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ABSTRACT 

After we modified raw data for anomalies, we conducted spectral analysis using the data. In the frequency, the spectrum 
is best described by a decaying exponential function. For this reason, stochastic models characterized by a spectrum 
attenuated according to a power law cannot be used to model precipitation anomaly. We introduced a new model, the 
e-model, which properly reproduces the spectrum of the precipitation anomaly. After using the data to infer the pa- 
rameter values of the e-model, we used the e-model to generate synthetic daily precipitation time series. Comparison 
with recorded data shows a good agreement. This e-model resembles fractional Brown motion (fBm)/fractional Lévy 
motion (fLm), especially the spectral method. That is, we transform white noise Xt to the precipitation daily time series. 
Our analyses show that the frequency of extreme precipitation events is best described by a Lévy law and cannot be ac- 
counted with a Gaussian distribution. 
 
Keywords: e-Model; Daily Precipitation Time Series; Filtering; Fractional Brownian Motion; Fractional Lévy Motion; 
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1. Introduction 

Just as turbulence and clouds have been described us-
ing (random) fractals, geoscientific fields such as topo- 
graphical fields, temporal or spatial rainfall fields, and 
earthquake-slip fields are often modeled using fractals 
(Gagnon, et al. [1]; Lavallée and Archuleta [2]; Lavallée 
[3]; Lovejoy and Schertzer [4]; Schertzer and Lovejoy 
[5]; Tchiguirinskaia, et al. [6]). If we specifically exam- 
ine simulations of temporal or spatial rainfall field as one 
example, then two approaches might be used (Over and 
Gupta [7]): stochastic approaches, or physical or dy- 
namical approaches. Regarding the former, many sto- 
chastic models of temporal and spatial rainfall fields 
have been developed. According to Over and Gupta [7], 
a pioneering research effort for modeling of this type was 
that of LeCam [8]. Many stochastic models have been 
proposed, examples of which are the AR model (Brock- 
well and Davis [9]), ARMA model (Box and Jenkins 
[10]), NSRP model (Cowperhwait [11]), and the WGR 
model (Waymire, et al. [12]). Regarding precipitation 
models before 1990, which are not based on the fractal 
theory, see Valdes [13]. In recent twenty years, several 

mono-fractal or multifractal models have been used to 
model the scaling property of rainfall fields (Over and 
Gupta [7]; Lovejoy and Schertzer [4]). One of these mul- 
tifractal models, the discrete cascade model is used to 
model rain data in Over and Gupta [7]. An alternative 
multifractal model, the continuous cascade model (e.g. 
Lovejoy and Schertzer [14]) is used to model rain fields 
in Wilson et al. [15]. 

As indicated above, geoscientific fields are often mod- 
eled by more physical or dynamical methods. Regarding 
precipitation, rainfall fields are often generated using 
meso-scale meteorological models or a global climate 
model. An important shortcoming of physical or dynamic 
approaches is their nature: they are time-consuming and 
resource-consuming. Simulation using stochastic ap- 
proaches is based on random number generation. A 
simulation result by the latter is not deterministic but 
stochastic. Once one can generate random numbers, how- 
ever, the random numbers must be transformed to the 
required data.  

As described herein, we specifically examine the sim- 
ulation of daily precipitation time series because simu- 
lation using daily precipitation is extremely important for 
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flood design. For generating daily precipitation time se- 
ries at specific observation station, we believe that the 
stochastic approach is superior to physical and dynamical 
approaches from the viewpoint of the cost of resources 
including time. 

Although stochastic models of various kinds exist, 
models based on fractal theory or scaling theory present 
great advantages because of their capability of simply 
describing phenomena. Fractals were originally concep- 
tualized by Mandelbrot [16]. Multifractals were proposed 
later (Frisch and Parisi [17]). Regarding the general the- 
ory of fractals and multifractals, see Feder [18] and Fal- 
coner [19]. For instance, Gagnon et al. [2] described the 
evolution from the (mono-) fractal model to the multi- 
fractal model, and explained the latter’s superiority in 
terms of the topographical field. Lovejoy, Schertzer and 
others (e.g. [14]) have clarified that some kind of (tem- 
poral or spatial or both) rainfall data can be modeled by 
multifractal model. Their multifractal model is charac- 
terized by the terms “continuous cascades”, “universal 
model”, and “the fractional integrated flux model (FIF)”, 
and so on. Hereinafter, we simply refer to their simula- 
tion model as “FIF”. Because the FIF model is generally 
defined by the three parameters of , C1, and H, it is 
necessary to estimate these three parameters before con- 
ducting simulations using the multifractal FIF. Usually, 
two steps exist for obtaining fractal parameters. The first 
is Fourier analyses. From results of these analyses, one 
can confirm whether or not the field is fractal field. To 
parameterize some multifractal models, it is possible to 
use the Double Trace Moment (DTM; Lavallée [20]) and 
Fourier analysis (it should be noted that the DTM has 
only be validated with discrete cascade model (personal 
communication, Daniel Lavallée, 2013)). Regarding mo- 
no-fractals, we will interpret a spectral method for fBm/ 
fLm, which is one example for obtaining parameters or 
the nature of a mono-fractal, in Section 3. Using these 
steps, we can confirm the fractality of the field and ob- 
tain relevant parameters. 

