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ABSTRACT 

We analyze fluorescence due to oxidizing activity of DNA in neutrophils of peripheral blood in the large populations 
~104 - 105 of cells. Fluorescence is registered by flow cytometry method. Spatial resolution is about a few nanometers 
for varied complex three-dimensional (3D) DNA nanostructures of all non-coding and coding parts of DNA. It’s shown 
that oxidative activity of all 3D DNA in the full set of chromosomes inside cells is defined by new standards for com- 
plex networks of “exponentially small worlds”, with more dense packing than in the well known networks of “small 
worlds”. Analysis of various blood samples in vivo and during medical treatment had shown that only two classes of 
Good and Bad Networks of DNA for a good and a bad health existed. This division is defined by any network to one 
from two classes of “n” or “s” shaped curves for typical deviations and from straight line in perfect networks of “expo- 
nentially small worlds”, as for two types of hysteresis curves at phase transitions or at switching of bistability. These 
deviations coincide with two types of positive and negative trends of changing fractal dimension by changing the scales 
of multi-scale networks of fluorescing DNA. These trends give the overall assessments of human immunity, including 
hidden and unidentified diseases, and as a sum of all kinds of health and illness of given person, from the point of view 
the inner life of neutrophils, living in different parts of human body in given time. Characteristics of deviations associ- 
ated with type, level and complexity of illness in the dependence on the scale of networks and Shannon-Weaver biodi- 
versity of neutrophils, i.e. information entropy for DNA activity in cells. These results were used for analysis of fluo- 
rescing DNA inside chicken erythrocytes, in assessing the health status of young hens and roosters, and may be helpful 
in veterinary medicine. 
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1. Introduction 

We present results of a novel nonlinear analysis of flow 
cytometry experiments on immunofluorescence with na- 
nometer spatial resolution in the flow direction [1] for 
large populations ~104 - 105 of neutrophils in the pe- 
ripheral blood of human. These results are used also for 
populations of chicken erythrocytes in the blood of 
young hens. Fluorescence of DNA inside cells is initiated 
by oxidative burst reaction at using ethidium bromid as a 
dye [2]. In each experiment, we observe fluorescence of 
three-dimensional (3D) DNA nanostructures of all non- 
coding and coding parts of DNA. Each cell has the cha- 
otic Brownian motions and rotations in the jet of blood,  

flowing through the laser beam during flow cytometry 
measurements. Therefore, each histogram presented a 
rich statistics for a rich set of various two dimensional 
(2D) projections on the photomultiplier, which includes 
all possible detailed spatial images of fluorescing DNA 
inside neutrophils, i.e. for real 3D-distributions of chro-
mosomal DNA in large populations of cells. Detailed 
analysis of statistical data on 3D DNA fluorescence in- 
side neutrophils [1-4] shows that the actual topology of 
complex networks for full set chromosomes in living 
cells is much more complicated than traditional sche- 
matic description mesh, ring and other computer nets. 
Typical approaches of structural biology here are also 
inadequate for correct description of fractal structures  
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and switches in large-scale correlations for oxidative 
activity of 3D DNA in cellular nuclei. However, there are 
some common patterns, versatile features and switching 
in fluorescence networks which allow us to classify dif- 
ferent types of correlations at oxidative activity of DNA 
inside cells for any donor [1-4]. New features of bio- 
physical and mathematical characteristics of 3D DNA 
activity inside cells, living inside a given person at a given 
time, provide new opportunities in medical diagnostics 
and classification of all basic types of health and immu- 
nity. 

Let us consider mainly quantitative peculiarities of im- 
munofluorescence. Some applications of oxidative burst 
reaction in diagnostics, standard biochemical procedures 
for preparing samples and basic experiments of flow cy- 
tometry for blood samples volume ~1 ml are described in 
[1-4]. The volume of blood is V = 1 - 2 ml. Blood with 
heparin additives is diluted by physiological solution in a 
ratio of 1/3. Hydroethidine addition with concentration of 
150 μg/ml is used for initiation of DNA fluorescence. At 
the beginning, hydroethidine is transformed into ethi- 
dium bromide as a result of chemical oxidative reac- 
tions in the blood cells. Small concentration 100 ng/ml  
additives of phorbol myristate acetate (PMA) to blood 
samples ensure the intensive staining of the cell nuclei of 
polymorph nuclear leukocytes. The staining reflects dif- 
ferences in the ability of cells to produce oxygen radicals, 
i.e. the respiratory burst activity. The fluorescence is pro- 
portional to the ability of neutrophils to produce the ac- 
tive forms of oxygen. Hydroethidine binds with frag- 
ments of nuclear DNA and has strong, red fluorescence 
excited by TEM00 mode radiation from Argon laser light 
at 488 nm wavelengths. Fluorescence is registered by flow 
cytometry technique. The rate of measurements is about 
(1 - 2) × 104 cells per/min. The flow velocity is about 1 
m/s. The mean time of measurements of one model is 
about 2 minutes. This empirically selected regime is self- 
consistent with noises of various nature and gives statis- 
tically stable and reproducible results. The inaccuracy 
and reproducibility for preparations and measurement 
procedures usually compose of not more than a few per- 
cent or more correctly of ≈ 2%. Spatial resolution of the 
instruments in flow cytometry may be very high [4]. This 
fact is little known and poorly used. Resolution and sen- 
sibility in flow cytometry measurement allows register- 
ing very small heterogeneities of neutrophils, with di- 
mensions of the order of nanometers and smaller sizes, 
inaccessible of optical microscopy. Registration of fluo- 
rescence with flash duration ~10−9 s in the jet of blood 
flowing through the laser beam with the velocity ~1 m/s 
provides measurement with spatial scales ~10−9 m in the 
flow direction [4]. Synchronization and registration of 
short fronts ~10−12 s of fluorescence pulses give an in- 
creasing of sensitivity and decreasing the lower limit of 
spatial measurements in the flow direction. 

