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Abstract 
 
As a set of supervised pattern recognition methods, support vector machines (SVMs) have been successfully 
applied to functional magnetic resonance imaging (fMRI) field, but few studies have focused on visualizing 
discriminative regions of whole brain between different cognitive tasks dynamically. This paper presents a 
SVM-based method for visualizing dynamically discriminative activation of whole-brain voxels between two 
kinds of tasks without any contrast. Our method provides a series of dynamic spatial discrimination maps 
(DSDMs), representing the temporal evolution of discriminative brain activation during a duty cycle and de-
scribing how the discriminating information changes over the duty cycle. The proposed method was applied 
to investigate discriminative brain functional activations of whole brain voxels dynamically based on a 
hand-motor task experiment. A set of DSDMs between left hand movement and right hand movement were 
reached. Our results demonstrated not only where but also when the discriminative activations of whole 
brain voxels occurred between left hand movement and right hand movement during one duty cycle. 
 
Keywords: Functional Magnetic Resonance Imaging, Principal Component Analysis, Support Vector    

Machine, Pattern Recognition Methods, Maximum-Margin Hyperplane 

1. Introduction 
 
Support vector machines (SVMs) [1-3] are a set of re-
lated supervised learning methods. A SVM has been ap-
plied to functional magnetic resonance imaging (fMRI) 
[4] data analysis [5-15]. Few of these studies have fo-
cused on assessing discriminative activation dynamically 
[6,11]. Mitchell et al. [6] used fMRI-sequence  1 2,t t , 
i.e., the sequence of fMRI images collected during the 
contiguous time interval  1 2,t t , as input to the classifier 
of different machine learning methods, including Gaus-
sian Naive Bayes (GNB), SVM and k Nearest Neighbor 
(kNN). Mourão-Miranda et al. [11] used a SVM termed 
a spatial–temporal SVM to obtain a dynamic discrimina-
tion map, i.e., for each time point or TR within the duty 
cycle, it shows the discriminating weight of each voxel. 
By using the approach it is possible to observe dynamic 
changes in the brain during the performance of a task or 

a cognitive state, and some more temporal brain activi-
ties were possibly explored. However, this method can 
not be adapted to fMRI data of a single object because, 
in general, the number of the spatiotemporal observa-
tions of single object is much smaller than that of the 
features (voxels) in a spatiotemporal observation, which 
makes the number of training samples (spatiotemporal 
observations) input to SVM is too small to train for a 
SVM-based classifier. 

In the present paper, basing on principal component 
analysis (PCA) [16,17] and SVM, a method was pro-
posed to investigate discriminative brain functional acti-
vations dynamically between different tasks based on a 
hand-motor task experiment. By using our method, a 
series of dynamic spatial discrimination maps (DSDMs), 
which represent the temporal evolution of discriminative 
brain activation during a duty cycle and describe how the 
discriminating information changes over the duty cycle, 
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were reached. The DSDMs allow us to visualize discri-
minative regions of whole brain between different cogni-
tive tasks dynamically without any contrast by using 
conventional method such as statistical parametric maps 
(SPMs) [4]. Moreover, our method is quite fit for a sin-
gle-subject case, thus could overcome the disadvantages 
described above. The proposed method was also applied 
to fMRI data of hand-motor experiment to investigate the 
discriminative activations of whole brain voxels dynam-
ically between left hand movement and right hand 
movement. 

This paper is organized as follows. In Section 2, we 
will give the SVM-based method. In Section 3, the pro-
posed method will be applied to fMRI data of left and 
right finger movement experiment. Some conclusions are 
drawn in Section 4. 
 
2. Methods 
 
2.1. Dimensionality Reduction 
 
First, PCA is a method that searches for directions which 
have the largest variance in the data and, using these, 
projects the data into a new orthogonal coordinate sys-
tem, the output is a lower dimensional representation of 
original data [14]. In the current study, PCA was applied 
only for data compression without losing the information. 
The PCA was performed on the selected data only for 
one subject and the training data were projected onto the 
resulting singular vectors or basis. For a detailed descrip-
tion of PCA, we refer to the literature [9]. 

