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Abstract 
 
Network attack graphs are originally used to evaluate what the worst security state is when a concerned net-
work is under attack. Combined with intrusion evidence such like IDS alerts, attack graphs can be further 
used to perform security state posterior inference (i.e. inference based on observation experience). In this 
area, Bayesian network is an ideal mathematic tool, however it can not be directly applied for the following 
three reasons: 1) in a network attack graph, there may exist directed cycles which are never permitted in a 
Bayesian network, 2) there may exist temporal partial ordering relations among intrusion evidence that can-
not be easily modeled in a Bayesian network, and 3) just one Bayesian network cannot be used to infer both 
the current and the future security state of a network. In this work, we improve an approximate Bayesian 
posterior inference algorithm–the likelihood-weighting algorithm to resolve the above obstacles. We give out 
all the pseudocodes of the algorithm and use several examples to demonstrate its benefit. Based on this, we 
further propose a network security assessment and enhancement method along with a small network scenario 
to exemplify its usage. 
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1. Introduction 
 
Network attack graphs [1-5] are widely used as a good 
tool to analyze network security state in comprehensive 
consideration of exploits, vulnerabilities, privileges, net- 
work connectivity, etc. Originally, they are built to tell 
what the worst scenarios are when a network is under 
attack. But later, it is found that security alerts can be 
mapped to them [6-8] and along with these observed 
intrusion evidence, attack graphs can also be used to as-
sess the security state of a concerned network dynami-
cally. 

In this area, probabilistic approaches have been pro-
posed to perform such analysis. In [9], a method which 
reasons about complementary intrusion evidence is pre-
sented. According to the method, security alerts gener-
ated by intrusion detection systems (IDSs) as well as 
reports generated by system monitoring tools can be in-
tegrated into Bayesian networks. And prior conditional 
probability values which denote the success rate of the 
corresponding attacks can be assigned to each of the evi- 
dence nodes. By doing this, uncertain or unknown intru-

sion evidence can be reasoned about based on verified 
evidence. Although quite useful in reasoning observed 
intrusion evidence, this method cannot tell people what 
attack will be executed next and with what probability. 

In [10], HCPN (Hidden Colored Petri-Net) is used to 
depict the relationship among different steps carried out 
by an intruder and model intrusion actions and intrusion 
evidence together. The initial state of HCPN attack graph 
is determined by an initial probability distribution. And 
empirical formulas are defined to reevaluate its state af-
ter receiving each alert from the sensors (most com-
monly are IDSs). This method runs quite well in predict-
ing what the next intrusion actions are. However, at re-
evaluating the probabilities of the graph nodes according 
to the alerts, the method only updates probabilities of the 
successor nodes of an assumed action node, which obvi-
ously contravenes our intuition that in most inference 
algorithms there must be backward belief propagation 
(i.e. probabilities of the predecessor nodes should also be 
updated). 

To overcome these flaws, we firstly thought about ex-
tending the Bayesian network into a general attack graph 
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definition to integrally model intrusion resources, actions 
and evidence. By exploiting Bayesian network’s embed-
ded posterior inference capability, it can not be plainer to 
perform attack graph-based posterior inference [11]. 
However, soon we found that things were not so easy. 
There are at least three main differences between an at-
tack graph and a Bayesian network which obstruct this 
way: 
 In a Bayesian network, no directed cycles are al-

lowed. However, in a network attack graph, this re- 
striction is not appropriate since people always 
want to depict potential intrusion paths succinctly. 

 In a Bayesian network, there can not be any partial 
ordering relations among evidence nodes. However, 
we can often observe temporal partial ordering re-
lations among intrusion evidence (e.g. when an ips- 
weep is observed before a portscan), which may in- 
dicate that some exploits happen before some oth-
ers. 

 At performing attack graph-based posterior infer-
ence, two questions are most often raised: 1) what 
is the current state of a network, and 2) what is the 
future state of it. Essentially this means one set of 
observed intrusion evidence should be used to infer 
two temporally different states. In Bayesian infer-
ence, this demands two prior conditional probabi- 
listic distribution, one for current state inference 
and one for future state inference. Although we 
think it feasible to define the later one (For exam-
ple we say an exploit will happen in probability 0.8 
if an attacker was given enough time), it is really a 
disaster to define the former one (how to assess the 
exploit probability when the attacker has got two 
hours). 

These obstacles almost made us give up Bayesian po- 
sterior inference. But fortunately we find a good way to 
overcome them—we manage to improve the likelihood- 
weighting algorithm (an approximate Bayesian inference 
algorithm) into a novel attack graph-based posterior in-
ference algorithm. And based on this, we find a method 
to quantitively assess the overall security level of a con- 
cerned network and identify the most cost-effective se-
curity measures to enhance it. 

The rest of this paper is organized as follows. Section 
2 depicts the aforementioned posterior inference prob-
lems in details. Section 3 introduces the underlying for-
malized attack graph definition. Section 4 describes our 
improved likelihood-weighting algorithm and Section 5 
gives out several examples for benefit testification. Sec-
tion 6 presents our security assessment and enhancement 
method and Section 7 gives out an example to exemplify 
it. The last section concludes the paper. 

2. The Primal Motives 
 
2.1. Directed Cycles 
 
Various models and methods have been proposed to re- 
present multi-step network attacks and generate network 
attack graphs automatically. These models and methods 
can be roughly divided into two categories: security state 
enumeration and vulnerability/exploit dependency. Com- 
paratively, the later one is more popular since it exhaus-
tively and succinctly depicts the interdependency of se-
curity elements such as privilege, trust, vulnerability, ex- 
ploit, network connectivity, etc. Representatives of this 
category include the approaches proposed in [2-5]. In this 
category, although some approaches promise that they 
only generate attack graphs without directed cycles, we 
cannot assume that all of them are generating DAG (Di-
rected Acyclic Graph). 

Here is an example to demonstrate that directed cycles 
sometime are useful since we want to depict the intrusion 
paths succinctly. Assume there are three hosts on a small 
network which is illustrated in Figure 1. Host Master has 
a certain vulnerability that can be exploited by the other 
two hosts to gain its USER privilege. On the other hand, 
the USER accounts on Master are mapped to a ROOT 
account on the other two hosts. 

We can imagine that a succinct network attack graph 
for this network is like the one shown in Figure 2. 

In Figure 2 we adopt a graph notation widely used in 
Petri-Net. Circle s1, s2 and s3 respectively denote that 
the attacker has got ROOT privilege on Slave1, ROOT 
privilege on Slave2 and USER privilege on Master. Line 
a1 and a2 denote the attacker exploits the vulnerability of 
Master respectively from Slave1 and Slave2. Obviously, 
in this attack graph, there exist directed cycles. 
 
2.2. Evidence Partial Ordering Relations 
 
In a Bayesian network, there cannot be any partial or-
dering relations among observed evidence. However, at 
performing security posterior inference, temporal partial 
ordering relations among evidence nodes often provide 
us important cues. Figure 3 illustrates an example which 
demonstrates the benefit of analyzing temporal partial 
ordering relations among intrusion evidence. 

In Figure 3, we assume that the attacker initially oc-
cupies resource s1 and her goal is to occupy s6. The at-
tacker can use exploit a1~a6 to perform intrusion. How-
ever, exploit a1 and a4 will trigger alert o1, exploit a2 and 
a3 will trigger alert o2 and a5 and a6 will trigger alert o3. 
Finally, during the intrusion, an evidence sequence o2→ 
o1→o3 is observed. 

