
Advances in Nanoparticles, 2013, 2, 318-322 
Published Online November 2013 (http://www.scirp.org/journal/anp) 
http://dx.doi.org/10.4236/anp.2013.24043  

Open Access                                                                                            ANP 

Dye-Sensitized Solar Cell with Fluorinated Gel Electrolyte: 
Effect of TiO2 Particle Size on Performance 

Jun Kyokane1, Masato Ohmukai2 
1Akashi National College of Technology, Akashi, Japan 

2Department of Electrical and Computer Engineering, Akashi National College of Technology, Akashi, Japan 
Email: ohmukai@akashi.ac.jp 

 
Received August 27, 2013; revised September 29, 2013; accepted October 11, 2013 

 
Copyright © 2013 Jun Kyokane, Masato Ohmukai. This is an open access article distributed under the Creative Commons Attribu-
tion License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 
cited. 

ABSTRACT 

We fabricated dye-sensitized solar cells including fluorinated gel electrolyte and studied about the relationship between 
the performance of the solar cells and the aggregation state of TiO2 nano-particles on electrodes. As for the performance 
of the cell, the I-V characteristics were measured under irradiation. The combination of TiO2 nanoparticles with differ-
ent size plays an important role in bringing unevenness to realize a large surface area, which is critical for the high per-
formance of the cells. 
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1. Introduction 

Dye-sensitized solar cells have attracted much attention 
these twenty years, since this new type of solar cells 
without any pn junctions was reported [1,2] in 1991 for 
the first time. The vast amount of efforts has been de-
voted to the improvement of its performance [3,4]. The 
conversion efficiency has reached ten percent [5] and so 
the commercial application is now expected strongly. In 
order to replace this kind of solar cells with the silicon 
ones, the efficiency requires the same level of silicon 
solar cells at least.  

The other big problem of the dye-sensitized solar cells 
is the stability. Since the cell includes electrolyte be-
tween two electrodes, the leakage of the electrolyte in-
evitably limits its stability. As a preferable idea to pre-
vent the electrolyte leakage, gelation of the electrolyte 
has been proposed [6,7]. Some researchers have been 
challenging with the cross-linking of a polymer [8]. We 
have been engaged on the other hand in the application 
of fluorinated gel electrolytes that have already been pro- 
posed to apply to a secondary battery [9]. The fluorinated 
gel electrolyte is cohesively derived from intermolecular 
force between the fluorinated alkyl groups and ionic bon- 
ding at the same time. This kind of gel does not mainly 
require bridging process induced by e.g. ultraviolet irra-
diation in order to form cross linking network, having an  

advantage of a simple and low-cost gelation procedure 
from the viewpoint of manufacturing. 

Our dye-sensitized solar cells consist of two transpar-
ent electrodes, between which the gel electrolyte is put, 
where one of the electrode was covered with the aggre-
gate of TiO2 nano-particles adsorbing dye. The aggre-
gated nanoparticle TiO2 layer—often addressed mesopo- 
rous TiO2—is one of the critical part of the solar cell 
[5,10]. The substrates spread with TiO2 are often calcined 
at about 500˚C [11,12], some researcher have tried to 
lower the treatment temperature [13] by the irradiation of 
microwave [14], laser [15] or ultraviolet [16]. In addition, 
spray coating of TiO2 followed by pressure to form the 
porous TiO2 layer [17] and electrophoretic deposition of 
TiO2 [18] have also been challenged so far. The intro-
duction of nano dots of CdSe [19] or PbS [20] in the po-
rous TiO2 layer, as well as Ag particles [21], has also 
been studied. Other materials such as SnO2 [22-24], ZnO 
[25] or NiO [26] have also been investigated instead of 
the TiO2 single layer. 

We fabricated the cells with a variety of conditions of 
the TiO2 layer formation and studied the influence on the 
performance of the cells from the point of view of I-V 
characteristics. The state of the TiO2 aggregate is ex-
pected to affect the contact to dye and gel electrolyte at 
the same time. We evaluate in this article a basic per-
formance of the dye-sensitized solar cell including fluo- 
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rinated gel electrolyte. The application of the fluorinated 
gel to dye-sensitized solar cells is not well studied yet. It 
will be able to trigger a break through to a difficult prob-
lem obstructing the development. 