Each experiment reflects a considerable statistics for  
frequency distribution of flashes for approximately 104 
and more than 104 fluorescing neutrophils in the blood of 
any donor. Corresponding examples for frequency dis- 
tributions of fluorescence are presented below in Figures 
1, 3 and 4. These experiments form various experimental 
data for 3D-correlations of all chromosomal DNA in 
large populations ~104 - 105 of cells. We have many new 
unknown details for inner life of genome and chromo- 
somes inside cells for oxidizing activity of real 3D DNA 
in nanometer scales. These details cannot be seen in the 
optical microscope. These details are reflected in histo- 
grams of fluorescence, but we don’t know how to extract 
and decrypt corresponding information. At present, we 
have no adequate knowledge in mathematics, physics, 
information theory, medicine and biology for absolutely  
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Figure 1. Dependence of normalized frequency distribution 
of flashes P(I) on their intensity I (a) and for clearest only 
central part of histogram (b). The area under the final his- 
tograms of P(I) normalized to unit; rhombus points corre- 
spond to bronchial asthma. Total number of flashes is N0 = 
76,623; quadrate points correspond to the healthy donor. 
Common number of flashes is N0 = 40,109; triangle points 
correspond to the oncology disease. Common number of 
flashes is N0 = 40,752. 
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Figure 2. Dependence of Hurst index H(r) on logarithm of 
range r in networks of DNA fluorescence with different 
scales for three different states of health connected with 
asthma, with good health and at oncology; dash-and-dot 
lines correspond to the main overall trends; initial his- 
tograms see in Figure 1. 
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Figure 3. Dependence of normalized frequency distribution 
of flashes P(I) on their intensity I (a) and for clearest only 
central part of histogram (b), for one and the same invaria- 
bly healthy, donor in different times. Triangle green Rhom-
bus points correspond to the total flashes number N0 = 30 
832, analysis time is 19 July (first year); rhombus yellow 
points correspond to the total flashes number N0 = 38,758, 
analysis time is 11 July (next year); square red points cor-
respond to the total flashes number N0 = 40,109, analysis 
time is 03 June, before 11 July, histogram range r = 256. 

 

0.2 

 

 

0.1 

 

 

0 

P(
I)

256 0            
128

 

0.02 

 

 

 

 

 

0 

P(
I)

0    100    200 
I, central part 

 
(a)                            (b) 

Figure 4. Dependence of normalized frequency distribution 
of flashes P(I) on their intensity I (a) and for clearest only 
central part of histogram (b) for one and the same patient 
with oncology and hepatitis B; symbol blue cross relates to 
analysis date 05 November, one year N0 = 43,752; symbol 
red triangle corresponds to 15 December, this year, after 
treatment of hepatitis B, N0 = 26,265; patient was infected 
hepatitis B during treatment of main oncology disease. 
 
correct, coherent, consistent and complete interpretation 
of this new and significant information about 3D DNA 
activity inside cells. Some of these unsolved problems 
may be associated with abnormal fractals; complex net- 
works of 3D-DNA activity; fractals in networks of “ex- 
ponentially small worlds”; information entropy or Shan- 
non-Weaver index of biodiversity for activity of DNA 
inside cells; etc.  

In the parts 2 and 3 of this article we define fractal 
property of multi-scale networks of fluorescence and 
Shannon-Weaver biodiversity of neutrophils. In the parts 
4 and 5 we define packing of DNA activity in multi-scale  

fractal networks in order to classify a good and bad DNA 
networks, and a good/bad health status, as for two vari- 
ous types of packing and deviations from perfected ideal. 
In the part 6, we show that large-scale networks for fluo- 
rescing DNA in neutrophils of healthy and unhealthy 
humans are similar to fractal networks for fluorescing 
DNA of chicken erythrocytes in the blood of healthy and 
unhealthy young hens and roosters. This similarity 
caused by the proximity of networks of “real worlds” for 
oxidative activity of chromosomal DNA in the living 
cells to standards of “exponentially small worlds”. This 
new class of complex networks has much denser pack- 
aging than well-known [5] networks of “small worlds”. 
We observed the similar deviations from ideal networks 
of “exponentially small worlds” for a good and bad 
health of humans and birds. Therefore, oxidizing activity 
of DNA in a full set of chromosomes inside cells has 
some universality in behavior of large-scale correlations 
and networks for all healthy and unhealthy human be- 
ings.  

Here we present some approaches, semi-empirical re- 
sults and first steps in the direction of practical needs for 
medical diagnosis and treatment monitoring complex 
analysis of immunofluorescence. We continue to develop 
various new methods and approaches [1,3,4,6] to the 
contemporary nonlinear analysis of modern experiments 
on oxidative activity and inner life of DNA inside cells.  

2. Fractals and Trends in Oxidative Activity 
of Fluorescing DNA inside Neutrophils 

Three examples of typical cytometry histograms are 
shown in Figure 1. Detailed accurate statistical analysis 
of these histograms currently is absent. Standard smooth- 
ing eliminates, destroys natural peculiarities of fractal 
networks and correlations in DNA activity, changes the 
real statistics, blurs and distorts many aspects of reality. 
Large-scale correlations for fluorescence of DNA inside 
living cells differ from those that we would like to see by 
abnormal fractal dimensions and non-trivial noises at 
substantially non-Gaussian statistics [1,3,4,6]. 

These natural peculiarities of immunofluorescence of- 
ten are accompanied by statistical instabilities of local in- 
tensity distributions [1,3,4,6]. Statistical instabilities en- 
sure insolvency and inapplicability of standard methods 
of data analysis, when there isn’t lawful basis for their 
applicability. Here statistical instabilities of local inten- 
sity distributions mean that the average value of intensity 
is smaller than dispersion, dispersion is smaller than 
asymmetry and other higher statistical moments of inten- 
sity fluctuations [3,4,6]. The exponential growth of cen- 
tral moments of fluorescence intensity reflects the clear 
sign of turbulence [3]. Therefore, here not meaningless to 
compare average or local values of intensity for different 
distributions in various histograms, even for one and the 
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same patient in different time; one may to compare Fig- 
ures 1(b), 4(b) and 3(b) for different healthy and un- 
healthy people and for one and the same healthy man in 
Figure 3(b). Here absence any systematic displacements 
for any local and average value of intensity in the de- 
pendence on the states of health. 

In the case of Gaussian statistics corresponding statis- 
tical moments of fluctuations have an opposite trend to 
rapid exponential increasing. Therefore here domain 
lower statistical moments, i.e. average and standard de- 
viation.  

Thus, statistical instability of immunofluorescence 
prevents an application of traditional data analysis. Fast 
exponential growth of higher statistical moments means 
that even a low level small noise of fluorescence for 
higher orders of correlation and autocorrelation of noise 
provides the intermittency of DNA fluorescence, i.e. rare 
irregular bright flashes in time [7]. It also means that any 
forced smoothing of experimental statistical data radi- 
cally alters the nature and structure of DNA fluorescence. 
Intermittency in random media and an exponentially 
rapid growth of high-order statistical moments of fluc- 
tuation are discussed in [7]. 