Before the dimensionality reduction, the experimental 
data were preprocessed using SPM2 software (http:// 
www.fil.ion.ucl.ac.uk/spm). Reconstructed images were 
corrected for slice timing effects and motion artifacts, as 
well as transformed to standard space [18] at 3 × 3 × 3 mm3, 
and spatial smoothing with an isotropic Gaussian kernel 
of 8 mm FWHM was also performed to increase the MR 
signal-to-noise ratio. The baseline and linear detrench 
components were removed by applying a regression 
model for each voxel. Finally, a mask which contains 
brain tissue for all subjects was applied to select voxels.  

Let D be the M × N preprocessed fMRI data matrix 
with one volume per column and one voxel per row 
( M N ). Let  c 1 ID iV V V    be D with the av-
erage volume of the data set subtracted from each col-
umn, where the submatrix  i 1i ti Ti , , , , V v v v    
( 1,2, ,i I  ) (T = 20) presents continuous observations 
(Figure 1) within duty cycle i [11] with each column 

 ti 1i1 jti Mti , , , , v v v v     being a vector representing 
a volume at time point t in the duty cycle i, jtiv  is the 
centered data signal of the voxel j at time point t in 

duty cycle i. M, T and I are the number of brain voxels, 
time point within a duty cycle and duty cycles, respec-
tively. The letter “ ' ” presents the transposition. Since Dc 
only has N nonzero eigenvalue-associated principal vec-
tors  i i,1 i,2 i,M, , , 'e e e e  , after PCA decomposition, 
Dc can be losslessly compressed into a N × N matrix Dc 
by p

cD E '*Dc , where  1 2E , , , Ne e e  . Let p
cD   

 1 i, , , ,p p p
IV V V  , where  i 1i ti Ti , , , , p p p pV v v v   , 

 ti 1i1 nti Nti , , , , p p p pv v v v    with N dimension was the 

projection of the volume  ti 1i1 jti Mtiv  , , , , v v v     
with M dimension. 
 
2.2. Support Vector Machines 
 
Support vector machines (SVM) [1-3] are supervised 
learning methods, which have been applied to fMRI data 
[5-14]. The main idea of SVM is to find the maxi-
mum-margin hyperplane (defined by the normal w and 
the distance to the origin of the multi-dimensional space 
b) which divides the points having 1iy   (class 1) from 
those having 1iy    (class 2). 

The primal form is that the data is linearly separable. 
The problem of finding the optimal separating hyperplane 
can be expressed by the following optimization problem: 

Minimize              
21

2 w               (1) 

s.t.              1,  1i iy w x b i N     ，     (2) 

where x y  define the inner product of x and y. 
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Figure 1. A spatiotemporal observation in eigen space. In 
the eigen space, a single spatiotemporal observation, e.g., 

  , , , , 
   1i ti TiV  p p p p

sti v v v , is a vector consisted of T = 20 

projected vectors of volumes within duty cycle i, which 
comprises a task block (10 volumes) and the following rest 
block (10 volumes). 
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In the general case of overlapping classes the problem 
of finding the optimal separating hyperplane that max-
imizes the distance to the nearest training points of the 
two classes is defined as the following optimization 
problem: 

Minimize        
21

2 i
i

w C                (3) 

s.t.         1 ,  1i i iy w x b i N             (4) 

and              i 0,  1 .i N                (5) 
where i 0,  1 i N     are slack variables that account 
for training errors and C is a positive real constant ap-
pearing only as an additional constraint on the Lagran-
gian multipliers. 

Both cases above can be translated into their uncon-
strained dual form. By using Lagrangian multiplier me-
thod, the solution can be found as [2]: 

1

,
N

i i i
i

w y x


                 (6) 

where 0i   is the Lagrangian multiplier, which is 
constrained by 0i iy  . The points with 0i   are 
called “support vectors”, which lie in the supporting 
hyperplane. For any other points, 0i  . In fMRI neu-
roimaging field, w represents a map of the most discri-
minating regions, i.e., a discriminating volume [9,10] or 
a spatial discriminance map [12]. Given two classes, task 
1 and task 2, with the labels +1 and −1, a positive value 
in the map means that this voxel has higher activity dur-
ing task 1 than during task 2 in the training examples that 
contribute most to the overall classification, i.e., the 
support vectors; negative value means lower activation 
during task 1 than task 2. For a detailed theory of SVM, 
we refer to the literatures [1-3,19]. 