We have outlined the flow of our research here. 
1) Construction of data: Raw data is strongly affected by 

seasonal and periodic changes. We modified the data 
and made our data for analyses using raw data. 

2) Confirmation of fractality: Fourier analyses were con- 
ducted. The power spectra were obtained. If  (angu- 
lar frequency) versus E() is log-log linear, then the 
data field is mono-fractal or multifractal. 

3) If the data field is fractal, we can obtain three para- 
meters of the universal model (multifractal), or try to 
apply fBm or fLm (a mono-fractal model). Subse- 
quently, we must ascertain which model is appropri- 
ate. 

4) If the data field is not fractal, then we must first seek 
the appropriate filter. Then we must construct a new 
model. 

2. Precipitation Data 

2.1. Raw Data 

For precipitation observations, more than 150 manned 
observation stations (offices of the Japan Meteorological 
Agency) exist throughout Japan. Although their begin- 
ning times of operation mutually differ, only 51 manned 
stations have operated for more than 100 years. For this 
study, we used daily precipitation time series data (here- 
inafter, often designated simply as “daily precipitation”) 
at these 51 manned stations during 1901-2011. At 10 
stations, however, the data are not complete because of 
natural disasters and wars. In Figure 1, we portray these 
10 stations using red (Naha), orange (Kure), and yellow 
(Miyako, Fukui, Yokohama, Tsuruga, Kofu, Hamamatsu, 
Kobe and Sakai) circles. Missing periods are, respec- 
tively 10, 2, and 1 year. Green circles show stations that 
have complete (111 yr) data. 

2.2. Anomaly R 

We analyze the time series (which contains 365 data = 1 
yr) of daily precipitation R. The total time series includes 
data of 111 years at most observation stations. First, we 
carry out the Fourier transform and investigate the rela- 
tion between   versus the power spectrum  E  . As 
we described earlier, the relation is log-log linear: 
 E    if a field of R is a fractal field. As one 

 

 

Figure 1. Locations of observation stations: observation 
stations having complete data obtained during 1901-2011, 
stations with 1 year of data were lost, stations with 2 years 
of data lost, and stations with 10 years of data lost are de- 
noted respectively with green circles, yellow circles, orange 
circles, and red circles. 
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might imagine, however, the relation does not show 
log-log linearity because of various factors. As described 
later, we obtained a relation (an exponential function) 
other than the log-log linearity using anomaly. However, 
in reality, we were unable to obtain a smooth function if 
we used R itself. 

Therefore, we conducted modification of the data as 
described to remove these factors in the following man- 
ner: 

1) Assuming that the Tsu Observation Station has mn 
daily precipitation data, where m is the year and n is the 
Julian day number, then we can use a variable R(m,n). 
First, we calculate the average value of each day over a 
period of 111 years. 

     
2011

1901

, 111 1 365
m

R n R m n n


      (1) 

2) Secondly, we conducted smoothing (low-pass fil- 
tering) the R(n). We obtained five-day moving averages 
 R n   3 363n  . We obtained 361 values for Tsu 

Observation Station. 
3) For each year with index m, we calculated anomaly 
     , ,R m n R m n R n   . So we have 111 time series 

available for analysis. 
In Figure 2, black lines and red lines respectively rep- 

resent R(n) and  R n  (upper panel). The lower panel 
shows the anomaly time series of R(m, n) in 2011 at 
Tsu Observation Station. We will analyze this R(m, n) 
in the following sections. 

3. Spectral Method for fBm/fLm 

As we described in the previous chapter, first we carry 
out Fourier analyses to confirm the fractality of R. If the 
field of R has a fractal nature, then the relational Equa- 
tion (2) holds between  (angular frequency) and E() 
(power spectrum). 

