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ABSTRACT 

Using matrix method, the possible spin configurations have been determined for four sublattices in rectangular lattice 
taking into account only nearest-neighbor exchange interactions. We obtain collinear and non-collinear spin configura- 
tions in the ground and the first excited states for the three different propagation vectors. When k = 0, depending on the 
sign of exchange parameters, we find a ferromagnetic mode and three antiferromagnetic modes. When k = [1, 1] and 
[1.5, 1.5], we find non-collinear (canted) spin configurations. Moreover, we observe that spins of some sublattices in the 
excited state change their orientations. 
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1. Introduction 

Bertaut’s matrix method enables possible magnetic modes 
associated with a given propagation vector in magnetic 
systems [1-3]. The symmetry properties of crystal gain 
importance. Moreover, method is valid for magnetic cells 
different from the chemical cells. For Bravais lattice, it 
reduces to Villain’s method [4]. From the other part, the 
results of this method are also agreed with that of group 
theory. The greatest advantage of this method is to con- 
sider fundamental interaction being isotropic classical 
Heisenberg and is also applicable when the chemical and 
magnetic cells are not identical. Moreover, isotropic terms 
as well as anisotropic terms can be expressed by a Ham- 
iltonian of a second order and problem can be reduced  
to an eigenvalue problem. Solving this eigenvalue equa-
tion, one is able to find all possible magnetic config-  
urations. Townsend et al. dealt with triangular-spin struc- 
ture by the application of this method and predicted tri- 
angular-spin magnetic ordering for KFe3(OH)6(SO4)2 and 
KFe3(OH)6(CrO4)2 [5]. Macroscopic (group theoretical) 
and microscopic (matrix) methods were applied to the 
two-dimensional orthorhombic lattice with four spins by 
Darendelioğlu et al. and they determined that the four 
collinear modes are along the z-axis and the non-col- 
linear modes are in the xy-plane of the two-dimensional 
orthorhombic lattice [6]. Belorizky performed a system- 
atic research of the bilinear exchange Hamiltonian pro- 

viding a ground state spin configuration for two and three 
dimensional lattices [7]. Yu et al. have given the phase 
diagram of the different spin configurations of a mag- 
netic bilayer system consisting of two ferromagnetic lay- 
ers, based on a phenomenological model [8]. On the 
other hand, many researchers studied experimentally whe- 
ther colinear and non-collinear structures exist in DyNiC2 
and HoNiC2 compounds [9], in Mn5Ge3 compound [10], 
in La1.5Sr0.5CoO4 [11] and in ɛ-FexN [12]. 

In this paper, we will apply the Bertaut’s matrix 
method to the four-sublattice model in rectangular lattice 
for the given propagation vectors in the ground and the 
first excited states as taking only nearest-neighbor ex- 
change interaction. The outline of this paper is as follows. 
In Section 2, we follow the matrix method of Bertaut and 
give the fundamental equations. In Section 3, we have 
determined possible spin configurations depending on 
the propagation vectors and the sign of exchange pa- 
rameters and found collinear and non-collinear (canted) 
spin configurations. Finally, Section 4 contains conclu- 
sions. 

2. Matrix Method  

We derive spin configurations of the four sublattices on 
rectangular lattice using the Bertaut’s matrix method [2]. 
We will assume that there is a classical interaction of 
Heisenberg type between the nearest-neighbor spins. Ha- 
miltonian is given by *Corresponding author. 
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H J   S S ,             (1) 

where Jij is the exchange integral between spins at ri and 
rj. Si is the spin at point ri. 

Using the translational symmetry of the system, one 
obtains: 

     ,i i ij j
j

J S k k S k            (2) 

where λi is a constant of proportionality, having the di- 
mension of an energy. After a Fourier transformation, 
Equation (2) can be written as matrix equation: 

     0,J k S k 

n

            (3) 

where λ is the diagonal matrix formed by the elements 
λiδij ( ; n is the number of sublattices). Si(k) is a 
column vector being the Fourier transformations of the 
Si(ri): 
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where N is the number of unit cells in the lattice. The 
hermitian interaction matrix J(k) is Fourier transforma- 
tion of Jij and whose matrix elements are defined as fol- 
lows:  

   0exp 2 ,
i

ij ij i jJ J i     
r

k k r       (6) 

where ri0 is a fixed reference point and the summation is 
over all rj belonging to the same Bravais lattice j. 