Analysis: To achieve her goal, the attacker can choose  
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Figure 1. A small network environment. 
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Figure 2. Attack graph for the network. 
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Figure 3. A simple network attack graph. 
 
two intrusion paths: 

α. s1→a1→s2→a3→s4→a5→s6 

β. s1→a2→s3→a4→s5→a6→s6 

If we neglect all temporal partial ordering relations, then 
the three evidence nodes are set to True. And since the 
attack graph is symmetrical (notice there is no ordering 
relations between evidence nodes), using Bayesian pos-
terior inference we can find that both intrusion paths can 
be chosen by the attacker. However, if we do consider 
temporal partial ordering relations, we can infer that only 
intrusion path β is chosen by the attacker, since execut-
ing intrusion path α will violate the temporal partial or-
dering relation o2→o1. 
 
2.3. Posterior Inference for Multi-State 
 
As we mentioned before, two questions are most often 
raised at performing attack graph-based posterior infer-
ence: 1) what is the current state of a network, and 2) 
what is the future state of it. In Bayesian inference, this 
means two different prior conditional probabilistic dis-
tribution should be assigned—one for current state in-
ference and one for future state inference. If we say the 
assignment for the later one is tough but still practical, 
then it is almost infeasible to define the former one. 

People may argue that Hidden Markov Model [12] or 
Generalized Hidden Semi-Markov Models [13] can be 

used to resolve this problem. But in HMM or GHSMMs, 
a key concept is the time instants associated with state 
changes. This concept is quite natural in technique areas 
such as speech signal processing. However in security 
analysis we cannot just fix a time slot for an attacker to 
perform actions. And even we do constrainedly figure 
out this slot, we still face the problem of how to define 
the probability of an action when the attacker is given 
one time slot. 

Under this understanding, we decide to stick to Baye-
sian inference and seek if we can use one prior condi-
tional probabilistic distribution with one set of observed 
intrusion evidence to infer two temporally different secu-
rity states. Eventually we successfully resolve this chal-
lenge by inventing a sample reprocessing method called 
transientization which will be introduced in Section 4. 
 
3. The Underlying Model 
 
In this section, we propose a formalized network attack 
graph definition as the basis for attack graph-based secu-
rity posterior inference. 

In the early days of Internet, network attacks are often 
performed to demonstrate the personal skills of the at-
tacker. They were limited to a small number of known 
methods such as cracking the password and exploiting 
the operating system vulnerabilities. But lately attacks 
have evolved into complex procedures which may com-
prise several interrelated intrusion actions. Execution of 
these actions incrementally changes the security state of 
the network, making the attacker take over more and 
more resources (and most commonly during the intrusion 
procedure the attacker will not give up resources she has 
already got [3]) and eventually achieve her goal. Fortu-
nately, security devices such as IDSs will send alerts if 
there is an attack. Then administrators can use them to 
assess the real state of the network and take proper 
measures to compensate. 

A network attack graph depicts the above three com-
ponents (network resource, intrusion action and intrusion 
evidence) and their causal relationship. In most cases, it 
can exhaustively and succinctly comprises all of the po-
tential intrusion paths. Based on the above analysis, an 
attack graph can formally be defined as: 

Definition 1. An attack graph is a 10-tuple directed 
graph  0, , , , , , , , ,AG S S G A O E     , where:  
  1, ,i sS s i N    is a finite set of resource 

state nodes. The value of each node variable is  
can be either True or False, denoting if a resource 
has been taken over by the attacker; 

 0S S  is a subset of S representing resources the 
attacker may initially occupy. Graphically it is the 
root nodes of AG; 
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 G S  is a subset of S representing attack goals; 
  1, ,i aA a i N    is a finite set of intrusion ac-

tion nodes. The value of each node variable ia  
can be either True or False, denoting whether an 
intrusion action has been conducted by the at-
tacker; 

  1, ,i oO o i N    is a finite set of intrusion 
evidence nodes. The value of each node variable 

io  can be either True or False, denoting whether 
the evidence has been observed. Considering that 
in most occasions intrusion evidence will be pre-
processed (e.g. fused) by the low-layer sensors so 
that their observation numbers are often distorted, 
here we only consider whether a kind of evidence 
has been observed, discarding its concrete observa-
tion number; 

  1 2 3E E E E    is a finite set of edges which 
link nodes together. 1E S A   is a set of edges 
which denote actions can only be conducted given 
that all the prerequisite resources are taken over by 
the attacker; 2E A S   is a set of edges which 
denote actions may consequently let the attacker 
take over some other resources and 3E A O   is 
a set of edges which denote actions may trigger cer-
tain intrusion evidence. Generally we use  nPre  
and  nCon  to respectively denote the prerequi-
site nodes and consequent nodes of node n ; 

      : , 0,1i ia a  Pre  is the prior condi-
tional probability distribution that an action will be 
conducted if its prerequisite is satisfied. In this pa-
per, we assume that all elements of  iaPre  are 
in a conjunctive normal form. In other words, an 
action can be conducted only if all its prerequisite 
resources are occupied by the attacker; 

      : , 0,1i ia a  Con  is the probability 
distribution that an action will succeed if it is con-
ducted. Since an action changes its consequent re-
source state only when it succeeds,   is also the 
probability that an action set its consequent node 
variables to True. Here we assume that for any re-
source node is  if there are more than one suc-
cessful actions in  isPre , then each of them can 
set is  to True independently; 

     : , 0,1i ja o    is the probability distri-
bution that a type of intrusion evidence will be ob-
served if one of its prerequisite actions is con-
ducted. Here we also assume that for any evidence 
node jo  if there are more than one successful ac-
tions in  joPre , each of them can set jo  to 
True independently; 

   : 0,1S A O      is the node belief 
distribution of AG. Here  is  denotes the prob-
ability that the attacker has taken over resource is ; 

 ia  denotes the probability that action ia  has 
been conducted by the attacker and  io  de-
notes the probability that evidence io  has been 
observed. Specially, 0  is the initial node belief 
distribution of AG, denoting what resources are 
occupied by the attacker at the very beginning. So, 
we can expect: 

 
 

0 0

0 0

0,

0,

i i

i i

n n S

n n S





 

 
. 

Graphically, a network attack graph follows Definition 
1 is like the one illustrated in Figure 4. 

In Figure 4, the attacker initially occupies resource s1, 
s2 and s3 (with probabilities defined in 0 ). Then intru-
sion actions a1, a2 and a3 will be conducted (with prob-
abilities defined in  ), and further make the attacker 
take over resource s4~s7 (with probabilities defined in 
 ). As actions being conducted, intrusion evidence 
o1~o4 will be triggered and observed (with probabilities 
defined in  ). 

As mentioned before, in this paper, we are only inter-
ested in whether a type of evidence has been observed, 
discarding its concrete observation number. However, 
we can still utilize the temporal partial ordering relations 
among attack evidence to assist posterior inference. 

Definition 2. There are two categories of evidence 
temporal partial ordering relations. We say: 
 There is a type I temporal partial ordering relation 

om↗on if om is observed before on is observed. In 
other words, the first observation timepoint of om is 
earlier than the first observation timepoint of on. 