    2

SE F R                (2) 

In that equation,  is the scale exponent and  
 2 1s N    , s is the discrete variable, N represents 

the number of data R (=361 in this study), and Fs is the 
discrete Fourier transform. 

The spectral method, discussed in Lavallée [3] can be 
used to generate Bm/fBm/fLm. See Saupe [21] for details 
and other methods. Lavallée’s method is the following: 

 

Figure 2. (Upper)  R n  (black line) and  R n  (red line); 

(Bottom) anomaly time series,  R m n,  in 2011 at Tsu 

observation station. 
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 

  (3) 

In this equation, Xt represents independent and identi- 
cally distributed random variables (white noise). Yt 
shows the generated fBm/fLm data. If Xt is generated 
using the Gauss law, then Yt is fBm. If Xt is generated 
using the Lévy law, then Yt is fLm. Here, one can imag- 
ine an inverse procedure: for certain data Yt, one might 
want to ascertain whether Yt is fBm or fLm. 

The following Equation (4) is an inverse equation of 
Equation (3) in which 1

tF   is the Fourier inverse. 

 1 2
t t s tX F F Y                (4) 

Particularly, we collect Yt from a certain geoscientific 
field. After estimating  using Equation (2), we can ob- 
tain random variables Xt using Equation (4). Subse- 
quently, we can confirm which probability density func- 
tion (PDF) is appropriate for Xt. We assume that the can- 
didate of the PDF is a Gaussian or Lévy distribution in 
this study. 

The PDF of the Lévy distribution cannot be expressed 
explicitly. The characteristic function is the following 
(Robust Analysis Inc. [22]; Nolan [23]); 
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           (5) 
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Therein, X is a random variable,  is the tail index 

 0 2  ,  is a skewness parameter  1 1   ,  
is a scale parameter (positive) and  is a location pa- 
rameter (an arbitrary real number). The Gauss distribu- 
tion is a special case of the Lévy distribution and  = 2 
for the Gauss distribution. Detailed explanations have 
been made by Nolan [23], Zolotarev [24] and Uchiaikin 
and Zolotarev [25]. 

4. Results  

4.1. Spectral Analysis 

First, we conducted spectral analysis using R. In prac- 
tice, R is R(m, n), and 3  m 363 and 1901  n  2011. 
Furthermore, N in Equations (3) is 361, and 111 E() 
were averaged. Figure 3 (lower) shows the relation be- 
tween  and E() on a double logarithm chart. The rela- 
tion does not show log-log linearity. Figure 3 shows the 
relation at the Tsu Observation Station. However, a sim- 
ilar behavior has been observed for all the other obser- 
vation stations considered in this study. These results 
suggest that stochastic process characterized by a spec- 
trum attenuation given by a power law—for instance, fBm, 
fLm and other multifractal models (e.g. FIF)—cannot 
properly model the average spectrum E() observed for 
the anomaly R considered in this study. 

Although the fractal model is inapplicable to daily pre- 
cipitation, the procedure explained by Lavallée [3] is 
applicable to the data. Figure 3 (upper) shows  versus  
 

 

Figure 3. (Upper) Power spectra of R  in Tsu on the 
normal chart. The blue dots are power spectra of R  in 
Tsu. The red curve is a regression curve; (Bottom) The 
same figure as the upper panel, but on the log-log chart. 
Blue dots represent power spectra of R . The red line is a 
linear regression line. 

E() on a normal chart. Not log-log linearity, but a cer- 
tain relation is apparent. The relation is investigated in 
the following section. 

4.2. Exponential Filter 

We cannot generate R using the fBm/fLm model. 
Therefore, we tried to derive a filter other than the filter 
for fractal model to simulate R. We strove to apply the 
following Equation (6) for regression analysis. First, “a” 
and “b” are parameters which we must estimate. 

   expE a b                (6) 

We conducted regression analyses for all 51 observa- 
tion stations. The range of correlation coefficient of  
versus log E() was −0.74 - −0.97 (−0.92 ± 0.04; mean ± 
standard deviation). Therefore, we conclude that Equa- 
tion (6) is applicable as a regression curve of  versus 
E() of precipitation anomaly. Liu et al. [26] discussed a 
similar stochastic process but with a filter given by a von 
Karman function. 

4.3. Probability Law 

In the previous section, we derived a new filter instead of 
a log-log filter (Equation (6)). Therefore, Equation (4), 
which was discussed in the preceding section, is modi-
fied as shown below. 

