 1. Multiplication rules for absolute unit vectors. 

 1a  2a  3a  

1a  1 i 3a  i 2a  

2a  i 3a  1 i 1a  

3a  i 2a  i 1a  1 

 
Table 2. Multiplication rules for space-time units. 

 1e  2e  3e  

1e  1 i 3e  i 2e  

2e  i 3e  1 i 1e  

3e  i 2e  i 1e  1 
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02 12 2 22 3 32V V V   2 0 1V a e e e V

V

3



, 

03 13 2 23 3 33V V V   3 0 1V a e e e , 

we can write the sedeon (3) in another form 

 
0 1 1 2 2 3V V V a + V a + V a ,          (9) 

or introducing the sedeon-vector 

V V V V   


t r tr

1 1 2 2 3 3

V

V a + V a + V a

    
              (10) 

it can be represented in following compact form: 

 


0V V V .                       (11) 

Further we will indicate the sedeon-scalars and the 
sedeon-vectors with the bold capital letters. 

Let us consider the sedeonic multiplication in detail. 
The sedeonic product of two sedeons  and  can 
be presented in the following form: 

A B

  
  .

  

        

0 0

0 0 0 0

AB A A B B

A B A B AB A B A B

  
       (12) 

Here we denote the sedeonic scalar multiplication of 
two sedeon-vectors (internal product) by symbol “  ” and 
round brackets 

    
 

1 1 2 2 3 3A B A B A B A B ,        (13) 

and sedeonic vector multiplication (external product) by 
symbol “ ” and square brackets 

  
 

i i

i

      
 

 
2 3 3 2 3 1 1 3

1 2 2 1

A B A B A B A B A B

A B A B


  (14) 

In Equations (13) and (14) the multiplication of sede- 
onic components is performed in accordance with Equa- 
tion (8) and Table 2. Note that in sedeonic algebra the 
expression for the vector product (14) differs from 
analogous expression in Gibbs vector algebra. As a con- 
sequence, in sedeonic algebra the formula for the vector 
triple product of three absolute vectors A


,  and B


C


 
has the following form: 

   A B C B A C C A B          
       

,

,

.

.     (15) 

Thus, the sedeonic product 

  
 

0F AB F F  

has the following components: 

,

i i

i i

i i

   

   

   

   

0 0 0 1 1 2 2 3 3

1 1 0 0 1 2 3 3 2

2 2 0 0 2 3 1 1 3

3 3 0 0 3 1 2 2 1

F A B A B A B A B

F A B A B A B A B

F A B A B A B A B

F A B A B A B A B

     (17) 

3. Sedeonic Spatial Rotation and Space-Time 
Conjugation 

The rotation of the sedeon  on the angle V   around 
the absolute unit vector n


 is realized by uncompleted 

sedeon 

  cos 2 i sin 2n 
U          (18) 

and by complex conjugated sedeon 

  * cos 2 i sin 2n 
U  ,       (19) 

which satisfy the relation 
* * 1    U U UU .            (20) 

The transformed sedeon  is defined as the sede- 
onic product 

V

*    V U VU .              (21) 

Thus the transformed sedeon  can be written in 
the following expanded form: 

V

     
   

   

cos 2 i sin 2

cos 2 i sin 2

cos 1 cos

i sin .

n

n

n n

n

 

 

 



    

   

    

   

0

0

V V

V V V

V


V




  



      (22) 

It is clearly seen that rotation does not transform the 
sedeon-scalar part, but sedeonic vector 


 is rotated on 

the angle 
V

  around n


. 
The operations of time conjugation , space con- 

jugation 
 ˆ Rt

 R̂r  and space-time conjugation  R̂tr  are 
connected with transformations i 1e e , 3e  basis 
and can be presented

n 
 as 

, 2

ˆ ,

ˆ ,

ˆ .