We need to develop a sequence of new nonlinear sta- 
tistical methods to data analysis of immunofluorescence. 

Let us consider some fractal peculiarities of immuno- 
fluorescence. Different analogies of various fractal net- 
works such as bronchial tree, structure of oncology tumor, 
arterials tree, etc. with networks and distributions of im- 
munofluorescence are described in [3]. Many histograms 
of different origin are similar to various histograms for 
fluorescence of neutrophils in Figure 1 [3]. Range of 
histogram r interconnected with the selection of multi- 
stage clusters in networks with structure of bronchial tree; 
here range r coincides with the number of columns in a 
histogram or with the number of channels for measure- 
ments of fluorescence intensity at given maximal value 
of dimensionless intensity, i.e. r = Imax. In our experi- 
ments maximal number of channels is 256. Variations of 
range r, i.e. rank of histogram r, or variations the scale r, 
when r = Imax, provide the changes in irregularity and 
brokenness of frequency distribution of fluorescence for 
histograms of various ranks [3]. The quantitative meas- 
ure of irregularity and brokenness for frequency distribu- 
tion of flash in histograms may serve a Hurst index H. 

Hurst exponent H [8] is determined by means of re-
gression equation  

 Ln R S H LnI const             (1) 

where R/S is rescaled range (R = S), R is range or maxi- 
mal deviation of P(I) from local mean level, S is standard 
deviation of P(I). Illustration of definition Hurst index 
was presented in [1,4]. Hurst index H for frequency of 
flashes P(I) connected with fractal (Hausdorff) dimen- 

sion D [8] 

2D H                 (2) 

Examples for three distributions of Hurst index in the 
hierarchy of fractal clusters with various scales, corre- 
sponding to data in Figure 1, are shown in Figure 2. 

According to Figure 2 a good health corresponds to 
the negative trend in the dependence of H on lnr, i.e. 
dH/dlnr < 0. The positive trends for dependencies of H 
on lnr, when dH/dlnr > 0, correspond to a bad health at 
various diseases. 

The values of dH/dlnr depend on different states of 
health or illness and may be use in monitoring the states 
of health over time in vivo and in medical treatment [1]. 
In [1] presented different variations of fractal topology 
networks of DNA activity for healthy donor and donor 
with oncology in real time and during treatment. Some 
examples changing networks of DNA activity in real 
time, for initial histograms in Figures 3 and 4, presented 
in Figure 5 to illustrate changeability of fractal topology 
(Hurst index) at oxidative activity of DNA inside neu- 
trophils, living in the healthy and unhealthy men. 

According to Figures 2 and 5, a good and a bad health 
various people differ a positive and negative overall 
trends in changes of fractal dimension D(r) or a positive 
and negative derivatives dD/dr > 0 and dD/dr < 0. The 
values of (dD/dr) depend on the health status, type of 
disease and vary in time for one and the same human and 
for different people. 

Thus, we got the empirical rule for classifying the 
General State of Health in the form of answer Yes/No or 
healthy/sick, i.e. dD/dr > 0 or dD/dr < 0, for all donors 
[1,4] from the point of view diverse populations of neu- 
trophils, living in different parts of the human body in 
different conditions. This response includes the presence 
 

0.6

0.4

0.2

0

H
(r

)

0      3      6
lnr 

 

0.6 

 

 

 

0 

 

 

 

−0.6 

H
(r

)

0         3        6

lnr
 

(a)                            (b) 

Figure 5. Dependence of Hurst index H(r) on logarithm of 
range r: (a) One and the same invariably healthy, donor in 
different times, initial histograms see in Figure 3; (b) One 
and the same unhealthy donor with oncology and hepatitis 
B, before and after hepatitis treatment; initial histograms 
see in Figure 4; dash-and-dot lines correspond to the main 
overall trends. 
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of all kinds of health and illness, including hidden and 
unidentified diseases. This classification is defined by the 
change of signs of plus/minus in the overall trends of 
fractal topology, i.e. in the dynamics and direction of 
changes of fractal dimension or Hurst index, with a 
monotonic decrease of scales r of networks or sizes r of 
clusters in fractal correlations for oxidative activity of 
DNA inside cells. Sequential analysis of features and 
causes in systematic changes of fractal topology in net- 
works for oxidative activity of DNA in neutrophils for 
different samples of blood presented below in this article. 

Next comments describe the typicality of normal and 
abnormal fractals for networks of DNA fluorescence. 
Normal fractal dimension D corresponds to the interval 1 
< D < 2 for positive Hurst index H > 0. Negative Hurst 
index H < 0 gives the anomalous fractal dimensions D = 
(2 − H) > 2. Absolute majority of the authors ignore any 
anomaly fractal dimensions. Nevertheless, negative Hurst 
index H < 0 does not contradict the main definitions of 
the power-law correlations for fractal distributions [9], 
subject to rejection from the hypothesis of self-affinity. It 
is possible that in the case when H < 0 anomalous fractal 
dimension D > 2 gives a measure of fragmentation [10] 
correlations in complex networks. Anomalous fractal 
dimension D > 2, if H < 0, we observe during strong in- 
flammations at asthma for range r = 64 in Figure 2 and 
at hepatitis B for r = 8 in Figure 5. Thus, the abnormal 
fractal dimensions D > 2 in oxidative activity of DNA 
inside cells closely connected with fragmentation of cor- 
relations during the serious inflammations. In this case 
we have a mix of normal D < 2 and abnormal D > 2 
fractals for various scales of clusters, at various range r. 

Other comments connected with differentiation and 
classification varied distributions of Hurst index in Fig- 
ure 2. In particular Hurst exponent H indicates persistent 
or correlated (H > 1/2) and anti-persistent or uncorrelated 
(H < 1/2) behavior of trend of irregularity in the fre- 
quency distributions of flashes. Persistent behavior is 
observed in Figure 2 for asthma, when H (r = 256) = 
0.5435. Anti-persistent behaviors are observed for healthy 
person with H (r = 256) = 0.1971 and for oncology with 
H (r = 256) = 0.4018. In the last cases fractal dimensions 
belong to the interval 1, 4 < D < 1, 8. We observe differ-
ent behavior of Hurst exponent for varied groups the 
states of health in Figure 5. Good health corresponds to 
anti-persistent behavior of H < 1/2 for any range r. Un-
healthy people corresponds to persistent behavior of H > 
1/2 for range r > 64. Absolute dominants of anti-persis- 
tent behavior of immunity for healthy people give more 
rich spectra responses of immunity than persistent and 
predictable behavior for rather poor immune reactions of 
unhealthy people. The ratio of richness/poorness for im- 
munity here often connected with more rich biodiversity 
of neutrophils in the blood of healthy people than for 

poor biodiversities of neutrophils in the blood of un- 
healthy people [1,4], as it is shown in Figure 6. Here we 
use Shannon-Weaver biodiversity of neutrophils [1,4].  