    1 21 expt t sX F F R a b 
           

     (7) 

In that expression, R is used instead of Yt in Equation 
(4). Equation (7) shows that Xt is computed using R. 
We tried to clarify Xt’s nature, specifically, which of the 
Gauss law or Lévy law is appropriate for generating Xt. 
We compared histograms of Xt and PDF of the Gaussian 
and Lévy law. Parameters of the Gaussian law are esti- 
mated using the L-moment method (Hosking and Walllis 
[27]). Parameters of the Lévy law were estimated using 
three methods: maximum likelihood, quantile, and the 
empirical characteristic function. In practice, we used 
Nolan’s software [22,23]. Figure 4 (upper) presents a 
histogram of Xt (green circles) and PDFs of the Gaussian 
law (blue solid line) and Lévy (dashed line) in Tsu. Re- 
garding Figure 4, parameters of the Lévy law were cal- 
culated using the maximum likelihood function. Accord- 
ing to Figure 4 (upper), the Lévy law is more appropriate 
than the Gaussian law. Furthermore, we focused on the 
PDF tail, as earlier studies have done: Lavallée [3]. There 
is an additional justification to focus on the tail of the 
distribution. In Geophysics, extreme but less frequent 
events are the ones mainly responsible for significantly 
perturbing the system under consideration and the poten- 
tial cause of much damage to nature and society. Prop- 
erly quantifying the frequency of these extreme events is  
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Figure 4. (Upper) A histogram of Xt (green dots), a PDF of 
the Gaussian law (blue curve) and the Lévy PDF (dashed 
curve). The histogram size has been reduced for compari- 
son to PDF. Therefore, to be precise, the histogram is PDF; 
(Bottom) The same figure as shown in the upper panel, but 
on the double logarithm chart. The curve of the Lévy PDF 
(dashed curve) provides a better fit to the tail of the histo- 
gram (PDF curves) of Xt. 
 
a potential outcome of the method discussed in the paper 
(personal communication, Daniel Lavallée, 2013). 

Figure 4 (bottom) is the same graph as that shown in 
the upper panel, but on double logarithm graph to em- 
phasize the tail’s nature. The lower panel indicates the 
superiority of Lévy’s law more clearly than the upper 
panel: the lower panel clearly shows that the Lévy law 
provide a better description of the extreme events located 
in the tail of the PDF of Xt. Xt is clearly related to daily 
precipitation. We intend to emphasize the reproducibility 
of extreme daily precipitation. Therefore, it is concluded 
that the Lévy’s law is more appropriate. 

We can quantitatively estimate goodness-of-fit of the 
PDFs of Lévy’s law. We calculated the correlation coef- 
ficient between the histogram and PDFs of Lévy’s law 
for 51 observation stations. Ranges of coefficients of 
correlation of normal graph were 0.86 ± 0.08 (1.00 ± 
0.02), 0.80 ± 0.07 (0.92 ± 0.04) and 0.86 ± 0.06 (1.01 ± 
0.04) by the three methods described above (numbers in 
the parentheses are slopes of the regression lines). Suffi- 
ciently high correlation and slopes that are almost unity  

were shown for all 51 stations for three methods. Re- 
garding tail characteristics (double logarithm graph), 
similar results were obtained. Furthermore, these analy- 
ses demonstrate that Lévy’s law is quantitatively superior 
to the Gaussian law. 

Finally, we show four parameters for each observation 
station (Table 1). The ranges of the most important pa- 
rameter  are 1.22 ± 0.24 (mean ± standard deviation), 
1.03 ± 0.04 and 1.17 ± 0.06, respectively, as obtained 
using the maximum likelihood, the quantile and the em- 
pirical characteristic function (“Method 1”, “Method 2” 
and “Method 3”, respectively, in Table 1). 

5. Simulation 

In the previous section, we show that the Lévy law prop- 
erly describes the distribution of Xt—especially extreme 
values. In this section we discussed how to use the e- 
model and Lévy law to simulate daily precipitation. This 
e-model resembles fBm/fLm, especially the spectral me- 
thod, but it is not characterized by spectrum attenuation 
given by a power law but the spectrum is best described 
by a decaying exponential function. 

5.1. Lévy Random Number 

An expression for synthetic precipitation anomaly can be 
obtained by modifying Equation (3) in the following way 
(Equation (8)): the power law filter is replaced by the 
exponential filter given in Equation (6). 

Therein, the random number Xt is generated using the 
Lévy law. Four parameters of the distribution for each 
observation station were obtained as explained in the 
preceding section. R' is a generated precipitation anom- 
aly. We intend to reproduce R (observed anomaly) us- 
ing Equation (8). We use the truncated Lévy law (La- 
vallée [3]) in practice: overly large or small values of Xt, 
which are outside of a certain allowable range, are re- 
moved. The allowable range is found using actual pre- 
cipitation data. 