R

R

R

   

    

    

 

 

 

t 2 2 0 1 1 2 2 3 3

r 1 1 0 1 1 2 2 3 3

tr 3 3 0 1 1 2 2 3 3

V e Ve V e V + e V e V

V e Ve V e V e V e V

V e Ve V e V e V e V

     (23) 

4. Sedeonic Lorentz Transformations 

The relativistic event four-vector can be represented in 
the follow sedeonic form: 

i ct r 1 2S e e
 ,                (24) 

where  is the velocity of light,  is the absolute sca- 
lar of time and r

c t
 is the absolute radius-vector. The 

square of this value is the Lorentz invariant 
2 2 2 2 2c t x y z     SS .        (25) 

The Lorentz transformation of event four-vector is re- 
alized by sedeons 

*

cosh sinh ,

cosh sinh ,

m

m

 

 

 

 




3

3

L e

L e
         (27) 
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 tanh 2 v c  ; v  
m
where is velocity o

the absolute unit vector . Note that 

f

f motion along 

* *   L L L 1 L .               (28) 

The transformed event our-vector S  is written as 



     
 

 
 

*

2

2

2

cosh si

i cosh 2 i sinh 2

cosh sinh 2

sinh

sinh .

m

ct m r

r ctm

m r m

m r m



 

 





   

  

 

 

    

3

1 1

2 2

2

2

S L SL e

e e

e e

e

e

 nh i ct r 1 2e e

 cosh sinhm   3e

   


 

 

  

  

 (29) 

Separating the values with  and  we get the 
well-known expressions for t ime d coordinates 
transformations [29]: 

1e
he t

2e
 an

2

2 2
,

t xv c
t

2 2

1

,
1

, ,

v c

x vt
x

v c

y y z z



 


  

               (30) 

where 

 

x  is the coordinate along 
Let us also consider the Lorentz transformation of the 

full sedeon . The transformed sedeon

the m


 vector. 

V  V  can be 
 as

 

written  sedeonic product 
*    V L VL .                (31) 

In expanded form: 




 

 

2 2

2 2

cosh sinh

sinh

cosh sinh

cosh sinh

cosh sinh

cosh sinh .

m

m

m

m m

m m





 

 

cosh

 

 

 

  



 

 

 

 

tr

tr

0 tr 0 tr

tr 0 0 tr

tr tr

tr tr

V e

e

V e V e

e V V e

V e V e

e V V e





  

  

 

0V V



     (32) 

Rewriting the expression (32) with scalar (13) and 
vector (14) products we get 

 
cosh sinh
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tr tr tr

tr

r r r

e
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e
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   
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   2

sinh 2 ,
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V V m V m V m

   


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





    

tr t

t t t tr re



    

  (34) 

.

5. Generalized Sedeonic Wave Equation 

The relativistic wave function should satisfy an equation, 
which is obtained from the Einstein relation between 
energy and momentum 

4               (35) 

by means of changing classical energy  and momen- 
tum 

2 2 2 2E c p m c   

E
p


 on corresponding quantum-mechanical opera- 
tors [3 : 0]

 (33) 

Thus, the transformed sedeon have the following com- 
ponents: 

ˆˆ i and iE p
t


   


  ,          


(36) 

where c  is the velocity of light,   is the Planck con- 
stant. The absolute gradient vector has the following 
form: 

x y z

 
   
 

  1 2a a

se

3a .          (37) 

In deonic algebra the Einstein relation (35) can be 
written as 

   0mc2 2i iE cp mc E cp    
 

t r tr t re e e e e tre . (38) 

Let us consider the wave funct on in the form of 
space-time sedeon 

i

     
  , ,r t r t r t 0W W W .,         (39) 

Then the generalized sedeonic wave
ten in the following symmetric form 

 equation is writ- 

1
i i

mc    

1
i i 0.

c t

mc

 
 

c t
    

t r tr

t r tre e e W
 

e e e



 

     (40) 

erators 




Redefining the op
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1
,  ,  ,        (41) 

mc
m


     t t r r tr tre e e

 

0 .   (42) 

The sedeonic Equation (42) can be represe
form of the system of Maxwell-like first-order eq
Let us consider the sequential action of operators. After 
the action of the first operator in the left part of Equation 
(4

c t 
we can rewrite the Equation (40) in compact form: 

  i i i im m      
  

t r tr t r tr W

nted in the 
uations. 