In the present work, a linear SVM is used to determine 
a weight vector pw  (corresponding to a hyperplane in 
eigen space) comprising discriminative information of 
spatiotemporal observations in eigen space. The input to 
SVM is the examples of the form ,i ix y , where ix  
represents a spatiotemporal observation in eigen space 
(see Figure 1) and iy  is the task label ( 1iy   for right 
hand movement task cycle (task 1) and 1iy    for left 
hand movement task cycle (task 2)). 

A spatiotemporal observation in eigen-space is de-
scribed in Figure 1. In the eigen space, a single spati-
otemporal observation, .g.,  p

1i ti Ti', , ' , , 'p p p
stiV v v v    , 

is a vector consisted of 20T   projected vectors of 
volumes within duty cycle i, which comprises a task 
block (10 volumes) and the following rest block (10 vo-
lumes). The spatiotemporal data are represented by a 

1 2d d  matrix  21, , , ,p p p p
st st sti stdD V V V    called spa-

tiotemporal observation matrix, where 1 *d T N  is the 
number of voxels in a spatiotemporal observation and 

2 1d I   is the number of the spatiotemporal observa-

tions. 
 
2.3. Dynamic Spatial Discrimination Maps 
 
Once the weight vector pw is trained, let pw   

 1 2 , ,p p p
Tw w w

  ， , we can project 1 2 , ,p p p
Tw w w，  back 

into the original fMRI data space by  1 2 Tw w w   

 1 2* *P p p p
TW E W E w w w   . Each  i 1, ,w i T   

represents a map of the most discriminating regions, i.e., 
a discriminating volume [9,10] or a spatial discriminance 
map (SDM) [12]. All weight vectors 1 2 Tw w w  were 
normalized to have the same scale. Thus, we obtained a 
dynamic spatial discrimination maps (DSDMs) 1 2, , , Tw w w . 

As a nonparametric technique, permutation test [20] 
has been previously applied to fMRI data analysis. This 
technology was used to determine the threshold of the 
DSDMs. Firstly, we applied the proposed method to the 
training data, i.e., the spatiotemporal observations in ei-
gen space, and obtain the normalized weight vector w 
(Figure 2), which contained the DSDMs 1 2, , , Tw w w  
as its sub-blocks. Then under the null hypothesis of no 
relationship between the class labels and the global 
structure of the spatiotemporal observations in eigen 
space, the class labels were permuting 2000 times ran-
domly and each time our method was applied to the spa-
tiotemporal observations with this permutation of labels 

to produce a normalized weight vector  * 1, ,2000iw i   . 

These produced normalized weight vectors  * 1, ,2000iw i    
were used to evaluate the null distribution of w. Lastly, 
for each element ijw  (related to a voxel) in the weight 
vector w, count the number of elements at the j-th posi-
tion of all *

iw  which are greater (in absolute values) 
than ijw . This result divided by 2000 is regarded as the 
p-value for this voxel. All significant voxels under 
p-values < 0.001 were displayed in the DSDMs (corres-
ponding to the scaled weight vectors 1 2, , , Tw w w ) by 
the values in the weight vector w. 
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Figure 2. Steps for obtaining dynamic spatial discrimina-
tion maps (DSDMs). 
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The performance of the classifier was estimated using 
the conventional leave-one-out cross-validation test [21]. 
Leave-one-out cross-validation test was applied to test 
the performance of SVM-classifier in some previous 
fMRI studies [9-14]. In the present work, 50 percent of 
all the spatiotemporal observations in eigen space are 
used for training the classifier and the rest is used for 
evaluating the classier. 

Our method described above can be summarized in 
Figure 2. 
 
3. Application to fMRI Dataset 
 
3.1. Hand Movement Dataset 
 
Four male and two female subjects with age range 19-25 
years participated in this fMRI study after giving in-
formed consent approved by local Institutional Review 
Board approval. All subjects were right-handed with 
normal or corrected-to-normal visual acuity. None had a 
history of any neuropsychiatric disorders. 

The experiment was conducted at the University of 
Texas Health Science Center in San Antonio, Texas, 
with Siemens 3-T Magnetom Trio. The echo planar im-
aging (EPI) settings were as follows: repetition time = 
2000 ms; matrix size = 64 × 64; voxel size = 3.75 × 3.75 
× 4 mm; echo time = 30 ms; flip angle = 90. The first 
four scans of each run were discarded to allow for mag-
netic saturation effects. 
 
