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ABSTRACT 

This note is concerned with a semi-analytical method for the solution of 2-D Helmholtz equation in unit square. The 
method uses orthogonal functions to project the problem down to finite dimensional space. After the projection, the 
problem simplifies to that of obtaining solutions for second order constant coefficient differential equations which can 
be done analytically. Numerical results indicate that the method is particularly useful for very high wave numbers. 
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1. Introduction 

In this note we consider a numerical method for the solu-
tion of 2-D Helmholtz equation. The goal is provide a 
solution method that is more suitable for Helmholtz 
equation at high frequencies and can be applied to the 
Helmholtz equation in 3-D.  

Helmholtz equation appears very naturally in the study 
of wave propagation [1], after assuming a harmonic field. 
It is well-known that the numerical solution of the 
Helmholtz equation is a challenging problem for high 
frequencies. Higher order finite difference schemes have 
been developed for Helmholtz equation with homogene-
ous domain [2-4]. Additional methods such as boundary 
element [5], discontinuous Galerkin method [6], multi- 
level multi-integral algorithm [7], iterative methods [8], 
and methods based on parallel computing [9] have also 
been developed for the numerical solution of Helmholtz 
equation. Recent results also include an iterative method 
based on ADI [10], a finite-element based semi-analytic 
method [11], and a method based on discrete singular 
convolution [12]. 

The method presented in this note is based on or-
thogonal functions. In addition to good accuracy for high 
wave numbers, it has the following specific new fea- 
tures. 
● The actual calculation is performed analytically in 

1-D only.  
● It can also be applied to 3-D domains. 

Section 2 introduces the basic principles of the method. 

Section 3 presents the numerical results and Section 4 is 
devoted to the concluding remarks. 

2. Mathematical Formulations 

Consider a 2-D Helmholtz equation given by 
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where, for simplicity, the domain is assumed to be a unit 
square. A set of Dirichlet boundary conditions are also 
given. In the present method, the solution to the above 
system is obtained as a linear combination of two similar 
problems. This is only to satisfy nonzero boundary con-
ditions (Figure 1). 

The two problems can now be similarly treated. Con-
sider the first problem, where the boundary conditions at 

0x   and 1x   are set equal to zero. Consider an ex-
pansion of the solution in the form 
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where, the zero boundary conditions are satisfied auto-
matically. A similar formulation can be used for the 
Helmholtz equation in 3-D (Appendix). Multiplying both 
sides of Equation (2) by , integrating both 
sides fover the domain 

sin j x 
 0 :1 , and using the orthogonal-    
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Figure 1. The decomposition of the elliptic problem to two elliptic problems with apporipriate boundary conditions. 
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it is possible to obtain a relationship for the functions 
 jf y  given by 
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Differentiating the above equation with respect to  
twice and using Equation (1) leads to 
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Integrating the first integral on the right-hand side by 
parts twice leads to 
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After applying the boundary conditions, the above 
equation simplifies to 
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The above equation is now a simple constant coeffi-
cient second-order differential equation. The appropriate 
boundary conditions are given by 
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The second-order differential equation can be solved. 
There are three separate cases. 

Case 1: , in this case the solution is 
given by  

  22k j  
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where,  22 .k j    1 

Case 2:   22k j  , in this case the solution is 
given in terms of exponential function. One needs to 
consider two separate cases. 

●   2 2 smallj k   , or . In this case 

the solution is given by  
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where,   2 2j k    . 

  2 2j k   For this case, in order to avoid un-  

bounded functions, one needs to approximate e 0  . 
For this case, the solution is given by 

          11 e 0 1 e e .y y
j j j jf y f f f         (9) 

Case 3:   22k j   This is the singular case. For  

these cases, it is possible to treat the dif
according to the following. For , the 
differential equation leads to 

ferential equation 
  22k j  
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2
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            (10) 

It is possible to obtain a solution in terms of the regu-
lar perturbation according to 

         0 1 2 2 3 3
j j j j jf y f y f y f y f y          

(11) 

The boundary conditions are imposed at the zero-th 
order. For higher-order terms, zero boundary conditions 
can be imposed. 

        0
00 1 0j j jf y f f y f   .       (12) 

Additional terms can be added as needed. This com-
pletes the solution for the first problem where only two 
of the boundary conditions are accounted for. The second 
problem can also be treated in a similar way. 

1The case where  sin 0   is the degenerate case [13]. We are not 

treating that case here. 

Open Access                                                                                           JAMP 



M. TADI 56 

3. Numerical Experiments 

In this section, we use a numerical example to investigate 
the applicability of the proposed method. The proposed 
method is particularly useful for very high values of the 
wave number. For these values none of the existing nu-
merical methods can be applied within the available 
computer capacity. It is possible to use a problem for 
which analytical solutions exist [2]. An exact solution for 
the problem is given by 

       , cos cos sinu x y k x y       (13) 

where,   is the angle of the incoming wave. Using the 
exact solution one can provide the boundary conditions 
for the numerical method. The domain is divided into 
equal intervals in both x  and . Figure 2 presents the 
numerical results for . The figure shows the 
error as a function of the number of orthogonal functions. 
There is little dependency to the mesh size ne. The error 
is the L2 norm of the difference between the numerical 
result and the exact solution divide by the number of 
nodes. 

y
2000k 

Figures 3-5 show the same error reduction for higher 
wave numbers. Figure 3 presents the reduction in the 
error for . The number of intervals is equal to 

. For higher wave numbers, the same reduction 
in error is observed. For higher values of k, the method 

15000k 
1600en 

 

 

Figure 2. Reduction in the error as a function of the num-
ber of orthogonal functions. Other parameters are 

, 2000k  4  , , and the three maximum 

number of orthogonal functions are . 
e 800n 

600, 800, 1600orthn 

 

 

Figure 3. Reduction in the error as a function of the num-
ber of orthogonal functions. Other parameters are 

, 15000k  4  , , and the three maximum 

number of orthogonal functions are  
.  

e 1600n 

3600,orthn  4200,4800

 

Figure 4． Reduction in the error as a function of the 
number of orthogonal functions. Other parameters are 

25000k  , 4  , e 1600n  , and the three maximum 

number of orthogonal functions are  
6400,orthn 7200,8400,10800   

 

 

Figure 5． Reduction in the error as a function of the 
number of orthogonal functions. Other parameters are 

100000k  , 4  , , and the three maximum 

number of orthogonal functions are  
e 1600n 

3620022200,orthn 30000,8400,   

 
simply requires the inclusion of more orthogonal func-
tions in the expansion given in Equation (2). Figure 5 
presents the result for  and a similar reduction in 
the error is obtained. 

510k 

The present method is particularly useful for the 
Helmholtz equation at higher frequency for which exist-
ing methods require a large amount of memory. The ac-
tual calculation for the present method is done analyti-
cally in one-dimension. 

4. Conclusion 

In this note, we presented a numerical method for the 
solution of 2-D Helmholtz equation. The method can be 
applied to 3-D domains. It is based on orthogonal func-
tions. Apart from the projection of the problem onto the 
space of orthogonal functions, the solution is obtained 
analytically. Numerical results for a number of cases 
with very high wave numbers were presented. 
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Appendix 

In 3-D one can assume a form given by 

      
1 1

, , sin sin ,ij
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here, after using the orthogonality conditions, the func-

tions  are given by )(yfij

       1 1

0 0
4 , , sin sin dij .f y u x y z i x j z x   z  (15) 

Also, for the 3-D Helmholtz equation, one needs to split 
the problem into three similar problems.
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