2. Experimental Details 

We mixed 1 g of slurry including 30 wt·% of TiO2 pow-
der (P4TH055 or P7TH055 offered by Sumitomo Tita-
nium) with polyethylene glycol (PEG) to make paste 
with the help of the addition of Triton X (a nonionic sur-
factant) of 15 μl to increase viscosity. The difference be- 
tween P4TH055 and P7TH055 is the particle size of TiO2 
dispersed in the slurry. The size is not claimed clearly 
(50 - 70 nm) though the particle size is larger in P7TH- 
055. In some cases, we added P-25 of titania nano parti-
cles (20 nm) to the paste. The paste was spread on a fluo-
rine doped tin oxide (FTO) substrate at the thickness of 
58 μm. This was then annealed at 450˚C [12] for 30 min-
utes to remove binders and solvent to be a photocathode. 
The TiO2 deposited substrate was soaked in a solution of 
ruthenium complex dye (Ru (4,4’-dicarboxy-2,2’bipyri- 
dine)2(NCS)2) in ethanol (1 × 104 mol/l) at 50˚C for 2 
hours to adsorb the dye. The counter electrode (anode) of 
an FTO substrate was sputtered with a Pt target for 3 
minutes using a portable sputtering apparatus of VPS- 
020 by ULVAC. The thickness of Pt was confirmed to be 
about 10nm by means of an interference microscope. 

We describe here the preparation of gel electrolyte. 
Dimethyl sulfoxide was mixed with LiI (10 mmol/g) for 
20 minutes with the help of ultrasonic agitation. We then 
added 2-acrylamid-2-methyl-propanesulfonic acid (AM- 
PS) to this solution and mixed for 200 minutes further. 
The AMPS is one of fluorinated oligomers [9] that has 
the structure shown in Figure 1. The amount of AMPS 
added for gelation should be roughly larger than 330 g/l; 
the critical gelation density that was obtained experi-
mentally. If the density of the AMPS is too low, sponta-
neous cohesion is possibly hard to occur owing to a large 
distance between each oligomer. The image of the gela-
tion state of AMPS oligomers are shown in Figure 2. We 
finally formed a solar cell by putting the gel electrolyte 
between a photocathode and an anode and sealed the en- 
virons of the cell with epoxy resin. 

We evaluated the I-V characteristics of the solar cells 
by measuring the current and voltage appeared at the cell 

 
RF—(CH2-CMe)X—(CH2-CMe)y—RF 

O = C—(CH2-CH2O)9—Me

O = C—NH2CMe2CH2SO3  

Figure 1. Structure of AMPS; a kind of fluorinated oligo- 
mers. The RF in the figure stands for a fluoroalkyl group 
that acts as intra-group cohesion. 

when a variable resistive load was connected to the cell 
that was irradiated by white light (AM 1.5) from a fil-
tered xenon lamp (UXL500SX by Ushio) at the intensity 
of 55 mW/cm2. The resistive load was varied between 0 
and 100 kΩ. 

3. Results and Discussion 

We show I-V characteristics in Figures 3 and 4 corre- 
sponding to the slurry of P4TH055 and P7TH055, re-
spectively. The each figure shows the three kinds of I-V 
characteristics at the PEG amount of 10, 20 and 30 wt·%. 
The both figures show typical electric generating proper-
ties as a solar cell. The open-circuit voltage is 0.42 or 
0.44 V in Figure 3 and 0.5 in Figure 4. The open-circuit 
voltage is not dependent of the PEG concentration. On 
the other hand, the voltage is larger with the larger parti-
cle size of the TiO2, which is clear from the comparison 
of the two figures. If the size of TiO2 particle is small, 
the excited electrons at a dye adsorbed at the TiO2 parti-
cle surface experience the strong image force from the 
TiO2, though it cannot be quantitatively discussed here. 
The idea is consistent with the fact that the open-circuit 
voltage is independence of the PEG concentration.  
 

 

Figure 2. The image of the gelation state of AMPS oligo- 
mers. 
 

 

Figure 3. The I-V characteristics when slurry of P4TH055 
was used. The open-circuit voltage was not varied regardless 
of the concentration of PEG. The shunt-circuit current, on 
the other hand, was largest when the concentration of PEG 
was 10 wt·%. 
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We next pay attention to the shunt-circuit current in 
Figures 3 and 4. Figure 4 shows the larger shunt-circuit 
current by about 50% compared with those in Figure 3. 
With the larger particle size, it needs the less number of 
contacts between the TiO2 particles. We surmise that the 
bigger particles are more preferable to build continuous 
paths from the dye to the photocathode of FTO. The in-
crease of PEG amount suppresses the shunt-circuit cur-
rent in both cases. As the PEG concetration increases, the 
particles tend to disperse in the slurry so far away not to 
gather together, which results in the low density of con- 
tacting of the TiO2 particles. This obstructs the forming 
of path between the dye and the photocathode. The fact 
supposedly affects the density of contact between the 
TiO2 particles. The maximum generating electric power 
is shown in Figure 5 as a function of PEG concentration. 
We can conclude that P7TH055 with 10 wt·% of PEG 
provided the highest generating electric power in these 
experiments. 