The expression of Si(k) depended on phase is given by: 

     1
ˆ ˆ exp ,

2i ii i S k x y         (7) 

where  and x̂ ŷ  are orthogonal unit vectors, i  is 
the phase angle of sublattice i. The angle between two 
spins Si(ri) and Si(ri) in a one mode solution is given by 

    1 2, 2ij i j i j .       r r k r r      (8) 

The matrix J(k) in Equation (3) still depends on the 
atomic coordinates. With following transformation of 
eigenvectors  

   0exp ,i i ii  Q S k k r           (9) 

one may construct a hermitian matrix η(k) which does 
not depend on the atomic coordinates: 

   0.  k Q             (10) 

η(k) matrix elements contain Fourier transform of the 
exchange integrals between ions occupying the sublet- 
tices. 

In the case of only one propagation vector k, the ref- 
erence spins are simply given by 

    io i i  * S r Q k Q k            (11) 

        *
0 0exp expi i i i ii i 0    S r S k k r S k k r  (12) 

    0 0 0ˆ ˆcos sini i i i i      S r x k r y k r    (13) 

This equation is the main equation in order to find spin 
directions for the given k-vectors. 

3. Results and Discussions 

We consider the four magnetic ions (labeled as 1, 2, 3 
and 4) localized rectangular lattice displayed in Figure 1 
in which one shows also the corresponding exchange 
integrals. The ions occupy the positions: 1) x, y; 2) x, –y; 
3) –x, –y; 4) –x, y. Our exchange integrals J1, J2 and J3 
correspond to 12J , 13J  and 14J , respectively. For this 
specific case, we have taken the exchange parameters as 
follows: J1 = 0.05, J2 = 0.001 and J3 = 0.02 or J1 = –0.05, 
J2 = –0.001 and J3 = –0.02. 

Our interaction matrix has the form 

11 12 13 14 1 2 3

21 22 23 24 1 3 2

31 32 33 34 2 3 1

41 42 43 44 3 2 1

0
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  (14) 

We have to find the eigenvectors and eigenvalues of the 
matrix in Equation (14). The solution to this homogenous 
equations system depends on the satisfaction of the fol- 
lowing condition:  
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      (15) 

We have determined numerically eigenvalues i (i = 1, 2, 
3, 4) and corresponding eigenvectors. The stability con- 
ditions of the calculated modes follow from the condition 
that  must be a maximum (The quadratic form the coef- 
ficients of which are the second derivates of  must be 
definite positive). 

The obtained eigenvalues and eigenvectors are dis- 
played at Table 1 for the positive and negative values of 
exchange parameters and given k-vectors. The phase 
angles of four sublattices in the ground and the first ex- 
cited state for the positive and negative values of ex- 
change parameters are displayed at Table 2. 

Using the k-vectors and the phase angles, given at Ta- 
ble 2, in the expression for Si(ri, 0), we obtain the orien- 
tation of every spin vectors and possible spin configura- 
tions in the ground and first excited state. The obtained  
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Table 1. Computationally obtained eigenvelues and their 
eigenvectors for given k-vectors and the positive and nega- 
tive values of exchange parameters. 

 k-vectors Eigenvalues Eigenvectors 

1(k1) = 0.071    1 1 1 2 1 2 1 2 1 2  Q k

2(k1) = 0.029    2 1 1 2 1 2 1 2 1 2  Q k

3(k1) = 0.031    3 1 1 2 1 2 1 2 1 2  Q k

k1 =  
[0, 0]  

4(k1) = 0.069    4 1 1 2 1 2 1 2 1 2  Q k

1(k2) = 0.071    1 2 1 2 1 2 1 2 1 2  Q k

2(k2) = 0.029    2 2 1 2 1 2 1 2 1 2  Q k

3(k2) = 0.031    3 2 1 2 1 2 1 2 1 2  Q k

k2 =  
[1, 1] 

4(k2) = 0.069    4 2 1 2 1 2 1 2 1 2  Q k

1(k3) = 0.071     1 3 1 2 1 2 1 2 1 2  Q k

2(k3) = 0.029    2 3 1 2 1 2 1 2 1 2  Q k

3(k3) = 0.031    3 3 1 2 1 2 1 2 1 2  Q k

J > 0 

k3 =  
[1.5, 1.5] 

4(k3) = 0.069    4 3 1 2 1 2 1 2 1 2  Q k

1(k1) = 0.029     1 1 1 2 1 2 1 2 1 2  Q k

2(k1) = 0.071    2 1 1 2 1 2 1 2 1 2  Q k

3(k1) = 0.069    3 1 1 2 1 2 1 2 1 2  Q k

k1 =  
[0, 0] 