3. Biodiversity and Trends in Oxidative 
Activity of DNA inside Neutrophils 

Let us define Shannon-Weaver biodiversity of fluoresc- 
ing neutrophils. The function of P(I) = Pi can be consid- 
ered as density of probability for frequency of flashes Pi. 
We can enter the information for the frequency distribu- 
tion of flashes ilniJ P   and Shannon information 
entropy   iE P J , where 

  
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i i
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Figure 6. Dependences of Shannon-Weaver biodiversity E(r) 
of neutrophils on logarithm of range r: (a) Three different 
donor with oncology, asthma and good health; initial histo- 
grams see in Figure 1; (b) One and the same healthy man in 
different time; initial histograms see in Figure 3; (c) One 
and the same patient with combined disease of oncology and 
hepatitis B before (lower line) and after medical treatment; 
initial histograms see in Figure 4. 
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Shannon entropy E(r) for frequency distribution of 
flashes depends on histogram’s range r, which coincides 
with the maximal number of channels of intensity mea- 
surements at given range r. Information lni iJ P   is 
defined by the flash probability P(I) of fluorescing neu- 
trophils with specified intensity in the specified channel. 
Thus, fluorescence’ histogram visualizes the probability 
of existence of neutrophils with a specific oxidizing ac- 
tivity of chromosomes in the given sample of blood. 
Therefore, Shannon entropy E(r) also characterizes the 
Shannon-Weaver index E(P) [5,6] for the biological di- 
versity of neutrophils. Distinctive features of neutrophils 
here are determined by different oxidizing activities of 
various DNA, which are reflected in fluorescence. Dis- 
tinctions in neutrophil activity for oxygen metabolism 
and fluorescence interconnected with peculiarities of 
chromosomes structure and large-scale chromosomal 
correlations in the nucleus of neutrophils. These correla- 
tions reflect the distribution networks of ethidium bro- 
mide in chromosomes, coinciding with networks of oxi- 
dizing activity of fluorescing DNA. The same approach 
may be used for definition biodiversity of any other cells. 

Biodiversity of Shannon-Weaver E(r) of neutrophils in 
the blood of various people with different states of health, 
associated with Figure 1, presented in Figure 6. 

These illustrations show that Shannon-Weaver biodi- 
versity for populations of neutrophils E(r) depend on the 
states of health. These illustrations show also that biodi- 
versity E(r) for neutrophils living inside given person 
depend on range r, which determined by the scale r of 
clusters in DNA network, by the resolution of the device 
with maximal number of channels is equal to r or by pa- 
rameter r as the governing by the scale of averaging. 

Figures 6 show a clear logarithmic growth of Shan- 
non-Weaver biodiversity of neutrophils E(r) with in- 
creasing of range r or of maximal number r of measuring 
channels; dE/dlnr > 0 for any kinds the states of health. 

We observe richer biodiversity of neutrophils for on- 
cology and poorer biodiversity for inflammatory disease 
(bronchial asthma) in Figure 6(a). Difference in the 
Shannon-Weaver index for oncology and for asthma here 
reaches ≈ 40% when r = 256 and ≈ 100% when r = 4. 

According to Figure 6(b) Shannon-Weaver biodiver- 
sity of neutrophils in the blood of healthy human remains 
stable over time for any and different scales of fluores- 
cence networks. It means stability of immunity and good 
health status for given healthy donor during one year. 
This is general integrated picture of biodiversity conser- 
vation of neutrophils, living inside healthy human. Ac- 
cording to Figure 5(a) fractal distributions of fluores- 
cence in the localized networks of neutrophil’ popula- 
tions here are changing in time. Thus, in Figure 5(a) we 
observe in real time serial individual changes of inner life 
in various populations of neutrophils, living inside one 

and the same healthy human in different time, at very 
high degree of conservation of their overall biodiversity. 

Biodiversity of neutrophils in the blood of patient with 
complex diseases of cancer and hepatitis B, depends on 
medical interventions, as can be seen in Figure 6(c) in 
real time. Here treatment of inflammation, associated 
with the treatment of hepatitis B, leads to the stratifica- 
tion in the dependence of Shannon entropy E on lnr. 
Hepatitis ensures a marked decrease of neutrophils’ bio- 
diversity (see lower line in Figure 6(c)). The fractal di- 
mension of largest scale networks (r = 4) in this case is D 
= 2, as and for deterministic functions (see the bottom 
point in Figure 5(b)). Thus, here observed deterministic 
network without fractal structure (D = 2), for large-scale 
network at r = 4. i.e. for intercellular correlations [1], of 
unknown origin in the populations of peripheral blood 
neutrophils for given combined disease of hepatitis B and 
cancer.  

The clear decreasing of biodiversity of neutrophils we 
observe for any inflammations in Figures 6(a) and (c). 
Thus, a bad health corresponds to decreasing of biodi- 
versity of neutrophils in human body, i.e. leads to a 
weakness of immune response, just as the sad trend of 
species extinction successfully ensured by means of a 
bad ecology. 

Let us consider the mean values for overall trends of 
fractal dimension D = 2 − H for all ranges of r in net- 
works of fluorescing neutrophils with different biodiver- 
sity E(r). The negative dependence of fractal dimension 
D on range r in Figures 2 and 5 for negative sign of de- 
rivative dD/dlnr < 0 give very clear criteria of a bad 
health. The positive sign of derivative dD/dlnr > 0 give 
very clear criteria of a good health. Shannon-Weaver bio- 
diversity E(r) of neutrophils always defined by the posi- 
tive logarithmic dependence of E ~ lnr; dE/dlnr > 0 [1]; 
see also Figures 6. Therefore, the positive trends of dD/ 
dE > 0 or increase fractal dimension D with increase the 
biodiversity E(r) of neutrophils correspond to a good 
health. In this case increasing of biodiversity E or infor- 
mation <J> corresponds to increasing the communicabil- 
ity of neutrophils. A bad health corresponds to the oppo- 
site trends of dD/dE < 0. Thus, we give two clear estima- 
tions the condition of immunity as two opposite limit for 
the positive and negative trends in fractal topology of 
ecological networks for communities of neutrophils in- 
side given human. As we see in Figures 2 and 5, detailed 
local dependencies of fractal dimension D = 2 − H on 
rank r and biodiversity E(r) ~ lnr are more complex, 
complicated and changeable then overall trends. Differ- 
ent communities and groups of neutrophils, from one and 
the same blood sample, live in different parts of the hu- 
man body in different conditions and haven’t a full simi- 
larity at varied scales r. Local features in networks of 
neutrophils in one part of human body may differ for 
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cells living in other parts of the body, etc. Not only ge-
ography and travels of neutrophils inside human body, 
but also memorial places (traumas, inflammations, tumor, 
etc.) for local networks of separate cells here may to play 
the dominant role. 