We performed the similar experiments that we fixed 
 

 

Figure 4. The I-V characteristics when slurry of P7TH055 
was used. It shows a similar tendency to Figure 1, except for 
the fact that the values of the open-circuit voltage and the 
shunt-circuit current are larger than those shown in Figure 
1. 

 

 

Figure 5. The optimum electric generating power as a func- 
tion of the concentration of PEG. 

the ratio of PEG to be 10 wt·% and added P-25 (10 - 100 
wt·% of the TiO2 in the slurry) and obtained the interest-
ing results shown in Figures 6 (P4TH055) and 7 (P7TH- 
055). The open-circuit voltages fitted in the region be-
tween 0.4 and 0.5 V in the both cases, but were scat-tered 
in the region. The variation of the open-circuit voltage is 
the effect of addition of the nano particles with a differ-
ent size. The surface morphology of the TiO2 where the 
dye is adsorbed becomes irregular by adding the differ-
ent-size TiO2 particles. We found the prominent feature 
in the shunt-circuit current in the both cases. The shunt- 
circuit current is about 4 times as large by adding 100 
wt·% of P-25 compared with that of the 10 wt·% addition 
of P-25. Figure 8 shows the maximum electric generat-
ing power as a function of the concentration of P-25. The 
P-25 seems to play a role to be filled up in the void and 
to help to form a path easily between the dye and the 
photocathode. It appears the mixing of nano TiO2 parti-
cles of different sizes is critical to enhance the current. 
The difference in size between P4TH055 and P-25 is  
 

 

Figure 6. The I-V characteristics when slurry of P4TH055 
was used. It shows the characteristics depends noticeably on 
the concentration of P-25. 
 

 

Figure 7. The I-V characteristics when slurry of P7TH055 
was used. It shows the similar tendency to Figure 4. 
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Figure 8. The optimum electric generating power as a func-
tion of concentration of P-25. 
 
larger than that between P7TH055 and P-25. From the 
fact that the generation power became the smaller when 
P7TH055 was used, too large difference in size of the 
mixed particles lowers the generating power. 

To summarize the results, the slurry of P7TH055 (the 
larger size) realize the higher electric generating power 
than that of P4TH055 and both slurry tended to show that 
the increase of PEG concentration reduced the power. In 
case of adding P-25 titanium powder, the power was 
suppressed compared with the case without P-25, but the 
power increases drastically with the addition of P-25 
until 100 wt·%. With the P-25 addition, the power is lar-
ger when we used the slurry of P4TH055. We consider 
that the balance of the mixing of TiO2 particles with a 
different size affect the performance of the solar cell 
elaborately. In all cases, the open-circuit voltage was not 
varied especially when P-25 was not added. Only the 
shunt-circuit current was varied noticeably. It is surely 
because the TiO2 aggregation state determines the num-
ber of dyes covered on TiO2 and the number of path be-
tween the dye and an FTO electrode at the same time. It 
is desirable to enhance the both factors at the same time, 
but this is a kind of antinomy.  

Y. Saito et al. reported [27] the interesting results of 
the correlation between morphology and solar cell char-
acteristics. They concluded that roughness factor of the 
films is desired to be large until 1400 to obtain the larger 
coverage of the adsorbed dye with the larger photocur-
rent. This did not depend on the nano particle size ac-
cording to their results. It appears that our results do not 
agree with theirs at a glance. It should be noticed, how-
ever, that the mixing condition is quite different as fol-
lows. In our experimental conditions, the amount of P-25 
is under 50% of the total TiO2; the fine particles of P-25 
were imbedded interstitially. Their experiments were 
contrary performed under the condition that large parti-
cles bigger than 100 nm were dispersed in the medium of 
fine particles such as P-25. We mixed the particles in dif- 
ferent size, but the sizes are in the same degree. 

4. Conclusion 

We fabricated dye-sensitized solar cells with a fluori-
nated gel electrolyte, and investigated the effect of ag-
gregation state of TiO2 particles from the point of view 
of I-V characteristics. The increase in the PEG amount 
lowered the generating power. This suggested that the 
too much PEG obstructs the formation of electric path 
between the adsorbed dye and an FTO electrode. The 
slurry of P7TH055 is more favorable, which means that 
the larger particles are easier to form continuous paths. 
The addition of P-25 about 100 wt·% drastically in-
creased the generating power. The mixing or the particles 
in different size noticeably affected the cell performance. 
The difference of the two kinds of particles is too large, 
and the mixing effect is less effective. 
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