2) we obtain 

 i i i im       t r tr t 0 tW W W
 

      
 

 

  (43) 

Introducing the scalar and vector field’s intens

         (46) 

Then the wave Equation (42) can be rewritte
following form: 

i i .m m         r r tr 0 trW W W W

r 0W

ities 

 i im     0 t 0 r tr 0E W W W ,          (44) 

i im        
     

t r 0 r trE W W W W ,     (45) 

the relation (43) is presented as 

 

 i im    
 

t r tr 0W E E .

n in the 

  i i 0m    
 

t r E E .        (tr 0 47) 

Performing sedeonic multiplication i
and separating sedeon-scalar and sedeon-vect
obtain the Maxwell-like system of first-order e

,

uations for electromagnetic 
field in a vacuum. Indeed, choosing sedeon

n expression (47) 
or parts we 
quations: 

 i im    E E
 

0

i im



       

t 0 r tr 0

t r tr r 0

E

E E E E
    

0.
      (48) 

In the particular case of zero mass field the system (48) 
coincide with the Maxwell eq

ic potential as 

i A 


t rW e e ,                 (49) 

we get the following wave equation: 

 1 1
i i i A

c t c t
 0          

t r t r t re e e e e e .  (50) 

Here 

     

  is scalar potential, A


 is vector potential. 
of the first operator in the left part of 

Eq
After the action 

uation (50) we obtain 

 

 1 1
.

c t

A

1
i i A

A A


 
     



Using the sedeonic definitions of the electric and mag- 
netic field’s intensities 

c t c t
       

 tr tre e

    t r t re e e e


  
   (51) 

1
,

,

A
E

c t
 

  


H i A    

 

                (52)  

and taking into account Lorentz gauge condition 

 1
0A

c t


   




,                (53) 

we can rewrite the expression (51) in the following form: 

 1
i i iA E H

c t
     


  

  
e e e e e .    (54) 

ion (50) can be represented as 

t r t r tr

Then the wave Equat

 1
i iE H

c t

 
0    


  

t r tre e e

Performing sedeonic multiplication in the left part of 

.           (55) 

equation (55) we get 

 

 1
i i 0.

H
H H

  

1
i i

E
E

c t

c t

     
E 

       t r re e e



r t te e e
   

      (56) 

Separating space-time values we obtain the 
Maxwell equations in the following form: 

   

system of 

  0E 
 

te    —time scalar, 

1
i

H
E



c t

    

 
e e  —time vector, t t

  0H 
 

e    —space scalar,   (57) r

1
i

E
H

c t

     

 
r re e  —space vect

The system (57) coincides with Maxwell equations for 
fr

c 
Equation 

The sedeonic algebra enables the reformulation of the 
first-order Dirac equation [30]  the 
filed potential. In this case the homogeneous Dirac wave 
equation is written as 

or. 

ee electromagnetic field. 

6. Sedeonic Generalization of Dira

 as a wave equation for

1
i i

mc

c t

 
0     

 
trt re e e W ,      (58) 

where the sedeonic wave function  can be consid- 
er

ith zero ntensities 

W

field i
ed as the field potential. In fact, this equation describes 

the special massive field w 0E  
and E


 (see expression (46)). In Equation (5

elements te , re , tre  and 1a , 2a , 3a  play
 space-time 

8) the 
 the 

the rs, orm the sede

basis 
role of 

onic operato which transf
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potential W  by means of component permutation. 
In particular, for the special case of zero mass the 

Equation (58) is written as 

1
i 0

c t

     

 
t re e W .         (59) 

This e describes the free massless electromag- 
 a

quation 
netic field with field intensities E


nd H


 equal to 

zero (see the expression (54)). 
Let us consider the plane wave solution of Equat  

(59)  detail. We will seek the potential in the form: 

  exp i it k r   
 W U ,         (60) 

wh

 ion
in



ere   is a frequency, k  is an absolute wave vector 
and the wave amplitude U  does not depend on coordi- 
nates and time. The depend



ence of the frequency on the 
wave vect s two branches: or ha

ck   ,                  (61) 

where k  is the module of wave vector  k k


. Let us 
choose the amplitude of potential as 

i A 
t rU e e .              (62) 

Then, substituting potential 



    i exp i iA t k    


t rW e e r
 

     (63) 

into (59) we obtain the following equation: 

 i i i 0k A
c


     

 

 
t r t re e e e .         (64) 