According to Figures 2 and 5(b) most notable contri- 
bution to the persistent behavior of fractal distributions 
for unhealthy people brings the value of H(r) < 1/2 at low 
values of r, corresponding to intercellular correlations [1]. 
Thus, persistent behavior of intercellular correlations 
corresponds to more stable and predictable populations 
of cells, with relatively lower biodiversity E(r) of popu- 
lations in Figure 6. Restriction and decrease of biodiver- 
sity E(r) of neutrophils for manifold autoimmune dis- 
eases, inflammations and infections often observed for 
different diseases [1,4]. In this case, a bad ecology for 
neutrophils are determined by the disease of human and 
unhealthy environment provides a robust degradation of 
each succeeding generation of neutrophils. This is main 
reason of predictability and persistent Hurst index H < 
1/2 for distributions of immunofluorescence. We always 
prefer the predictable behavior or more simple, rough 
and predictable responses in more primitive situations 
with poor choice. Various communities of neutrophils 
living in the body of unhealthy people have a tendency to 
conformism correlated behavior and to predictability of 
correlations due to forced restriction of biodiversity, as in 
the isolated human communities, living under pressure. 
All of this, no doubt, weakens the immunity.  

Shannon-Weaver index for biodiversity of neutrophils 
E(r), i.e. Shannon information entropy, presents clear pa- 
rameter reflecting overall immunity condition at moni- 
toring of health.  

Networks of DNA activity in cells interconnected with 
networks of biodiversity in cells’ communities. 

Rich biodiversity of neutrophils E(r) prolongs human 
life for people with a good and bad health status by in- 
creasing the diversity of immune reactions. Good immu- 
nity is ensured by a care about a high biodiversity of own 
neutrophils and good conditions of their environment in 
the human body.  

4. Networks of “Small Worlds” in the 
Clusters of Fluorescing DNA inside 
Neutrophils 

Consider an undirected network, and let us define d as 
the mean geodesic (i.e., shortest) distance between pairs 
of vertex or nodes in a network of flashes of fluorescence. 
The certain number N of synchronized nodes-flashes in 
networks of DNA fluorescence inside cells are charac- 
terized by the intensity I ~ N, where N defines a common 
number of correlated nodes in network, if every node in 
fluorescence network has the approximately identical 
fragment of oxidative activity of DNA with approxi-  

mately identical quantity of fluorescing dye. More de- 
tailed determination of correlated nodes N in the clusters 
of fluorescence networks of DNA inside cells now is 
unknown. The correlation length d depends on the net- 
work topology. Random networks with a given degree 
distribution may be the networks of “small worlds” [5]. 
Small world behavior is typically characterized by loga- 
rithmic scaling for path length tends d ~ lnN [5]. On the 
other hand the expression of d ~ N1/D defines a linear size 
of D-dimensional lattice or the size of a fractal cluster d 
~ N1/D. Therefore estimation of fractal dimension D of 
fluorescence in the networks of “small worlds” is D(N) ~ 
lnN/lnlnN. Standard definition of fractal dimension D 
[8,10]. 

     0lim ln lndD N d d          (4) 

also gives D(N) ~ lnN/lnlnN in “small worlds” network. 
We use the experimental data in immunofluorescence 
histograms to define Hurst index H and fractal dimension 
D according to Equations (1)-(3). The transformation of 
“small worlds” due to reduction of range r = I ~ N leads 
to expression    ln 2 ~ ln lnr H r  . We used this 
correlation in the linear approximations of experimental 
data in Figure 2 in [1] and in Figure 7(a) in this paper. 
Much more detail picture, at more detailed small scales 
and without linear approximation presented in Figure 
7(b). 

The increasing of the small details in Figure 7(b) form 
a clear vision that linear growth rate of the functions 

    ln ~ ln lnr D r r  in Figure 7(a) gives not very 
good approximation for more fast than linear growth in 
the dependence of ln(r/D) on lnlnr for one and the same 
distributions in Figures 7(a) and (b). Therefore real net- 
works of DNA activity inside cells differ from the ideal 
net-works of “small worlds” and have more dense pack- 
ing at decrease of scale or at increase of range r. 
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(a)                            (b) 

Figure 7. Large-scale distributions of     r D r ~ rln lnln : 

(a) Linear approximations; (b) Detailed non-linear small- 

scale distributions of     r D rln ; initial histograms see 

in Figure 1. 
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5. Networks of “Exponentially Small 
e 

Le

Worlds” of Fluorescing DNA insid
Neutrophils 

t us consider the linear dependencies of    ln lnr D
 as the basic

~r  
 approximations of real correlations 

works of “expo
ln ln r  

nentially
of DNA activity. In this case we have net - 

 small worlds” with more dense parking than 
networks of “small worlds”, where     ln ~ ln lnr D r r . 
In our case networks of “exponentially small worlds” are 
more sensitive for registration of  
“real world” networks and deviations from ideal of a 
good health than networks of “small worlds” presented in 
[1]. The ideal networks of “exponentially small worlds” 
without fractals corresponds to D = 2 when  

dynamical changes in

  ln ln 2 ~r  
 ln ln r . Ideal and real distributions of    ln ln r D r  
for various states of health for different pe  

edical treatment presented in Figure 8
In Figure 8 are observed only two types of deflections, 

such as “n” and “s” shaped curves, from the li

ople in vivo
and at m . 

near ap- 
proximations of       ln ln ln lnr D r A r B   , where 
constants of A and B are defined and presented in Figure 
8 for each give , as an 
individual line of linear regression in networks of “ex- 
ponentially small worlds”. Let us introduce the ideal stan- 
dard for not existing ideal of a perfect good health, at full 
absent of fractals (D = 2). Then any arbitrary distribution 
of  

n distribution of   ln ln r D r

 ln ln r D r  in networks of “exponentially small 
worlds” may to compare with ideal of  ln ln 2 , pre- 
sen e with round dots in Figure 8. 