 There is a type II temporal partial ordering relation 
om↘on if om is never observed after on is firstly 
observed. In other words, all the observation time-
points of om are earlier than any of the ones of on. 

With the above definition, the problem of network at-
tack graph-based posterior inference can be defined as: 

Given an attack graph AG, when an evidence sequence 

1 2i i iko o o      which conforms to a partial  
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Figure 4. A typical network attack graph. 
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ordering relation set Ω = {om↗on} {om↘on} is ob-
served, how to compute the corresponding graph node 
belief distribution sequence 0 1 k     ? 
 
4. The Posterior Inference Algorithm 
 
In this section, we propose an algorithm for resolving the 
above posterior inference problem. Our algorithm is mai- 
nly based on the approximate Bayesian inference algo-
rithm—the likelihood-weighting algorithm. 

A Bayesian network (or a belief network, a causal net- 
work) is a probabilistic graphical model that represents a 
set of variables and their probabilistic independencies. 
Essentially, a network attack graph following Definition 
1 is a mimetic Bayesian network. However, since a Baye-
sian network cannot contain any directed cycle or partial 
ordering relation of evidence nodes, traditional Bayesian 
inference should not be used to perform this attack 
graph-based posterior inference. 

To support these additional features, we manage to im- 
prove one of the approximate Bayesian network inference 
algorithms–the likelihood weighting algorithm [14,15] to 
a novel one. Likelihood weighting enhances logic sam-
pling algorithm in that it never discards samples. It is the 
most commonly used simulation method for Bayesian 
network inference. Pseudocode of our improved algo-
rithm is as follow: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The 2nd line of the pseudocode is an outside loop con-
trol statement which drives the algorithm to generate n 
effective samples in one run. In the loop, effective sam-
ples are generated and added into a sample set Ξ which 
will eventually be returned. 

Pseudocode 3~35 is to generate an effective sample, 
which could be regarded as one potential attack scenario. 
This procedure can be further divided into five stages: 

1) Initialization (3~6). In this stage, firstly two vari-
ables wi and C are initialized. Here wi will be used to 
hold the weight of the sample and C will be used to hold 
the node pairs that temporally cannot be updated for their 
causation relationship. Then each node X in the attack 
graph is set to False and two assistant set variable FX and 
BX are initialized to empty. FX will be used to hold the 
nodes whose value are set to True by X. BX will be used 
to hold the nodes who set X to True. From another point 
of view, FX and BX respectively hold the forward and 
backward causation pointers of X. 

2) Nodes sampling (7~23). In this stage, all the nodes 
in AG (except those nodes in OD) will be sampled. Firstly, 
in line 7~10, root nodes are sampled according to the 
initial node belief distribution Π0. Then, in line 11~23, 
AG is circularly updated until no more changes occur. In 
each cycle, every True value node X is checked out and 
a subfunction UpdateAttackGraph (for space limitation, 
pseudocodes of all the subfunctions are given out in An-

ImprovedLikelihoodWeighting (AG, n, OD, OF, Ω, m) 

Input:  AG — a network attack graph; 

 n — effective sample number to generate; 

 OD — a set of observed evidence nodes; 

 OF — a set of not observed evidence nodes; 

 Ω — a temporal partial ordering relation set on 

OD∪OF; 

 m —inference mode, 0 for future state, 1 for current 

state. 

Output: Ξ — a set of effective samples. 

Algorithm: 01:  Ξ←Ø; i←0; 

 02:  while (i<n) 

 03:    wi←1; C←Ø; 

 04:    for (each node variable X in AG) 

 05:      X←False; FX←Ø; BX←Ø; 

 06:    end for (04) 

 07:    for (each node variable X∈S0) 

 08:      X←the sampling result according to Π0; 

09:      Mark X as sampled; 

10:    end for (07)  

11:    converged←False; 

12:    while (!converged) 

13:      converged←True; 

14:      for (each node variable X=True in AG) 

15:        for (each node variable Y∈Con(X)) 

16:          if (edge X→Y is not sampled) then 

17:            if (UpdateAttackGraph(AG,X,Y)) then 

18:              converged←False; 

19:            end if (17) 

20:          end if (16) 

21:        end for (15) 

22:      end for (14) 

23:    end while (12) 

24:    for (each node variable X∈OD) 

25:      X←True; 

26:      wX←SelectEvidenceCausation(AG,X); 

27:      wi←wi*wX; 

28:    end for (24) 

29:    if (m=1) then 

30:      b←Transientize(AG,OD,OF); 

31:    end if (29) 

32:    if (b∧PartialRelationSatisfied(AG,OD∪OF,Ω)) 

then 

33:      ξi.AG←AG; ξi.w←wi; 

34:      Ξ←Ξ∪{ξi}; i←i+1; 

35:    end if (32); 

36:  end while (02) 

37:  return Ξ; 
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nex A of this paper) is called on each pair of X and its 
descendant node Y iff the edge X→Y is not sampled. 

3) Observed evidence causation selection (24~28). In 
this stage, for each observed evidence node X in OD, a 
subfunction SelectEvidenceCausation is called on X to 
randomly select a causation set from Pre(X) to denote 
what set X to True. At the same time, the occurrence 
probability of this chosen causation set will affect the 
weight of the sample. 

4) Transientization (29~31). If what we need to infer is 
the current state of the network, then the sample should 
be reshaped to represent a budding (not fully developed) 
attack scenario. The processing transientization is based 
on the idea that although some evidence nodes in OF may 
equal to True in the sample, they actually represent evi-
dence that will be observed only in the future (currently 
only the ones in OD are observed). So, correspondingly, 
the actions that trigger the evidence also have not oc-
curred yet. This means, in order to reshape the sample to 
represent current state, all these nodes should be set to 
False. In our algorithm, this processing will be perfor- 
med through a subfunction Transientize. 

5) Sample effectiveness verification (32~35). In this 
stage, a subfunction PartialRelationSatisfied is called to 
check whether the temporal partial ordering relations 
among the evidence nodes conform to the causation rela-
tions among the action nodes. 

By running the algorithm, we can get a set of samples 
which not only have node values generated under the gi- 
ven probability distribution, but also definitely conform 
to the temporal partial ordering relations among evidence. 
Then, to use this sample set, a node belief computation 
function is defined as follow: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

By running this function, a set M will be returned 
which contains all the node belief values for later queries. 
By inputting different intrusion evidence sequences 
which correspond to different observation timepoints, we 
can get an attack graph node belief distribution sequence 

0 1 k      to represent security state evolvement. 
 
5. Node Belief Computation Examples 
 
In order to exemplify the improved likelihood-weighting 
algorithm, we design and implement a Java program to 
perform following experiments: 
 
5.1. Comparison with Bayesian Inference 
 
Firstly, we use the variable elimination algorithm (a tra-
ditional Bayesian inference algorithm) to compute the 
posterior node belief values of the attack graph illustra- 
ted in Figure 3. The result is listed in Table 1. 

In Table 1, different number i denotes different infer-
ence layer. In this example, i = 0 denotes the inference is 
performed before any evidence is observed, i = 1 denotes 
the inference is performed after o2 is observed, i = 2 de-
notes the inference is performed after sequence o2→o1 is 
observed and i = 3 denotes the inference is performed 
after o2→o1→o3 is observed. 

Then we use our improved likelihood weighting algo-
rithm to perform the same inference. The result is listed 
in Table 2 (10000 effective samples without transienti-
zation) and Table 3 (10000 samples with transientiza-
tion). 