3.2. Experimental Design 
 
Stimuli were presented in a blocked fashion. There were 
two different active conditions: left hand movement and 
right hand movement，and a control condition (rest). The 
subjects were required to concentrate on the fixation 
cross in control condition and to move their right hand 
only when the symbol R was presented but to move their 
left hand only when the symbol L was presented. Each 
run comprised 16 blocks and each block lasted 20 
seconds (20 seconds for rest, 20 seconds for right hand 
movement, 20 seconds for rest, 20 seconds for left hand 
movement, orderly and alternately). Before the fMRI 
experiment, subjects were trained for about 1 hour to 
ensure that they could perform the task correctly. 
 
4. Results 
 
4.1. Statistic Parametric t-Maps (SPMt) 
 
The results of statistical parametric t-maps between left 
hand movement and right hand movement block (right 
hand movement > left hand movement) were obtained by 
performing the general linear model (GLM) [4] analysis 

using SPM2 (http://www.fil.ion.ucl.ac.uk/spm). All vox-
els with the absolute t-value above the threshold 5.85 (p 
< 0.001, corrected) were shown in Figure 3 with color 
scale (light/dark blue for negative values and red/orange 
for positive values). Correspondingly, the active regions, 
the Talairach coordinates of voxel with maximum t-value, 
cluster size and the Brodman area of active voxels for 
left hand movement and right hand movement were de-
scribed in Table 1, where the regions only with cluster 
size > 10 were displayed. 
 
4.2. Dynamic Spatial Discrimination Maps 
 
For each of the six subjects, our method was applied to 
produce a sequence of 20 dynamic spatial weight vectors 
(scaled to the range from –1.0 to 1.0 by each element of 

 

 

Figure 3. SPM t-maps (right hand movement > left hand 
movement). All voxels with absolute t-value above of 5.85 (p 
< 0.001, corrected) are shown in color scale (light/dark blue 
for negative values and red/orange for positive values). 

 
Table 1. Active regions in SPM t-maps (right hand move-
ment > left hand movement). Regions only with absolute 
t-value > 5.85 (p < 0.001, corrected) and cluster size >10 are 
displayed. 

T DRN TAL BA CSV PVW 

R

Cerebelum 
_4_5_R 

18, –50, –15 18 19 30 37 60 9.4338

Cerebelum 
_6_R 

21, –50, –18 18 19 37 71 9.2102

Fusiform_R 27, –53, –12 19 37 19 7.2989

Lingual_R 9, –64, –7 17 18 31 8.2081

Postcentral_L –36, –18, 51 3 4 6 107 10.7905

Precentral_L –33, –17, 67 3 4 6 400 14.5783

Vermis_4_5 6, –62, –7 18 11 8.1849

Vermis_6 6, –64, –7 17 18 24 8.1835

L
Postcentral_R 39, –26, 65 3 4 6 131 –11.1386

Precentral_R 42, –23, 65 3 4 6 268 –11.5902

Abbreviations: R = Right hand movement; L = Left hand movement; T = 
Task; DRN = Discriminative regions name; CSV=Cluster size (voxels); 
PVW = Peak value (weight); TAL = Talairach coordinates; BA = Brodman 
area. 
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a vector dividing the maximum absolute value of all the 
weight vectors), which can be termed as “dynamic spa-
tial discrimination maps” (DSDMs) to differ “dynamic 
discrimination map” [11]. Figures 4(a), (b), (c) and (d) 
showed the DSDMs of a single subject. All Voxels with 
p-value < 0.001 are shown in color scale corresponding 
to the values in each weight vector  i 1, ,w i T  . The 
color scale identifies the most discriminating regions for 
each time point (light/dark blue for negative values, i.e., 
relatively more activation for left hand movement, and 
red/orange for positive values, i.e., relatively more acti-
vation for right hand movement). The first 10 rows 
(Figures 4(a) and (b)) correspond to time points during 
left hand movement and right hand movement (Figure 

4(a): 2-12s, Figure 3(b): 14-20s) and the following 10 
rows (Figures 4(c) and (d)) correspond to time points 
during rest condition. 

The DSDMs described how the discriminating infor-
mation changes over one duty cycle. It can be seen from 
Figure 4 that no voxels with a highly discriminating 
weight were found at 2 s. At 4s the first discriminating 
areas between left hand movement and right hand 
movement appear in red and blue, increase continuously 
until the fifth or sixth TR and decrease after the end of 
the image presentation. At 26 s few discriminating vox-
els in primary motor cortex appeared and disappeared 
completely at 28 s until 40 s. There is a 4-6 s BOLD sig-
nal delay (Figure 4(c)). 