Actual behavior of any functions of 
ted as violet lin

 r  
in Figure 8 is similar to “n” or “s” shaped curves

 ln ln r D
, as for 

tw transitions and

si

 

o types of hysteresis curves at phase  for 
switching of bistability. These pictures reflect corre- 
sponding distributions of “n” and “s” shaped curves for 
various Hurst indices in Figures 2 and 5. The positive 
linear trends of dH/dlnr > 0 in Figures 2 and 5 corre- 
spond to “s” shaped curves in Figure 8. The negative 
linear trends of dH/dlnr < 0 in Figures 2 and 5 correspond 
to “n” shaped curves in Figures 8. Here “n” types of de- 
flections reflect a good health, i.e. good networks of DNA 
inside cell. Here “s” types of deflections reflect a bad 
health for bad DNA networks inside cell. This is a very 
clear assessment of the quality of DNA network for gen- 
eral large-scale communications within of one DNA and 
between different DNA in the chromosomes inside cells. 

Moreover, the values of parameter A, for linear re- 
gression of y = Ax + B in Figure 8, give the quantitative 

gns of a health condition. A bad health is characterized 
by the values of A more than 1, A > 1. At a good health 
all values of A less than 1, A < 1. Perfected networks of 
ideal health, without fractal correlations in DNA activity, 
when D = const = 2, corresponds to A = 1. In the actual, 
fractal networks, with different values of D(r), unstable 
borderline between health and disease also corresponds 
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(c) 

Figure 8. Dependence of (ln(lnr/ (r))) on double l arithm of D og
range r in multi-scale netwo f “real worlds” and in net- rks o
works of “exponentially small worlds” for fluorescing DNA 
inside neutrophils; ideal network of “exponentially small 
worlds”, without fractals (D = 2), corresponds to violet line 
with round dots; overall trends as the linear approximations 
of ln(lnr·D(r)) = A(lnlnr) + B presented here as the equations 
for dash-and-dot lines in networks of “exponentially small 
worlds”; (a) Initial histograms for a healthy man and pa- 
tients with diseases of oncology and asthma see in Figure 1; 
(b) Initial histograms for one and the same healthy man in 
different time see in Figure 3; (c) Initial histograms for pa- 
tient with complex diseases of oncology and hepatitis B be- 
fore and after medical treatment see in Figure 4. 
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to A = 1. This value of A = 1 corresponds to unstable not 
existing situation. Changeability and variations the val- 
ues of A are varied in time and depend on the states of 
health in vivo and in medical treatment, as it is shown in 
Figure 8. Moreover, linear regression of    ln ln r D r   

  ln lnA r B  in Figure 8 have a very clear tendency 
to the increase of inclination angle or value of A at n- 
crease of mations. Therefore monitoring for dis- 
tributions of “n” or “s” shaped curves and values of A for 
trends in fractal networks of “exponentially small worlds” 
give very clear and rather simple qualitative and quanti- 
tative estimations of health status and common immunity 
condition for given person at given time from the point 
of view the inner life of neutrophils in the blood of given 
human. In this case we define very clear quantitative 
signs for diagnostics of health at registration chromoso- 
mal networks of DNA activity inside neutrophils. 

In Figure 8(b) are observed a notable changeability in 
real time for values of A < 1 for one and the same healthy 
man in vivo. It means stability of immunity and 

the i
inflam

good 
health status for given healthy donor during one year. 

Systematic changes of biodiversity for neutrophils liv- 
ing inside sick man in Figure 6(c) and changes in fractal 
networks in Figures 5(b) and 8(c) in real time are show- 
ing that medical treatment here reduces the inflammation 
at decreasing a value of parameter A. This is a sign of 
successful and good treatment. Medical treatment in- 
creases the immunity, i.e. increases the biodiversity of 
neutrophils E(r) in Figure 6(b), but do not change the 
positive trends in Figure 5(b) and the types of “s” 
shaped curves in Figure 8(c) for given patient with in- 
curable diseases of cancer and hepatitis B.  

Figure 8 illustrate also notable differences between 
patients with different states of health in different types 
of deflections, such as “n” and “s” deflection from ideal 
linear correlation  ln ln ln ln 0.693r D r   in “expo- 
nentially small worlds”. Now we don’t know what types 
of correlations in DNA act ay to produce these 
ordered consistency from two classes of distributions of 
fractal structures for “n” and “s” shaped curves. Usually 
“n” and “s” shaped curves as two types of hysteresis 
curves are observed at phase transitions and at bifurca- 
tions due to switching of bistability. Currently are un- 
known the origin and detailed correlations between large- 
scale fragments of DNA activity inside cells which pro- 
vide two types of hysteresis in networks of “exponen- 
tially small worlds” of DNA. In networks of “small 
worlds” two types and examples of hysteresis were de- 
scribed in [11]. If to use compression and transformation 
for networks of “small worlds” to networks of “expo- 
nentially small worlds” then it is possible to conserve 
hysteresis induced in network of “small worlds”.  

Here hysteresis may be connected also with different 
types of synchronizations in cell cycles for populations 

of neutrophils living inside healthy and unhealthy

ivity m

 body. 
Th

-fractal 
co

odern approaches, based on 
ne

is is also only hypothetic possibility. Here exist many 
unstudied and unsolved problems also in information 
processes and synchronization between coalitions of 
chromosomal DNA for inter and inner correlations of (in) 
cells, inside cells and between different cells, such as dif- 
ferent neutrophils, lymphocytes and other cells of blood 
and body, in addition to or instead of epigenetics. 

Let us note, also, some fragments of deterministic 
communications of unknown origin in networks of DNA 
activity. We often observe mix of fractal and non

rrelations for different scales (rank) of r in different 
samples of blood for unhealthy people. According to 
Figures 2 and 5(b) most notable contribution to the per- 
sistent behavior of fractal distributions for unhealthy 
people brings the value of H(r) < 1/2 at low range num- 
ber of r, corresponding to intercellular correlations [1]. 
Thus, persistent behavior of intercellular correlations 
corresponds to more stable and predictable populations 
of cells, with relatively lower biodiversity E(r) of popu- 
lations in Figures 6. Fractal dimension of largest scale 
networks (r = 4) in this case is D = 2, as for smooth de- 
terministic functions (see the bottom points in Figures 2, 
5(b), and 8(a), (c)). Thus, here observed the deterministic 
networks without fractal structure (D = 2) at rank r = 4. 
This case corresponds to intercellular correlations [1] of 
unknown origin in the populations of neutrophils for 
combined disease of hepatitis and cancer, for bronchial 
asthma and for oncology.  