Since traditional Bayesian network inference methods 
does not support intrusion evidence ordering, we are not 
surprised to see that in Table 1, when i > 1, the node 
belief values of intrusion path α and β are mirror sym-
metrical. This makes it difficult for us to judge which 
path has been chosen by the attacker. However, by using 
improved likelihood weighting algorithm, we can ob-
serve no matter in Table 2 or Table 3, the node belief 
values of path β are all higher than path α, indicating it is 
more likely to have been chosen by the attacker. 

NodeBeliefComputing(AG,n,OD,OF,Ω,m) 

Input:  AG — a network attack graph; 

 n — effective sample number to generate; 

 OD — a set of observed evidence nodes; 

 OF — a set of not yet observed evidence nodes; 

 Ω — a temporal partial ordering relation set on 

OD∪OF; 

 m —inference mode, 0 for future state, 1 for current 

state. 

Output: M — a node belief metric set 

Algorithm: 01:  M←Ø; W←0; 

02:  Ξ←ImprovedLikelihoodWeighting(AG,n, 

OD,OF,Ω,m); 

03:  for (each node variable X in AG) 

04:    NX←0; 

05:  end for (03) 

06:  for (each sample ξ in Ξ) 

07:    for (each node variable X in ξ.AG) 

08:      if (X=1) then 

09:        NX←NX+ξ.w; 

10:      end if (08) 

11:    end for (07) 

12:    W←W+ξ.w; 

13:  end for (06) 

14:  for (each node variable X in AG) 

15:    M←M∪{PX=NX/W}; 

16:  end for (14) 

17:  return M; 
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Table 1. Node belief values (use traditional inference). 

i πi(s1) πi(s2) πi(s3) πi(s4) πi(s5) πi(s6) 

0 1.000 0.250 0.250 0.063 0.063 0.031

1 1.000 0.333 0.444 0.111 0.111 0.055

2 1.000 0.500 0.500 0.167 0.167 0.083

3 1.000 0.619 0.619 0.524 0.524 0.504

i πi(a1) πi(a2) πi(a3) πi(a4) πi(a5) πi(a6)

0 0.500 0.500 0.125 0.125 0.031 0.031

1 0.556 0.889 0.222 0.222 0.056 0.056

2 0.833 0.833 0.333 0.333 0.083 0.083

3 0.746 0.746 0.556 0.556 0.508 0.508

 
Table 2. Node belief values (without transientization). 

i πi(s1) πi(s2) πi(s3) πi(s4) πi(s5) πi(s6) 

0 1.000 0.247 0.259 0.060 0.063 0.028

1 1.000 0.250 0.499 0.060 0.121 0.042

2 1.000 0.392 0.606 0.092 0.202 0.071

3 1.000 0.494 0.831 0.366 0.701 0.504

i πi(a1) πi(a2) πi(a3) πi(a4) πi(a5) πi(a6)

0 0.498 0.503 0.122 0.132 0.031 0.029

1 0.504 1.000 0.127 0.246 0.028 0.058

2 0.792 1.000 0.190 0.405 0.044 0.101

3 0.663 1.000 0.409 0.744 0.342 0.680

 
Table 3. Node belief values (with transientization). 

i πi(s1) πi(s2) πi(s3) πi(s4) πi(s5) πi(s6) 

0 1.000 0.000 0.000 0.000 0.000 0.000

1 1.000 0.000 0.504 0.000 0.000 0.000

2 1.000 0.246 0.630 0.000 0.220 0.000

3 1.000 0.147 1.000 0.000 1.000 0.505

i πi(a1) πi(a2) πi(a3) πi(a4) πi(a5) πi(a6)

0 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 1.000 0.000 0.000 0.000 0.000

2 0.747 1.000 0.000 0.442 0.000 0.000

3 0.430 1.000 0.000 1.000 0.000 1.000

Then, to testify that our improved likelihood weight-
ing algorithm can process attack graphs that contain di-
rected cycles, we run the program to compute node belief 
values for Figure 2. Assuming in initial state the attacker 
occupies s1 and that every other used probability is 0.5, 
the inference result is listed in Table 4 (10000 effective 
samples, and since the graph has no evidence nodes, the 
result is same no matter the samples are transientized or 
not). 
 
5.2. Comparison with HCPN-Based Inference 
 
As aforementioned, in HCPN-based inference, empirical 
formulas are defined to reevaluate the security state of 
the network after intrusion evidence is observed. Compa- 
ratively, our algorithm is not dependent on any empirical 
formula, which makes the inference results more rational. 
To prove that, we modify the Figure 3 example to the 
one illustrated in Figure 5. 

Comparing with Figure 3, in Figure 5 three additional 
nodes a7, s7, o4 with the corresponding edges are added. 
Meanwhile, some of the action-evidence relations are 
modified and all the probabilities are explicitly labeled 
on the edges. 

Similar to Figure 3, under the initial state the attacker 
whose final attack goal is also g1 is assumed to occupy 
resource s1 with probability 1.0. But during the attack, an 
evidence sequence o1→o2→o3→o4 is observed. 

Using the HCPN-based inference method, we can get 
node belief values listed in Table 5 (since HCPN only 
defines the belief value of resource nodes, nodes of other 
types are not listed). 

Then we run our improved likelihood weighting in-
ference program to perform the same computation. The 
result is listed in Table 6 (10000 effective samples 
without transientization) and Table 7 (10000 effective 
samples with transientization). 
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Figure 5. A network attack graph. 
 

Table 4. Our inference result. 

i πi(s1) πi(s2) πi(s3) πi(a1) πi(a2) 

0 1.000 0.129 0.248 0.502 0.065 
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Table 5. HCPN-based inference result. 

i 
assumed 
action 

πi(s1) πi(s2) πi(s3) πi(s4) πi(s5) πi(s6) πi(s7)

0 - 1.0 0.0 0.0 0.0 0.0 0.0 0.0

a1 1.0 0.615 0.0 0.0 0.0 0.0 0.0
1 

a2 1.0 0.0 0.385 0.0 0.0 0.0 0.0

a3 1.0 0.615 0.0 0.275 0.0 0.0 0.0
2 

a4 1.0 0.0 0.385 0.0 0.193 0.0 0.0

a5 1.0 0.615 0.0 0.275 0.0 0.109 0.0
3 

a6 1.0 0.0 0.385 0.0 0.193 0.057 0.0

4 a7 1.0 0.0 0.385 0.0 0.193 0.057 0.057

 
Table 6. Our inference result (without transientization). 

i πi(s1) πi(s2) πi(s3) πi(s4) πi(s5) πi(s6) πi(s7)

0 1.000 0.800 0.507 0.641 0.250 0.581 0.124

1 1.000 0.888 0.558 0.714 0.278 0.641 0.137

2 1.000 0.931 0.569 0.877 0.349 0.787 0.174

3 1.000 0.955 0.563 0.918 0.339 1.000 0.171

4 1.000 0.865 1.000 0.757 1.000 1.000 1.000

i πi(a1) πi(a2) πi(a3) πi(a4) πi(a5) πi(a6) πi(a7)

0 0.800 0.507 0.641 0.250 0.518 0.125 0.124

1 0.888 0.558 0.714 0.278 0.574 0.141 0.137

2 0.931 0.569 0.877 0.349 0.703 0.174 0.174

3 0.955 0.563 0.918 0.339 0.890 0.227 0.171

4 0.865 1.000 0.757 1.000 0.678 0.660 1.000

 
We can observe that in Table 5, from layer 1 to 3, 

different actions denoting different attack paths are as-
sumed to be conducted by the attacker. In these layers, 
inferred node belief values of intrusion path α are all 
higher than the values of path β. That is mainly due to 
the different probability values assigned to the two paths. 
In layer 4, the predominant attack path α is excluded 
from further consideration as o4 can only be triggered by 
a7 which is on attack path β. That judgment is quite rea-
sonable. However, we find that most node belief values 
on attack path β are still not increased. It is due to the 
empirical formulas defined in HCPN-based inference 
method only update the belief values of the successor 
nodes of a7 (obviously inconsistent with our intuition and 
what we usually see in most inference models that there 
should be a backward belief propagation procedure). 