Intro ongitudinal ducing l A


 and perpendicular A


 

compon nts of vector potential (with respec wave 
vector k ) we get 

e t to the 

  0A A 

 
re .  (65) i i

i

ik


    


t r t re e e e

Perform ng multiplication in (65) and sepa
ferent space-time values we obtain the follo

c 

rating dif- 
wing rela- 

tions: 

,  0.
c

A k A
 



 

 
            (66) 

Then Equation (65) is rewritten as 

i i 0k k
c

 
       



 
te e e e .      (67) 

c 
r t r

Thus the plane wave solution for the Equation (
be written i  the following form: 

59) can 
n

  i exp i ik t k r
c


 


      
 

  
t rW e e ,    (68) 

where is arbitrary scalar constant and the expression 

in round brackets is so-called zero diviso

  

r: 

i ik k 0
    
c c
   

  

 
e e e e .        (69) 

In general, the plane wave solution for the
(59) can be written in the following sedeonic 

t r t r

 Equation 
form: 

  i exp i ik t k r
c





      
 

   
t rW e e V ,    (70) 

where is an arbitrary sedeon with constant c
nents. hat the internal structure of thi
changed under space and time conjugation. 

The algebra of sedeons can be consider
lar-vector variant of complexified Clifford
sp

 are 
responsible for the nver s
cally, these two bases are equivalent, and the

onic algebra 
nary unit (see Table 1). It allows real- 
r algebra on which Clifford product is 

i, [3  a

ive  one 
ca

unction. From a physical point of 
vi

fo

V  
Note t

ompo- 
s wave is 

7. Discussion 

ed as the sca- 
 algebra with 

ecific commutation and multiplication rules. The sede- 
onic basis elements 1a , 2a , 3a  are responsible for the 
spatial rotation, while the elements e , e , et

sion
r

. M
tr

 space-time i athemati- 
 different 

physical properties attributed to them are an important 
physical essence of our sedeonic hypothesis. 

In contrast to the Heaviside-Gibbs vector algebra the 
multiplication rules for vector basis in sede
contain the imagi
izing scalar-vecto
defined [25]. Apparently, such possibility of vector basis 
multiplication was pointed first by Macfarlane, A. [31]. 
Later the similar multiplication rules for matrix basis 
were applied by Paul W. 2] nd Dirac, P.A.M. [33] in 
their spinor equations. 

We emphasize that in present variant of sedeonic al- 
gebra the basis ke  is non-commutative in contrast to the 
previously discussed [28]. This fact has far-reaching and 
important implications. Using non-commutat ke

n to write Einstein relation for energy and momentum, 
and as a consequence the second order wave equation, in 
a symmetric form as the product of two the same opera- 
tors. It enables to exclude from the wave equations the 
nonsedeonic operators of space and time conjugation 
considered in [28]. 

The important point is that the sedeonic basis elements 
simultaneously play a role of the operators and space- 
time basis of the wave f

ew, this allows us to reformulate the Klein-Gordon 
equation of relativistic quantum mechanics as the quasi- 
classical equation for the potentials of the field or in 
equivalent form as the Maxwell-like equations r the 
field intensities. At the same time the sedeonic first-order 
equations for massive and massless fields have very 
natural interpretation as the equations for the potentials 
corresponding to the fields with zero field intensities. 
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Thus, the sedeonic formalism enables the development of 
a unified description of massive and massless fields on
th

 of sedeonic approach to the descrip- 
aryon and lepton fields will be co

r. 

 Applied Clifford Algebras, Vol. 9, 
No. 1, 1999, pp. 119-130.  

F03041944

 
e basis of sedeonic space-time operators and scalar- 

vector potentials. 

8. Summary 

Thus, in this paper we have presented the sixteen-com- 
ponent sedeons generating associative noncommutative 
space-time algebra. We proposed sedeonic second-order 
wave equation for massive field and demonstrated that 
this equation can be represented as the system of first- 
order Maxwell-like equations for the field intensities. 

The sedeonic Dirac-like first-order wave equations for 
massive and massless fields formulated in the sedeonic 
form were also considered. It was shown that these equa- 
tions describe potential fields with zero field intensities. 

The application
tion of massive b
ered in our next pape

nsid- 
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