Thus, now we haven’t clear understanding many de- 
tails of DNA life and activity inside living cells. In this 
regard let us note some m

w results in the last few years, which no reflected in 
textbooks, but give important new accents for researchers 
and for discussions of two classes of features in Figures 
2, 5 and 8. At first, in nano-scale range in 3D chaotic coil 
of nuclear DNA various intra-chromosomal and inter- 
chromosomal correlations in the coalitions of DNA may 
to play the effective role of varied networks consisting 
from self-organized nanopores for segments of DNA. 
Nanopores produce various modifications and different 
switching of multistability in the behavior of various 
fragments of DNA [12]. At rather dense packing of chro- 
mosomes in the cells very small local changes in net- 
works of “exponentially small worlds” may have serious 
the effects of. Moreover, topological constraints in DNA 
activity inside cells interconnected with varied diseases 
[1]. For instance, cancer cells carry numerous genomic 
rearrangements. Networks of DNA correlations inside 
cells as the chromatin structure could play a role in mo- 
lecular mechanisms involved in formation of genomic 
rearrangements and influence the distribution of rear- 
rangements observed in cancer [13]. It’s not epigenetics. 

More exotic and hypothetic possibilities of a new re- 
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gulation in DNA activity connected with building a chro- 
mosome segregation machine [14]. It’s not epigenetics. 

Rather prosaic reasons for existence of two classes the 
ordering of results in Figures 2, 5 and 8 connected with 
two dominant types of statistical stability for nonlinear 
di

r Nets of DNA inside Chicken 
Erythrocytes 

r 
de
hu er fractals and diversity in the oxi- 

Analysis results which presented 
in 

several cells are reflected 
in

in 
Fi

stributions of DNA activity inside cells. Two dominant 
classes for negative and positive trends in Figures 2 and 
5 and for “n” and “s” shaped curves in Figure 8 reflect 
the sum of effects oxidative activity of DNA inside cells. 
This dual or bistable behavior interconnected with two 
dominant types of positive and negative statistical stabil- 
ity for large-scale activity of fluorescing DNA [3]. Here 
a good health reflected in the stable and attractive distri- 
butions of DNA fluorescence, inflammation is reflected 
in the unstable distributions and autoimmune diseases are 
reflected in the neutral stability for large-scale distribu- 
tions of immunofluorescence [3]. These changes of sta- 
bility correspond to transcritical bifurcation of averaged 
large-scale distributions of immunofluorescence [3]. Last 
comments belong to the stability of large-scale distribu- 
tions with range = 4. More detailed connections of “n” 
and “s” shaped curves in networks of “exponentially 
small worlds” and bifurcations for the averaged large- 
scale distributions of fluorescing DNA are unknown. It’s 
not epigenetics. 

6. Diversity and “Exponentially Small  
Worlds” fo

Proposed criteria a good and bad health can to use fo
finition a diagnosis and estimation of health not only a 
man. Let us consid

dative activity of DNA inside chicken erythrocytes in the 
blood of young hens and roosters. Preparation and meas- 
urements fluorescence of chicken erythrocytes is the 
same than fluorescence of human neutrophils. Two ex- 
amples of typical cytometry histograms for young birds 
are shown in Figure 9. 

Initially we offered that in our experiments participate 
only healthy chickens. We were sure that we are dealing 
only with healthy birds. 

Figures 9(c) and (d), where observed two types of 
positive and negative trends in topology of DNA net- 
works, as for good and bad health of human in Figures 2, 
5 and 8 shows that it is not so. 

In Figures 9(a) and (b) multiple peaks (maxima) cor- 
respond to different cell adhesion complexes of several 
cells. Adhesion complexes of 

 the structure of networks of DNA fluorescence and in 
the structure of biodiversity E(r) of cells in Figure 10. 

Here more diverse adhesions of cells lead to increasing 
of Shannon-Weaver biodiversity E(r). Actual biodiver- 
sity for lonely erythrocytes of chickens is less than 

gure 10. Nevertheless, the main features of classifica- 
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(c)                          (d) 

Figure 9. Characteristics fluorescing chicken erythrocytes
in the blood of two chickens: dependence of normalize
frequency dist tensity I (a) 

 
d 

ribution of flashes P(I) on their in
and for clearest only central part of histogram (b) for two 
chickens; first chicken has symbol cross. Common number 
of flashes is N0 = 20,363; second chicken has symbol red 
ring. Common number of flashes is N0 = 25,306; (c) De- 
pendence of Hurst index H(r) on logarithm of range r in 
networks of DNA fluorescence with different scales; (d) De- 

pendence of    r D rln ln  on double logarithm of range 

r in multi-scale networks of “real worlds” and in networks 
of “exponentially small worlds”; ideal network of “exponen- 
tially small wo  fractals (D = 2), corresponds to rlds”, without
violet line with round dots; overall trends as the linear ap- 

proximations of     r D r = A r + Bln ln lnln  presented 

here as the equations for dash-and-dot lines in networks of 
“exponentially small worlds”. 
 
tion of health of young birds based on fluorescing DNA 
inside chicken erythrocytes in Figures 9(c), (d) and 10 

milar to those of the classification of human health for si
fluorescing DNA inside human neutrophils in Figures 2, 
5 and 8. Positive and negative trends in topology, Good 
and Bad DNA Network in chicken erythrocytes are de- 
fined as for human neutrophils. These responses reflect 
the common estimations of chicken immunity, including 
hidden and unidentified diseases, as for common sum of 
all kinds of health and illness. 
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Figure 10. Dependences of Shannon-Weaver biodiversity 
E(r) of chicken erythrocytes on logarithm of range r; cross 
and ring points corresponds to unhealthy and healthy chick

Figures 9(c) and (d) also define networks of DNA activ- 
ity

 is 
co

ords, neutrophils are familiar and are meeting 
ception, local inflammations, viruses 
 results of their activities and other 

for DNA activity inside neutrophils, in various local and 

f real situation in health status from violet 
st

ner life; various populations of neutrophils, liv- 
in

ng overall immunity condition at 
m

of information 
th

- 
ens; initial histograms see in Figures 9(a) and (b). 