Table 7. Our inference result (with transientization). 

i πi(s1) πi(s2) πi(s3) πi(s4) πi(s5) πi(s6) πi(s7)

0 1.000 0.000 0.000 0.000 0.000 0.000 0.000

1 1.000 0.896 0.551 0.000 0.000 0.000 0.000

2 1.000 0.930 0.557 0.878 0.339 0.000 0.000

3 1.000 0.957 0.555 0.921 0.327 1.000 0.000

4 1.000 0.863 1.000 0.758 1.000 1.000 1.000

i πi(a1) πi(a2) πi(a3) πi(a4) πi(a5) πi(a6) πi(a7)

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.896 0.551 0.000 0.000 0.000 0.000 0.000

2 0.930 0.557 0.878 0.339 0.000 0.000 0.000

3 0.957 0.555 0.921 0.327 0.894 0.218 0.000

4 0.863 1.000 0.758 1.000 0.674 0.668 1.000

 
In comparison, in Table 6 and Table 7, no action is 

needed to be assumed to perform the inference. From 
layer 1 to 3, inferred node belief values of path α are all 
higher than the values of path β. And in layer 4, path β is 
confirmed by the observation of o4, with all the belief 
values of that path set to 1.0 (this is the backward belief 
propagation we are expecting). 
 
5.3. Algorithm Performance Evaluation 
 
We adjust the specified number of effective samples (i.e. 
m), then record the CPU time that is used to generate the 
sample set. Figure 6 illustrates three performance curves 
which respectively correspond to the above three exam-
ples. The hardware and software environment of the pro- 
gram is: Intel Core2 Duo CPU 2.00GHz, 2GB DDR2 
Memory, Windows XP Professional (with Service Pack 
2), Sun JDK 1.6.0_10-rc. 

Figure 6 shows that for a certain attack graph, the 
CPU time to generate a sample set is basically propor-
tional to the number of the samples. Through a detailed 
analysis it can be found that the sampling time consump-
tion is mainly determined by two facts: 1) the node num- 
ber N of the attack graph and 2) the evidence temporal 
partial ordering relation set Ω. According to Definition 1, 
in any attack graph the prerequisite node number of a 
single node is always below N, so we may define a con-
stant Tmax and use Tmax*N to denote the upper bound of 
the time used to process a node. And the time to generate 
a full sample will be less than N*(Tmax*N). On the other 
hand, checking against the partial ordering relation set Ω 
may force us to discard some generated samples. To con- 
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Figure 6. CPU time curves of sampling. 
 
trol this fact, we may specify a maximal try number M. 
Once M samples have been generated (no matter how 
many effective samples are there), the program will 
cease sampling. In conclusion, for any attack graph, the 
sampling procedure can always finish in Tmax*M*N2. In 
other words, the algorithm has quadratic computational 
complexity. 
 
6. Security Assessment & Enhancement 
 
In this section, based on the above node belief computa-
tion algorithm, we propose a model for assessing net-
work security level and performing security enhance-
ment. 
 
6.1. Security Assessment 
 
Generally, the overall security level of a concerned net-
work is mainly determined by three factors: 1) threat of 
the network, 2) vulnerability of the network and 3) in-
fluence of the potential attacks. In the previously pro-
posed model, the former two factors have been dealt with 
(by IDS alerts indicating threats and network attack 
graph itself indicating vulnerabilities). However, we still 
have a problem with how to model the influence of po-
tential attacks. In this section, we introduce a concept of 
asset value breakage rate to quantify it. 

Asset value breakage rate is the ratio of the lost asset 
value to the overall asset value, illustrated in Figure 7. 
Since we often use asset CIA (confidentiality, integrity 
and availability) value to achieve more particular quanti-
fication, we introduce asset CIA breakage nodes into  

 

Figure 7. Components of asset value. 
 
network attack graph and extend Definition 1 into Defi-
nition 3. 

Definition 3. An extended attack graph is a 12-tuple 
directed graph  0, , , , , , , , , , ,AG S S A G O E        
where 0, , , , , , , ,S S A G O      are the same elements 
as defined in Definition 1 and: 
  C I A      is a set of asset breakage 

nodes where C  is a set of asset confidentiality 
breakage nodes, I  is a set of asset integrity 
breakage nodes and A  is a set of asset availabil-
ity breakage nodes. Values of each node variable 

Xi  (X = C, I, A; i = 1,  , N. where N is the total 
asset number) all lie in [0, 1], denoting the breakage 
percentage of every asset in particular aspect. Apart 
from that, we define a function  : 0,+     to 
map each asset to its overall value in confidential-
ity, integrity and availability. So we can use 

 i i    to denote the absolute loss value of an 
asset in CIA. 

  1 2 3 4 5E E E E E E      is a finite set of 
edges which link graph nodes together. Here E1, E2 
and E3 share the same definition as in Definition 1, 
while 4E S   denotes that if the attacker 
gains certain resources, she will do damage to cer-
tain assets, and 5E A   denotes that if the at-
tacker executes certain actions, she will do damage 
to certain assets. 

         1 2: , 0,1 , : , 0,1i j i js a        is 
the asset breakage conductivity rate distribution 
where 1  denotes when the attacker gains a re-
source, how much damage will she do to an asset 
and 2  denotes when the attacker executes an ac-
tion, how much damage will she do to an asset. 
Just like the other prior conditional probability dis-
tributions, values of   also lies in [0, 1] where a 
larger value denotes a greater potential damage. 

Based on Definition 3, we can use a function     
to quantify the network security level: 
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In the above equation,     is the function to com-

pute the normalized asset residual value. The right ex-
pression uses asset residual value as the numerator and 
asset overall value as the denominator. 

Just like other network attack graph node variables, all 
the belief values of asset breakage nodes also can be 
computed by the inference algorithm in Section 4. So, by 
inputting different evidence sequences corresponding to 
different observation timepoints, eventually we can get a 
sequence 0 1 k    indicating the security evolvement. 
 
6.2. Security Enhancement 
 
Broadly speaking, as long as a measure can help en-
hacing network security, it is referred to as a network 
security enhancement measure. In most cases, the im-
plementation of a security enhancement measure may 
affect a network attack graph in two ways: 

1) it changes the structure of the attack graph, or 
2) it changes the conditional probability distributions 

of the attack graph including 0, , , ,     . 
However, since commonly the implementation of a 

security enhancement measure will cut off certain intru-
sion paths, the resulting (enhanced) attack graph is often 
the sub-graph of the original attack graph. Based on this, 
we can always convert the above situation 1 into situa-
tion 2 by adjusting certain conditional probability. 