5.2. Proportionality Factor of Generated R 

We conducted spectral analysis of the generated R'. 
Results show that the spectral E() of R' is much 
smaller than that of R. Here, it is noteworthy that an 
equality is “” in Equation (3) but “=” in Equation (8), 
and that R is an observed real value and that R' is a 
generated value which is expected to reproduce R. 
Theoretically, R' is expected to be proportional to R 
(in the statistical sense). In fact, the cause of disagree- 
ment is apparently differences of two “a” values. How- 

 

      1 2
1 2

2 2

2 1 1
exp exp

N

s t
s N

i x s
R a b F X

N




 

   
      

 


                (8) 
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Table 1. Estimated parameters of the Lévy law. Regarding 
the number of methods, see the text. Each parameter value 
is shown as the mean ± standard deviation. 

Method α β γ δ 

1 1.22 ± 0.24 0.18 ± 0.43 3.45 ± 0.79 −3.25 ± 1.14

2 1.03 ± 0.04 0.39 ± 0.08 3.15 ± 0.32 −2.61 ± 0.52

3 1.17 ± 0.06 −0.27 ± 0.17 3.36 ± 0.41 3.13 ± 0.54

 
ever, as for “b” in regression curves, both values of b 
well coincide.  

Then we assume the following equation. 

R k R                     (9) 

In that equation, k is a proportional factor that stands 
as a correction coefficient of “a” to reproduce R. We 
obtained correction factor k for E() of R' to coincide 
with E() of R. The distribution of k obtained from 51 
observations was 2.44 ± 0.43. After we estimated the 
correction factors “k”, we conducted spectral analysis of 
k R  . The   E() relation of k R   well coincides 
with that of observed R. We conclude that we are able 
to simulate R using our e-model including the k-cor- 
rection procedure. 

5.3. Correction of Negative Values 

For this study, we generated 300 sets of R'. Then, the 
simulated daily precipitation (R') is calculable as  
R R k R    . Figure 5 depicts a chart of the interan- 
nual change of the simulated R R k R     (blue line) 
and observed R in 2011 (red line) at Tsu Observation 
Station located in Mie. According to Figure 5, their char- 
acteristics are comparable. However, R' shows a nega- 
tive value on some days. Furthermore, we defined the 
new variable R'' as shown below. 

if 0

0 if is negative

R R
R

R

     
               (10) 

In this case, the simulated anomaly (R'') is estimated 
as R R R    . We conducted spectral analysis of R''. 
Then we compared the spectra of R'' and R from the 
viewpoint of the   E() relation. 

Results (Figure 6) show that E() of R'' is almost 
identical to that of R for 51 observation stations: re- 
moving negative values from simulated time series does 
not affect the result. 

6. Conclusions 

We strove to apply a stochastic model to daily precipita- 
tion time series recorded at 51 observation stations in 
Japan. Fourier analysis of precipitation anomaly suggests 
that the spectrum of precipitation anomaly is attenuated 
as an exponential function. Thus stochastic model of the 
fractal variety with a spectrum characterized by a spec- 

 

Figure 5. Interannual change of precipitation R' (blue line) 
generated using our method and parameters obtained in the 
preceding section, and actual precipitation R (red line) in 
2011 at the Tsu Observation Station. Both lines show simi- 
lar characteristics. However, R' (blue line) has some nega- 
tive values. 
 

 4.0

 

Figure 6. The same figure as Figure 3 (upper). Yellow dots 
represent power spectra of R  in Tsu. The red line is a 
linear regression line. The Blue dots and green line are for 

R . 
 
trum following a power law must be disregarded. To 
model precipitation anomaly, we propose a new stochas- 
tic model: the e-model. Our findings are the following. 

1) The e-model closely resembles fBm/fLm, but an 
exponential type filter is applicable to our data: anomaly 
time series data. 

2) The e-model use an exponential type of filter: 
   expE a b     . 
3) We generated daily precipitation time series using 

the e-model. The model generates some negative values. 
Therefore, we modify the negative values to zero values. 
This modification did not affect the reproducibility of the 
relation between  and E(). 

We emphasize the reproducibility of extreme daily 
precipitation. The e-model with Lévy’s law can repro- 
duce extreme daily precipitation. We intend to search for 
other phenomena to which the e-model and Lévy’s law 
can be applied and which are predicted by the model. 
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