4(k1) = 0.031    4 1 1 2 1 2 1 2 1 2  Q k

1(k2) = 0.029     1 2 1 2 1 2 1 2 1 2  Q k

2(k2) = 0.071    2 2 1 2 1 2 1 2 1 2  Q k

3(k2) = 0.069    3 2 1 2 1 2 1 2 1 2  Q k

k2 =  
[1, 1]  

4(k2) = 0.031    4 2 1 2 1 2 1 2 1 2  Q k

1(k3) = 0.029     1 3 1 2 1 2 1 2 1 2  Q k

2(k3) = 0.071    2 3 1 2 1 2 1 2 1 2  Q k

3(k3) = 0.069    3 3 1 2 1 2 1 2 1 2  Q k

J < 0 

k3 =  
[1.5, 1.5] 

4(k3) = 0.031    4 3 1 2 1 2 1 2 1 2  Q k

 

 

Figure 1. The rectangular lattice with the four sublattices 
and the magnetic interactions between neighboring ions. 

 
results are displayed in Figures 2, 3 and 4. 

Figure 2 shows the spin configurations of the ground 
and the first excited state for the positive and negative 
values of exchange parameters when k1= [0, 0]. As it is 
seen by the figure, spin configurations have collinear 

Table 2. The corresponding phase angles in the ground and 
the first excited states the positive and negative values of 
exchange parameters. 

 
k-vectors Eigenvalues Phase angles 

k1 = [0, 0] 
3(k1) = 0.031 
4(k1) = 0.069 

 = , 0, 0,  
 = 0, , 0,  

k2 = [1, 1] 
3(k2) = 0.031 
4(k2) = 0.069 

 = , 0, 0,  
 = 0, , 0,  

J > 0

k3 = [1.5, 1.5]
3(k3) = 0.031 
4(k3) = 0.069 

 = , 0, 0,  
 = 0, , 0,  

k1 = [0, 0] 
1(k1) = 0.029 
2(k1) = 0.071 

 = 0, , 0,  
 = , , ,  

k2 = [1, 1] 
1(k2) = 0.029 
2(k2) = 0.071 

 = 0, , 0,  
 = , , ,  

J < 0

k3 = [1.5,1.5]
1(k3) = 0.029 
2(k3) = 0.071 

 = 0, , 0,   
 = , , ,  

 

 

 

(a)                         (b) 

Figure 2. Spin configurations for the propagation vector k1 
= [0, 0] (a) in the ground state (b) in the first excited state. 
 

 

 

(a)                         (b) 

Figure 3. Spin configurations for the propagation vector k2 
= [1, 1] (a) in the ground state (b) in the first excited state. 
 
structure. They have a ferromagnetic and three antiferro- 
magnetic structures. Belorizky et al. consider a simple  
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(a)                         (b) 

Figure 4. Spin configurations for the propagation vector k3 
= [1.5, 1.5] (a) in the ground state (b) in the first excited 
state. 
 
cubic lattice and find a ferromagnetic and three antiferro- 
magnetic spin configurations at T = 0 K [13]. That the 
propagation vector of the configuration is zero means 
that in this configuration magnetic and chemical cells are 
identical. It is observed that spins of the sublattices 1 and 
2 in the excited state have changed their orientations. 
Moreover, spins of the sublattices 1 and 2 in the case of J 
< 0 have changed their orientations. 

Figure 3 shows the spin configurations of the ground 
and the first excited state for the positive and negative 
values of exchange parameters when k2 = [0.5, 0.5]. We 
have non-collinear spin configurations (canted) spin con- 
figurations.  

As it is seen from figure, one observes that spins of the 
sublattices 1 and 2 in the excited state have changed their 
orientations. Moreover, spins of the sublattices 1 and 3 in 
the case of J < 0 have changed their orientations. 

Figure 4 shows the spin configurations of the ground 
and the first excited state for the positive and negative 
values of exchange parameters when k2 = [1.5, 1.5]. Spin 
behaviors are similar to Figure 3 but their angles are 
different. 

4. Conclusion 

The Bertaut’s Matrix method is applied to rectangular 
lattice with the four sublattices as taking only nearest- 
neighbor exchange interaction. For certain values of 
these exchange parameters, the energies are obtained as a 
function of k. For every k-vector the corresponding ei- 
genvectors are also obtained and the phase angles of 
these sublattices are calculated for the ground and the 
first excited states. Finally, using the phase angles, the 
orientations and configurations of spins are determined. 
When k = 0, depending on the sign of exchange parame- 
ters, we found a ferromagnetic mode and three antiferro- 
magnetic modes. When k = [1, 1] and [1.5, 1.5], we 
found non-collinear (canted) spin configurations. It is 
observed that spins of some sublattices in the excited 

state have changed their orientations. 
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