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ABSTRACT 

In recent time, hardy integral inequalities have received attentions of many researchers. The aim of this paper is to ob-
tain new integral inequalities of hardy-type which complement some recent results. 
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1. Introduction 

The classical hardy integral inequality reads: 
Theorem 1 Let  f x

0,
 be a non-negative p-integrable 

function defined on  , and . Then,  is 
integrable over the interval 

 1p  f
 0, x  for each x  and the 

following inequality: 
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   (1) 

holds, where 
1

p
p

p

 
  

 is the best possible constant (see 

[1]). 

This inequality can be found in many standard books 
(see [2-7]). Inequality (1) has found much interest from a 
number of researchers and there are numerous new 
proofs, as well as, extensions, refinements and variants 
which is refer to as Hardy type inequalities. 

In the recent paper [8], the author proved the following 
generalization which is an extension of [9]. 

Theorem 2 Let   p f x L X ,    qg x L X  and 
 pfg L X  be finite, non-negative measurable func-  

tions on  0, , 0 t a b      and 
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1
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with 1 p q     such that a x . Then, the fol- 
lowing inequality holds: 
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[10] also proved the following integral inequality of 
Hardy-type mainly by Jensen’s Inequality: 

Theorem 3 Let g  be continuous and nondecreasing  

on  ],,[ ba 0 ,a b     with   0g x   for  Let 
 and 

0.x 
1q p   f x  be nonnegative and Lebesgue- 

Stieltjes integrable with respect to  g x  on  , .a b   

  is a real number such that 0,Suppose 
p

q


   

then 
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where, 
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Other recent developments of the Hardy-type inequa- 
lities can be seen in the papers [11-16]. In this article, we 
point out some other Hardy-type inequalities which will 
complement the above results (2) and (3). 

2. Main Results 

The following lemma is of particular interest (see also 
[8]). 

Lemma. Let , 1 b   1 p , 
1 1

1
p q
  , and let  

 f x
b

 be a non-negative measurable function such that  

 0 dp

a
f t t    . Then the following inequality holds: 
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Proof 
Let  
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by Holder’s inequality, we have, 
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We need to show that there exists 0 ,x a b  such 
that for any  0, x a x , equality in (4) does not hold. If 
otherwise, there exist a decreasing sequence  n n

x
N

 in 
,  ,a b nx a

n

 such that for  the inequality (4), 
written 

nN
x x , becomes an equality. Then, to every 

 there correspond real constants  and   nN nc nd 0

not both zero, such that  
1 1p q
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n nc t f t d t

   
   

      
 almost  

everywhere in  ,nx b . 

There exists positive integer N such that for 
 > , 0n N f t   almost everywhere in (x,b). Hence, 
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This contradicts the facts th  . 
The lemma is prov

 0 d
b p

a
f t t 

Theorem 4 Let   p f x L X ,    qg x L X  be 
finite non-negative measurable functions on  0, ,  

0 a t b     and 
1 1 1

1
p q r

 with 1   p q     

such that a x b  , then the following inequality holds: 
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where C is as stated in the statement of the theorem and 
this proves the theorem. 

The next results are on convex functions as it applies 
to Hardy-type inequalities. 

Lemma. local minimum of a function f is a global 
minimum if and only if f is strictly convex. 

Proof 
The necessary part follows from the fact that if a point 

x  is a local optimum of a convex function . Then f
   f z f x  for any z  in some neighborhood  of U

x . For any , y  1 yz x    belongs to U  and 
1   sufficiently close to 1  i plies that m x  is a global 

optimum. For the sufficient part, we let f  be a trictly 
convex function with convex domain. Suppose f  has a 

al minimum at a  and  suc  that a b

 s

loc  b h   and 
assuming    f a f  strict convexity and for any 
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b

f

. 
Hence,  does not have a local minimum at , a con- 
tradiction. It must be that , this shows that  has 
at most one local minimum. 

f
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Lemma. Let  and . If 0 b   a c       
is a positive convex function on (a,c), then 
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Hence the proof. 
Lemma. Let  be non-negative for ,  ,h x t , 0x t 

  non decreasing and . then a b    
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Proof 
Let  be continuous and convex, If  has a con- 

tinuous inverse which is neccessarily concave, then by 

Jensen’s inequality we have 
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which we write as 
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Since   exf x   is a convex function, applying 
Jensen’s inequality to the above gives 
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The result follows. 
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Theorem 6 Let g be a continuous and nondecreasing 
on  ,a b

a t 
, , with  for  

and . Let 1  and 
0 a b   
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Applying Minkowski integral inequality to the right hand side implies 
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Hence, we have 
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Which complete the proof of the Theorem. 

. Conclusion 

This work obtained considerable improvement on Adeagbo- 
Sheikh and Imoru results and applications for measurable 

 also given. 
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