 
According to Figure 10 dependences of biodiversity 

E(r) on scale r are monotonic and E(r) ~ lnr. Therefore, 

 in the dependence on biodiversity E(r) of erythrocytes 
inside chicken body. Main results for fluorescing DNA in 
human neutrophils may to apply to assess the health 
status of chicken at analysis of fractal networks of fluo- 
rescing DNA inside chicken erythrocytes. Therefore, 
these approaches are useful for veterinary medicine.  

Thus, large-scale fractal networks for fluorescing 
DNA in neutrophils and erythrocytes of healthy and un- 
healthy humans and birds are similar. This universality

nnected with the proximity of networks of “real 
worlds” for oxidative activity of chromosomal DNA in 
the living cells to standards of “exponentially small 
worlds”. Here observed also similarity in the character of 
topology trends and deviations from ideal networks of 
“exponentially small worlds” for a good and bad health 
of different humans and different birds. Thus, we may to 
propose that 3D oxidizing activity of real nuclear DNA 
for complete set of chromosomes inside cells has some 
universality in the structure and behavior of large-scale 
correlations for all healthy and unhealthy humans and 
beings.  

7. Conclusions 

In other w
with all, without ex
and bacteria, many
inhabitants of human body, biography, heredity, daily 
life, traditions and structures of master’s biology, archi- 
tecture and geography for flora and fauna entire ecology 
and physiology of inner life of human and all its agencies 
and organs. These knowledge and communications are 
reflected in changeable structures of large-scale networks 

individual deformations of correlations in densely pack- 
ing fractal networks of “exponentially small worlds”, as 
it is shown in Figures 5, 8 and 9. This response includes 
the presence of all kinds of health and illnesses, includ- 
ing hidden and unidentified diseases. This response re- 
flects overall estimation of immunity, like for a common 
sum dominating of influences of positive (good health) 
or negative (illness) reactions of a given person, from the 
point of view the inner life of neutrophils’ community, 
living in different parts of the human body in different 
conditions. 

Main peculiarities of typical distributions for a good 
and bad health are described like “n” and “s” shaped 
curves in Figures 2, 5 and 8, as two typical classes of 
deviations o

raight line in networks of “exponentially small worlds” 
in Figure 8, which play the role not existing, perfected 
ideal of absolutely good health. The values of inclination 
angles in these trends, i.e. values of A > 1 and A < 1 for 
lines of linear regression y = Ax + B in Figure 8, give 
very clear and rather simple qualitative and detailed 
quantitative estimations of health, immunity and types of 
illness. 

Networks of DNA activity for a man with a good health 
in real life are personal and changeable in time, accord- 
ing to Figures 5(a) and 8(b). Here occurs serial changes 
in the in

g inside one and the same healthy human during one 
year, are shown in Figures 4, 5(a) and 8(b), at conserva- 
tion of a good immunity of human. The conservation of a 
good immunity of humanity is reflected in the stable be- 
havior of the negative trends and values of A < 1 for lin- 
ear regressions in Figures 5(a) and 8(b). Here exists also 
conservation of a rather high level of biodiversity of 
Shannon-Weaver in all populations of neutrophils, as it is 
shown in Figure 6(b). 

Shannon-Weaver index for biodiversity of neutrophils 
E(r), i.e. Shannon information entropy based on distribu- 
tion of oxidative activity of DNA inside cells, presents 
clear parameter reflecti

onitoring of health. Shannon information entropy E(r) 
for DNA activity in the full set of chromosomes is very 
important in the cell life. Networks of DNA activity in- 
side cell interconnected with ecological networks for 
cells’ communities, i.e. with networks of Shannon en- 
tropy. Higher values of information entropy or biodiver- 
sity E(r) are preferable for a good immunity. A poorness 
of information, communications or Shannon entropy re- 
stricts a life and development of human. 

There is an extremely dense packing of information on 
DNA activity inside cells. Currently, any other informa- 
tion networks, in nature or in computer and information 
systems, have much less dense packaging 

an new classes of densely packed “exponentially small 
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worlds” for oxidative activity of DNA inside cells, which 
are introduced here as experimental facts. These empiri- 
cal facts are illustrated here by the results of experimen- 
tal data analysis in Figures 8 and 9. These empirical 
facts define a very high density packaging of DNA activ- 
ity in the chromosomal networks, existing for ensuring 
life activity of cells. A level of complexity of these cor- 
relations in Figures 8 and 9 is very high; generalization 
of all fractal correlations exists only in the double-double 
(quadruple) logarithmic scale. One may say that these are 
ugly, bad pictures. Forming pictures in Figures 2, 5, 8 
and 9 associated with high compression of manifolds of 
diverse images and fractal correlations, with their frag- 
mentation and intermittency. Real traffic in complex 
networks never is smooth [15,16]. 

Here is the sign of a good health associated with the 
“s” shaped curves, in the chromosomal networks of “ex- 
ponentially small worlds” and with high Shannon- 
Weaver biodiversity of neutrophils, i.e. with rather high 
le

A networks, which are not
ne

je

dly providin
ex lso would be grateful researche

unology for kindly prov
rimental data from clinical 

s and Topology 
Trends for Oxidative Activity of DNA in Cells for Popu- 
lations of Fluor ical Diagnos- 
tics,” Physics  pp. 177-185. 

vel for Shannon entropy in the information activity of 
DNA inside cells. More simple criteria for classifying the 
General State of Health in the form of answer Yes/No or 
healthy/sick are based on positive or negative trends in 
fractal topology, i.e. positive dD/dr > 0 or negative dD/dr 
< 0 trends in multi-scale fractal networks at increasing of 
scale r in Figures 2 and 5, giving much less details. 
Good health of human also is reflected in the increasing 
of fractal dimensions D(r) with increasing of Shannon 
Weaver biodiversity E(r) ~ lnr of neutrophils. Bad health 
reflects the opposite trends. 

These topological and informational features of fractal 
patterns in large-scale packing of DNA activity inside 
cells reflect the experimental facts about two universal 
classes of Good and Bad DN  

eded in the existence of epigenetics or other hypotheses.  
Thus, complex networks, information entropy (Shan- 

non Weaver biodiversity) and fractals in large-scale in- 
formation structures of DNA activity inside cells belong 
to the basic target of identification and to the main ob- 

cts of study and analysis in diagnosing the life of cells, 
human health and human immunity. Here presented only 
the first steps to understanding of informational laws, 
patterns and functions of large-scale correlations for 
oxidative activity of DNA inside cells. 

To be continued.  
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