For example, in the previous example illustrated in 
Figure 2, if the vulnerability on Master is patched, we 
need not generate a new attack graph, but set the con-
ducting probability of a1 and a2 to 0.0. 

On this basis, we introduce a security enhancement 
measure tuple  , ,M   : 
  1, , KM m m   is a candidate measure set. 
 : 2 2M   is a function which maps a combina-

tion of measures to a rectified attack graph prob-
ability distribution  0, , , ,       . 

 : 2M R   is a function which maps a combina-
tion of measures to its implementation cost. 

With the above security measure tuple, we can per-
form the following analysis: 

1) Static Security Enhancement. This analysis is to 
find the best combination of security measures to be im-
plemented before any potential intrusion happens. A ty- 
pical usage of this analysis is to enhance a network sys-
tem before it is placed online. To achieve this, all candi-
date measure combinations need to be iterated. For each 
measure combination 2M

CM  , we set the probability 
distribution to  CM   and recompute the network 
normalized asset residual value 0  . Then the net profit 
of CM  is: 

     0 0C Cu M Overall Asset Value M      , 

where 0  is the normalized asset residual value when 
no security measure is implemented ( CM   ). Finally, 
by sorting these measure combinations according to their 
net profits, we can easily choose the greatest one as the 
optimal enhancement solution. 

2) Dynamic Security Enhancement. This analysis is 
to find the best measure combination when intrusion is 
happening (or has happened). To achieve this, we firstly 
need to use the previous inference algorithm to generate 
a set ΞT of transientized attack samples. Then we iterate 
all of the candidate measure combinations. For each 
combination 2M

CM  , we rectify the graph probability 
distribution to  CM  . After doing this, we re-
sample (a process same to line 11~23 of the Improved 
LikelihoodWeighting algorithm) ΞT according to the 
new distribution and get a new set ΞS which will be actu-
ally used to compute the network normalized asset re-
sidual value S  . Then the net profit of CM  is: 

     C S S Cu M Overall Asset Value M      , 

where S  is a normalized asset residual value when no 
measure is implemented ( CM   ). Finally, by sorting 
these measure combinations according to their net profits, 
we can easily choose the greatest one as the optimal en-
hancement solution. 
 
7. Assessment & Enhancement Examples 
 
To exemplify the above security assessment and enhan- 
cement method, in one experiment we generated an at-
tack graph for a two tier network system. Based on it, we 
performed corresponding security assessment and used 
our enhancement method to find out optimal security en- 
hancement measure combinations for static and dynamic 
security enhancement respectively. 
 
7.1. Basic Posterior Inference 
 
Figure 8 illustrates the topology of the two tier network. 
In this network, four intranet servers were connected to a 
switch which was further connected to the Internet by a 
router. A firewall was placed between the two devices to 
perform package filtering, besides an IDS was connected 
to a mirror port of the switch to monitor the outflow and 
inflow of the servers. 

We assumed a scenario that an attacker on the Internet 
intends to use her personal computer to attack this net-
work. The final goal of the attacker was to get the ROOT 
privilege on server3 and steal its business data. 

For further analysis, we firstly need to generate a net-
work attack graph to find out all the potential intrusion 
paths. So we scanned the online devices and servers and 
found out six vulnerabilities (listed in Table 8). Addi-  
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Figure 8. A two tier network system. 
 

Table 8. Host vulnerabilities. 

device OS application vulnerabilities 

server1 windows nt 4.0 serv-u ftp 3.0 
cve-2004-0330
cve-2004-1992

server2 windows 2000 - cve-2003-0533

server3 redhat linux 7.3 
oracle 9i 
cvs 1.11 

cve-2004-0417
cve-2004-0415

server4 redhat linux 7.3 apache 1.3.23 cve-2002-0392

 
tionally, we found that the firewall is configured to per-
mit and only permit the Internet user to access intranet 
servers through HTTP protocol. 

By importing these information into a network attack 
graph building system developed by us (design concept 
of this system mainly follows the framework proposed in 
[16]), we get a network attack graph shown in Figure 9. 

In Figure 9, resource state nodes are represented in 
circles while action nodes are represented in rectangles. 
The top row in the figure (11 resource state nodes) inclu- 
des the 6 vulnerabilities on the servers and the 5 low lev-
el privileges which can be used by anyone to access the 
servers. However, owes to the firewall, initially the atta- 
cker can only access server4’s HTTP service and exploit 
the apache vulnerability (this exploitation is represented 
in the figure with the action node right below the top re- 
source state node row). After that, the attacker may get 
the USER privilege of server4 and use this server as a 
stepping stone to perform further intrusion (mainly by 
exploiting the rest vulnerabilities listed in Table 8). Ac-
cording to Figure 9, to the maximum extent, the attacker 
can get the USER privilege of server1, server3 and serv-
er4 as well as the ROOT privilege of server2 and server3 
(represented by the other 5 circles in the figure exclude 
the top row). 

Then we should assigned conditional probability dis-
tributions to the generated graph. In this stage, we mainly 
used data sources such as CVSS [17] and OSVBD [18] 
complemented with expertise knowledge. For example, 
in CVSS, a score metric named Exploitability are defined 

to indicate the difficulty for an attacker to exploit vul-
nerability. So we decide to use this metric to evaluate the 
success rate of an action by the following transformation: 

   of1.0 Exploitability aa e    

With all prior conditional probability distributions as-
signed, we were able to perform posterior inference ac-
cording to observed intrusion evidence. As an example 
for exemplification, we assumed that an IDS alert se-
quence is observed as in Table 9: 

By running the improved likelihood weighting algo-
rithm, we computed node belief values for each inference 
layer. Due to space limitation, detailed result is not given 
out here. But in Annex B this security evolvement proce- 
dure is illustrated graphically. In each figure of the annex, 
a darker node is used to represent a greater node belief 
value. We see that with more evidence observed, belief 
values of some graph nodes increase rapidly, indicating 
intrution paths that are most probably chosen. 
 
7.2. Security Assessment 
 
Since our aim is to assess security level of the network 
and find out an optimal enhancement solution, we sele- 
cted 5 important service assets from the network system 
whose CIA values are listed in Table 10 (in thousands 
$US). Correspondingly, we introduced into the attack 
graph 15 corresponding asset breakage nodes. 

Meanwhile, we quantified the asset breakage conduc-
tivity rate between these 15 nodes and the aforemen-
tioned 5 resource state nodes which represent the esca-
lated privileges that may be gained by the attacker. The 
conductivity rates between them are listed in Table 11. 
 

Table 9. Observed alerts. 

id exploited vulnerability source target 

1 cve-2002-0392 pc server4 

2 cve-2003-0533 server4 server2 

3 cve-2004-0417 server3 server3 

 
Table 10. Important assets and their CIA values. 

id asset host λ(ρC) λ(ρI) λ(ρA) 

1 ftp server1 1 1 1 

2 file server2 50 50 50 

3 database server3 100 100 50 

4 cvs server4 10 10 10 

5 apache server4 0 10 10 
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Figure 9. Attack graph of the network. 
 

Table 11. Asset breakage conductivity rate. 