 

 
(a)                                     (b) 

 
(c)                                      (d) 

Figure 4. Dynamic spatial discrimination maps (DSDMs) of a single subject between left hand movement and right hand 
movement. All voxels with p-value < 0.001 are shown in color scale corresponding to the values in the weight vector 
(light/dark blue for negative values, i.e., relatively more activation for left hand movement, and red/orange for positive values, 
i.e., relatively more activation for right hand movement). 
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It is possible to observe how the primary motor cortex 

discriminates between left hand movement and right 
hand movement through time. Figure 5 shows that more 
discriminating voxels for right hand movement than those 
for left hand movement appear at all time points from 2 s 
to 24 s, which suggests asymmetrical cortical activities in 
left and right hemispheres of brain in a way. 
 
4.3. Performance of Classifier 
 
Repeating the leave-one-out cross-validation test [21] 1000 
times, we got the classifier performance of 88 ± 5.1%. 
 
5. Discussion 
 
In this paper, a new neuroscience imaging method de-
scribed in Figure 2 was proposed to investigate discri-
minative brain functional activations of whole brain vox-
els dynamically based on a hand-motor task experiment. 
Our method could produce a set of DSDMs representing 
the temporal evolution of discriminative brain activation 
during a duty cycle dynamically. The proposed method 
extended the ability of present SVM-based methods not 
only on visualizing discriminative brain regions between 
different tasks but also being suit to a case of single sub-
ject. Our method focuses on the discriminative activa-
tions of whole brain voxels between two different cogni-
tive or motor tasks dynamically. 

There are two main advantages in our method. One is 
that a set of so called DSDMs could be reached by our 
method. The DSDMs allow us visualizing dynamically 
regions of whole-brain discriminative activation between 
two kinds of tasks without any contrast by using conven- 
tional method such as SPMs [4,22]. Basing on fitting a 
GLM to each voxel’s time series independently, SPMs 
[4,22] shows differences in blood oxygenation level- 
dependent (BOLD) response between tasks and the esti-
mated significance of these differences. The SPM t-con- 
trast was performed between left hand movement and 
right hand movement (right hand movement > left hand 
movement). The SPM t-maps (Figure 3) between left 
hand movement and right hand movement were obtained 
and the active regions were displayed in Table 1. 

The other is that our method is fit for a single subject 
case. By using PCA-based dimension reduction, the spa-
tiotemporal observations in eigen space (Figure 1) of a 
single subject allow SVM to train a classifier. Previous 
method constructed a spatiotemporal observation in saw 
data space [11]. However, this method can not be 
adapted to fMRI data of a single object because, in gen-
eral, the number of the spatiotemporal observations of 
single object is much smaller than that of the features 
(voxels) in a spatiotemporal observation, which makes 

the number of training samples input to SVM is too 
small to train for the classifier of SVM. The proposed 
method could overcome this disadvantage. For the just 
reason, we only display the results of a single subject 
instead of that of multi-subjects. 

A spatial and temporal response factorization was also 
performed similar to the method described by Mourão- 
Miranda et al. [11]. Some previous studies have assessed 
formally the issue of separability [11,23]. Spatiotemporal 
factorization is an assumption implicit in conventional 
unsupervised approaches like ICA. The spectrum of ei-
genvalues obtained by PCA decomposition of the spati-
otemporal weight vectors (corresponding to DSDMs) is 
presented in Figure 6. The first mode is higher than the 
second, the second mode is higher than the third, the 

 

 

Figure 5. The number of discriminative voxels in primary 
motor cortex with left hand movement and right hand 
movement during one duty cycle. 

 

 

Figure 6. Normalized eigenvalues of the spatiotemporal 
weight vectors. 
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third mode is higher than the fourth and the fourth mode 
is higher than the fifth, the latter is higher than others, 
which suggest some degree of space time separability 
between the first five dynamic spatial discrimination 
maps. The results suggest that joint spatiotemporal anal-
ysis yields significant extra information over the separate 
spatial and temporal analysis. 