ρC1 ρC2 ρC3 ρC4 ρC5 

ρI1 ρI2 ρI3 ρI4 ρI5 escalated privilege 

ρA1 ρA2 ρA3 ρA4 ρA5 

0.00 0.00 0.00 0.00 1.00 

0.00 0.00 0.00 0.00 0.80 USER on server4 

0.00 0.00 0.00 0.00 0.50 

0.00 0.90 0.00 0.00 0.00 

0.00 0.90 0.00 0.00 0.00 ROOT on server2 

0.00 0.50 0.00 0.00 0.00 

1.00 0.00 0.00 0.00 0.00 

0.80 0.00 0.00 0.00 0.00 USER on server1 

0.50 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 1.00 0.00 

0.00 0.00 0.00 0.80 0.00 USER on server3 

0.00 0.00 0.00 0.50 0.00 

0.00 0.00 1.00 1.00 0.00 

0.00 0.00 0.80 0.80 0.00 ROOT on server3 

0.00 0.00 0.50 0.50 0.00 

After doing this, we recomputed the node belief values 
for each inference layer and get 2 normalized asset re-
sidual value sequences 0 1 2 3     listed in Table 12 and 
Table 13 (without and with transientization respectively). 
These sequences are graphically illustrated in Figure 10 
to reveal the evolvement of network security. In the fig-
ure we can observe that the asset residual values gener-
ated with transientization are always greater than the 
ones without transientization. This is reasonable since 
with all condition unchanged, the current security level 
of a network is always higher than its future security 
level, because from current timepoint to the future the 
attacker gets additional time to perform more intrusion. 
 
7.3. Security Enhancement 
 
Then, for enhancement, we analyzed the network system 
and listed 11 plainest security measures as candidates in 
Table 14. These measures include patching the vulner-
abilities on the servers and disabling low level privilege 
accounts on them. Additionally, we identified a measure 
of configuring the firewall to deny all incoming access 
including HTTP. Costs of these security measures were 
also analyzed and listed in the table (in thousands $US). 

By using the security enhancement methods proposed 
in Section 6, we eventually got all the net profit of the 
security measure combinations. In Table 15 we list the  
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Figure 10. Evolvement of network security. 
 

Table 12. Assessment result (without transientization). 

i 0 1 2 3 

Σλ(ρ) 453.000 453.000 453.000 453.000 

Σρλ(ρ) 66.472 92.342 161.153 192.790 

Σ(1 – ρ)λ(ρ) 386.528 360.658 291.847 260.210 

τi 85.33% 79.62% 64.43% 57.44% 

 
Table 13. Assessment result (with transientization). 

i 0 1 2 3 

Σλ(ρ) 453.000 453.000 453.000 453.000 

Σρλ(ρ) 0.909 13.548 91.443 173.655 

Σ(1 – ρ)λ(ρ) 452.091 439.452 361.557 279.345 

τi 99.80% 97.01% 79.81% 61.67% 

 
top 5 best security enhancement measure combinations 
for static security enhancement (SSE) and in Table 16 
we list the top 3 best combinations (of each inference 
layer) for dynamic security enhancement (DSE).  
 
8. Conclusions 
 

As network attack graphs are more and more widely 
used in real-time network security analysis, the problem 
of how to use observed intrusion evidence to compute 
attack graph node belief becomes a concerned issue. Al-
though Bayesian network is an ideal mathematic tool for 
posterior inference, it can not be directly used in attack 
graph-based inference for the following limitations: 1) 
There may exist directed cycles in an attack graph, but in 
a Bayesian network this is not permitted. 2) There are  

Table 14. Candidate security measures. 

id security measure cost 

1 patch CVE-2004-0330 on server1 0.1 

2 patch CVE-2004-1992 on server1 0.1 

3 patch CVE-2003-0533 on server2 5.0 

4 patch CVE-2004-0417 on server3 5.0 

5 patch CVE-2004-0415 on server3 1.0 

6 patch CVE-2002-0392 on server4 1.0 

7 disable GUEST account on server1 1.0 

8 disable GUEST account on server2 50.0 

9 disable GUEST account on server3 60.0 

10 disable GUEST account on server4 10.0 

11 add HTTP filtering rule on firewall 10.0 

 
Table 15. Top 5 best combinations for SSE. 

id combination cost net gain 

1 {6} 1.0 65.14 

2 {1, 6} 1.1 65.04 

3 {2, 6} 1.1 65.04 

4 {1, 2, 6} 1.2 64.94 

5 {5, 6} 2.0 64.14 

 
Table 16. Top 3 best combinations for DSE. 

layer id combination cost net gain

1 {1, 2, 6, 7} 2.2 40.87 

2 {1, 2, 6} 1.2 40.77 0 

3 {1, 2, 5, 6} 2.2 40.67 

1 {1, 2, 3, 4} 10.2 55.20 

2 {2, 3, 4} 10.1 54.86 1 

3 {3, 5, 7} 7.0 54.70 

1 {1, 2, 4, 6} 6.2 51.23 

2 {1, 2, 4} 5.2 51.23 2 

3 {1, 2, 4, 5} 6.2 50.73 

1 {1, 2, 5} 1.2 11.41 

2 {1, 2, 5, 6} 2.2 11.01 3 

3 {1, 2, 4} 5.2 10.21 
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temporal partial ordering relations among intrusion evi-
dence, but we can not use a Bayesian network to model 
this information. 3) A Bayesian network cannot be direc- 
tly used to infer both the current and the future security 
state of a network. In this work, we resolve these critical 
problems by developing an approximate Bayesian infer-
ence algorithm—the likelihood weighting algorithm. We 
give out all the pseudocodes of the algorithm and use se- 
veral examples to show its advantage. Essentially, we be- 
lieve this algorithm is not only limited in attack graph- 
based analysis, but also can be applied in other techni- 
ques employing traditional Bayesian posterior inference. 

Based on the algorithm and its underlying model, we 
further propose a novel network security assessment and 
enhancement method. In this paper, we use a small net-
work system to exemplify how to use this method to 
quantify the overall network security level and make de- 
cisions about what security measures are most cost- ef-
fective for network security enhancement. 
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Annex A: Pseudocode of Subfunctions 
 
SF1. UpdateAttackGraph—called in ImprovedLike-
lihood Weighting 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
SF2. IsCriticalCausation—called in UpdateAttack-
Graph and later SFs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SF3. SelectEvidenceCausation—called in Improved-
LikelihoodWeighting 
 
 
 
 
 
 
 
 
 
 
 
 

UpdateAttackGraph(AG,X,Y) 

Input: AG—an attack sample 

X—an ancestor node      Y—a descendant node 

Output: a boolean variable indicating if AG is updated 

Alg: 01:  updated←False; 

02:  if (Y cand not sampled) then 

03:   if (for each node X’ in Pre(Y) variable X’=True) then 

04:      if (for each node X’ in Pre(Y)  

 IsCriticalCausation(AG,Y,X’,Ø)=False) then 

05:        Y←the sampling result according to 
1
( )Y ; 

07:        if (Y=True) then 

08:          for (each node X’ in Pre(Y)) 

09:        FX←FX∪{Y}; 

10:        BY←BY∪{X}; 

11:          end for (08) 

12:          updated←True; 

13:          for (each node Z in Con(Y)) 

14:            if (edge Y→Z is not sampled) then 

15:              UpdateAttackGraph(AG,Y,Z); 

16:            end if (14) 

17:          end for (13) 

18:        end if (07) 

19:        mark Y as sampled; 

20:        for (each node X’ in Pre(Y)) 

21:          mark edge X’→Y as sampled; 

22:        end for (20) 

23:      end if (04) 

24:    end if (03) 

25:  end if (02) 

26:  if (Y is other type node) then 

27:    if (!IsCriticalCausation(AG,Y,X,Ø)) then 

28:      Yold←Y; 

29:      y←sampling result by ( , )X Y or ( , )X Y ; 

30:      if (y=True) then 

31:        Y←True; 

32:        FX←FX∪{Y}; 

33:        BY←BY∪{X}; 

34:        updated←True; 

35:        if (Yold=False) then 

36:          for (each node Z in Con(Y)) 

37:            if (edge Y→Z is not sampled) then 

38:              UpdateAttackGraph(AG,Y,Z); 

39:            end if (37) 

40:          end for (36) 

41:        end if (35) 

42:      end if (30) 

43:      mark edge X→Y as sampled; 

44:    end if (27) 

45:  end if (26) 

46:  return updated; 

IsCriticalCausation(AG,X,Y,H) 

Input: AG—an attack sample 

X—a candidate causation node 

Y—a candidate affection node 

H—a set to hold historically processed nodes 

Output: a boolean variable indicating if X is a critical causation of Y 

Alg: 01:  if (Y is an action node) then 

02:    if (Y∈H  ∨ BY=Ø) then 

03:      r←False; 

04:    end if (02) 

05:    if (X∈BY  (∨ for each node Z in BY, 

      IsCriticalCausation(AG,X,Z, H∪{Y})=True)) then 

06:      r←True; 

07:    else (05) 

08:      r←False; 

09:    end if (05) 

10:  end if (01) 

11:  if (Y is other type node) then 

12:    if (Y∈H 或 BY=Ø) then 

13:      r←False; 

14:    end if (12) 

15:    if ({X}=BY  (∨ for each node Z in BY, 

      IsCriticalCausation(AG,X,Z, H∪{Y})=True)) then 

16:      r←True; 

17:    else (15) 

18:      r←False; 

19:    end if (15) 

20:  end if (11) 

21:  return r; 

SelectEvidenceCausation(AG,X) 

Input: AG — a network attack graph 

X — an observed evidence node (whose value is True) 

Output: the occurrence probability of the chosen causation set 

Alg: 01:  pΣ←0; 

02:  Φ←Ø; Ψ←{Y|Y∈Pre(X)∧Y=True};  

03:  for (each non-emtpy subset ψ of Ψ) 

04:    pψ←∏Y∈ψθ(Y,X) * ∏Y (∈ Ψ-ψ)(1-θ(Y,X)); 

05:    Φ←Φ {(∪ ψ, pψ)}; 
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SF4. Transientize—called in ImprovedLikelihood-
Weighting 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SF5. PartialRelationSatisfied—called in Improved-
LikelihoodWeighting 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

06:    pΣ←pΣ+pψ; 

07:  end for (03) 

08:  for (each pair (ψ, pψ) in Φ) 

09:    pψ←pψ / pΣ; 

10:  end for (08) 

11: (ψr, pψr)←chose a pair in Φ according to pψ of the pair; 

12:  for (each node Z in ψ) 

13:    FZ←FZ∪{X}; 

14:    BX←BX∪{Z}; 

15:  end for (12) 

16:  return pψr*pΣ; 

Transientize(AG,OD,OF) 

Input: AG—an attack sample OD—a set of observed evidence nodes 

OF—a set of not yet observed evidence nodes 

Output: a boolean indicating AG’s effectiveness after transientization 

Alg: 01:  for (each node X in OF) 

02:    for (each action node Y in BX) 

03:      Y←False; 

04:      mark edge Y→X as not sampled; 

05:      BX←BX -{Y}; FY←FY -{X}; 

06:      if (Y is an action node) then 

07:        mark Y as not sampled; 

08:      end if (06) 

09:      for (each node Z in BY) 

10:        mark edge Z→Y as not sampled; 

11:        BY←BY -{Z}; FZ←FZ -{Y}; 

12:      end for (09) 

13:    end for (02) 

14:  end for (01) 

15:  converged←False; 

16:  while (!converged) 

17:    converged←True; 

18:    for (each non-root node in AG) 

19:      if (X is an action node) then 

20:       if (X is sampled (some node in ∧ BX is False∨ 

       X is the critical causation of some node in BX)) then 

21:          X←False; 

22:          mark X as not sampled; 

23:          for (each node Y in BX) 

24:            mark edge Y→X as not sampled; 

25:            BX←BX -{Y}; FY←FY -{X}; 

26:          end for (23) 

27:          converged←False; 

28:        end if (20) 

29:      else (19) 

30:        for (each node Y in BX) 

31:    if (Y=False∨IsCriticalCausation(AG,X,Y,Ø)) then 

32:            mark edge Y→X as not sampled; 

33:            BX←BX -{Y}; FY←FY -{X}; 

PartialRelationSatisfied (AG,O,Ω) 

Input: AG—an attack sample 

O—the evidence set of AG 

Ω—a temporal partial ordering relation set on O 

Output: a boolean indicating if AG conforms to Ω (and is effective) 

Alg: 01:  typeI_satisfied←True; typeII_satisfied←True; 

02:  for (each type I partial ordering relation Om↗On in Ω) 

03:    pairSatisfied←False; 

04:    for (each node Ai in BOm) 

05:      existJCoversI←False; 

06:      for (each node Aj in BOn) 

07:        if (IsCriticalCausation(AG,Aj,Ai,Ø)) then 

08:          existJCoversI←True; 

09:        end if (07) 

10:      end for (06) 

11:      if (!existJCoversI) then 

12:        pairSatisfied←True; 

13:      end if (11) 

14:    end for (04) 

15:    if (!pairSatisfied) then 

16:      typeI_satisfied←False; 

17:    end if (15) 

18:  end for (02) 

19:  for (each type II partial ordering relation Om↘On in Ω) 

20:    for (each node Ai in BOm) 

21:      for (each node Aj in BOn) 

22:        if (IsCriticalCausation(AG,Aj,Ai,Ø)) 

23:          typeII_satisfied←False; 

24:        end if (22) 

25:      end for (21) 

26:    end for (20) 

27:  end for (19) 

28:  return typeI_satisfied ∧ typeII_satisfied; 

34:          end if (31) 

35:        end for (30) 

36:        if (BX = Ø) then 

37:          if (X∈OD) then 

38:            return False; 

39:          else (37) 

40:            X←False; 

41:            converged←False; 

42:          end if (37) 

43:        end if (36) 

44:      end if (19) 

45:    end for (18) 

46:  end while (16) 

47:  return True; 
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Annex B: Graph Node Belief Evolvement 
 
Without Sample Transientization 
 

 

Figure 1. Layer 0-no alert is observed. 
 

 

Figure 2. Layer 1–one alert is observed. 
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Figure 3. Layer 2–two alerts is observed. 
 

 

Figure 4. Layer 3-three alerts is observed. 
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With Sample Transientization 
 

 

Figure 1. Layer 0-no alert is observed. 
 

 

Figure 2. Layer 1–one alert is observed. 
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Figure 3. Layer 2–two alerts is observed. 
 

 

Figure 4. Layer 3–three alerts is observed. 