The proposed method was applied to fMRI data of 
hand movement experiment. A series of DSDMs (Figure 
4) were reached, which display discriminative regions 
over one duty cycle between left hand movement and 
right hand movement dynamically with p-value < 0.001. 
The DSDMs contains a lot of discriminating information 
between left hand movement and right hand movement. 
Firstly, the DSDMs demonstrated when the discrimina-
tive activations of whole brain voxels occurred and dis-
appeared between left hand movement and right hand 
movement during one duty cycle. There were no discri-
minating voxels at 2 s. At 4s the first discriminating areas 
between left hand movement and right hand move- ment 
appeared (Figure 4(a)). Secondly, the DSDMs also 
demonstrated where the discriminative activations of 
whole brain voxels occurred. The main discriminating 
areas were primary motor cortex (M1). There were more 
activations in M1 of the right hemisphere when left hand 
movement while more activations in M1 and cerebelum 
of the left hemisphere when right hand movement. There 
were no discriminative activations in the supplementary 
motor area (SMA). This result is consistent with that by 
Sato et al. [14]. In addition, the DSDMs described how 
the discriminating information changes over one duty 
cycle. The discriminating areas between left hand move- 
ment and right hand movement increased continuously 
from the second TR to the fifth or sixth TR and de-
creased after the end of the image presentation and dis-
appeared completely at 28 s until 40 s (Figures 4(c) and 
(d)). There was also a 4-6 s BOLD signal delay (Figures 
4(a) and (c)). 

The discriminative regions in the 5th spatial discrimi-
nation map (at 10 s) with p-value < 0.001 and cluster size 
of voxels > 10 between left hand movement and right 
hand movement are also given in Table 2. 

It is possible to observe how the primary motor cortex 
discriminates between left hand movement and right 
hand movement through time. Figure 5 shows that more 
discriminating voxels for right hand movement than 
those for left hand movement appear at all time points 
from 2 s to 24 s, which suggests asymmetrical cortical 
activities in left and right hemispheres of brain in a way. 

Furthermore, the asymmetrical cortical activities in 
left and right hemispheres of brain [24] were implied in 
the DSDMs. It can be observed from Figure 5 that there 
are more discriminating voxels for right hand movement  

Table 2. Brain discriminative regions in the 5th spatial dis-
crimination map (at 10 s) between left hand movement and 
right hand movement. The regions only with p < 0.001 and 
cluster size > 10 are displayed. 

T DRN TAL BA CSV PVW

R

Cerebelum_6_R 33, –68, –14 18 19 41 0.3897

Cerebelum_Crus1_L -30, –85, –13 18 19 22 0.2529

Cerebelum_Crus1_R 36, –82, –14 18 19 22 0.3132

Frontal_Sup__L –30, –5, 67 6 14 0.2732

Fusiform_R 33, –68, –12 18 19 70 0.5181

Lingual_L –21, –88, –11 18 19 22 0.2532

Lingual_R 36, –85, –11 17 18 19 74 0.3506

Occipital_Inf_R 36, –67, –7 18 19 36 0.3291

Paracentral_Lobule_L –15, –11, 72 3 4 5 6 29 0.461

Parietal_Sup_L –24, –46, 69 1 2 5 7 40 59 0.356

Postcentral_L –45, –15, 56 1 2 3 4 6 7 127 0.5403

Precentral_L –33, –14, 67 3 4 6 368 1 

Precuneus_L –6, –43, 68 1 3 5 7 116 0.3354

Vermis_6 6, –64, -4 17 18 10 0.2647

L
Postcentral_R 39, –26, 65 1 2 3 4 6 133 –0.588

Precentral_R 39, –23, 65 3 4 6 163 –0.5268

Abbreviations: R = Right hand movement; L = Left hand movement; T = 
Task; DRN = Discriminative regions name; CSV = Cluster size (voxels); 
PVW = Peak value (weight); TAL = Talairach coordinates; BA = Brodman 
area. 

 
than for left hand movement at all time points from 2 s to 
24 s.  

In conclusion, a SVM-based method presented in this 
paper could produce a set of DSDMs, which allow visua-
lizing discriminative activation of whole-brain voxels 
dynamically between different tasks over a duty cycle 
without any contrast by using conventional method such 
as SPM [4,22]. Moreover, our method is adapted to 
fMRI data of a single-subject. The results can be further 
input to a population inference [24]. The proposed me-
thod is useful to detect the discriminative brain function-
al activations between complex cognitive tasks dynami-
cally without any contrast. 
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