On Some Integral Inequalities of Hardy-Type Operators

Rauf Kamilu, Omolehin Joseph Olorunju, Sanusi Olatoye Akeem

Department of Mathematics, University of Ilorin, Ilorin, Nigeria Email: krauf@unilorin.edu.ng, omolehin_joseph@yahoo.com, sanusiakm@gmail.com

Received April 12, 2013; revised May 15, 2013; accepted June 18, 2013

Copyright © 2013 Rauf Kamilu *et al.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

In recent time, hardy integral inequalities have received attentions of many researchers. The aim of this paper is to obtain new integral inequalities of hardy-type which complement some recent results.

Keywords: Hardy's Inequality; Measurable; Weight Functions & Hardy-Type Operators

1. Introduction

The classical hardy integral inequality reads:

Theorem 1 Let f(x) be a non-negative p-integrable function defined on $(0,\infty)$, and p > 1. Then, f is integrable over the interval (0,x) for each x and the following inequality:

$$\int_{0}^{\infty} \left[\frac{1}{x} \left(\int_{0}^{x} f\left(y\right) dy \right) \right]^{p} dx \leq \left(\frac{p}{p-1} \right)^{p} \int_{0}^{\infty} f\left(x\right)^{p} dx \qquad (1)$$

holds, where $\left(\frac{p}{p-1}\right)^p$ is the best possible constant (see [1]).

This inequality can be found in many standard books (see [2-7]). Inequality (1) has found much interest from a number of researchers and there are numerous new proofs, as well as, extensions, refinements and variants which is refer to as Hardy type inequalities.

In the recent paper [8], the author proved the following generalization which is an extension of [9].

Theorem 2 Let $f(x) \in L^{p}(X)$, $g(x) \in L^{q}(X)$ and $fg \in L^{p}(X)$ be finite, non-negative measurable functions on $(0,\infty)$, $0 < t < a < b < \infty$ and $\frac{1}{p} + \frac{1}{q} + 1 = \frac{1}{r}$ with 1 such that <math>a < x < b. Then, the following inequality holds:

on [a,b], $0 \le a \le b < \infty$, with g(x) > 0 for x > 0. Let

 $q \ge p \ge 1$ and f(x) be nonnegative and Lebesgue-Stieltjes integrable with respect to g(x) on [a,b].

Suppose δ is a real number such that $\frac{-p}{a} < \delta < 0$,

$$\left[\int_{a}^{b}\left(\frac{1}{x^{q}}\left(T\left(fg\right)^{q}\right)\mathrm{d}x\right)\right]^{\frac{r}{q}} \leq C\left[\left(\int_{a}^{b}t^{(p-1)}\left|f\left(t\right)\right|^{p}\mathrm{d}t\right)\left(\int_{a}^{b}t^{(p-1)}\left|g\left(t\right)\right|^{p}\mathrm{d}t\right)\right]^{r}$$

where,

$$C = \frac{(b-t)^{1-r}}{1-r} \left[\ln \left| \frac{(b-t)}{a} \right|^{\frac{1}{p^2}} + \left[\frac{1}{p^2 (1-r)} \right] \left(\sum_{k=0}^{\infty} \sum_{n=1}^{\infty} (-1)^{k+1} (n-1) - (k-1) (p^2 + 1) \right) \ln \left[\frac{(b-t)}{a} \right]^R \right]$$

and

$$R = \frac{1}{p^2} \sum_{k=0}^{\infty} \sum_{n=1}^{\infty} \left(n - k \left(p^2 + 1 \right) \right) \quad \forall k \left(1 \right) n.$$

[10] also proved the following integral inequality of Hardy-type mainly by Jensen's Inequality:

Theorem 3 Let g be continuous and nondecreasing

$$\int_{a}^{b} g\left(x\right)^{\frac{\delta q}{p}} \left(\int_{a}^{x} f\left(t\right) \mathrm{d}g\left(t\right)\right)^{q} \mathrm{d}g\left(x\right)^{\frac{1}{q}} \leq C\left(a,b,p,q,\delta\right) \left[\int_{a}^{b} g\left(x\right)^{\left(p-1\right)\left(1+\delta\right)} f\left(x\right)^{p} \mathrm{d}g\left(x\right)^{\frac{1}{p}}$$
(3)

then

Copyright © 2013 SciRes.

(2)

where,

$$C(a,b,p,q,\delta) = (-\delta)^{\frac{q(1-p)}{p}} \left(\frac{p}{p+\delta q}\right)^{\frac{p}{q}}$$
$$\cdot g(b)^{p+\delta q} \left(g(b)^{-\delta} - g(a)^{-\delta}\right)^{\frac{q}{p}(p-1)} > 0.$$

Other recent developments of the Hardy-type inequalities can be seen in the papers [11-16]. In this article, we point out some other Hardy-type inequalities which will complement the above results (2) and (3).

2. Main Results

The following lemma is of particular interest (see also [8]).

Lemma. Let $1 < b < \infty$, 1 < p, $\frac{1}{p} + \frac{1}{q} = 1$, and let f(x) be a non-negative measurable function such that $0 \le \int_a^b f^p(t) dt < \infty$. Then the following inequality holds:

$$\left(\int_{x}^{b} f(t)^{q} dt\right)^{\frac{1}{q}} < \left(p_{\sqrt{p}}^{2} \left| \ln \frac{b}{x} \right| \right)^{(p-1)^{2}} \left(\int_{x}^{b} t^{p-1} f(t)^{\frac{p^{2}}{p-1}} dt\right)^{\frac{1}{p}}$$
(4)

Proof

Let

$$I = \left(\int_{x}^{b} f(t)^{q} dt\right)^{\frac{1}{q}},$$

then,

$$I = \left[\int_{x}^{b} t^{\frac{1}{q}} f(t)^{q} t^{-\frac{1}{q}} dt\right]^{\frac{1}{q}}$$

by Holder's inequality, we have,

$$I \leq \left(\int_{x}^{b} t^{\frac{p}{q}} f(t)^{pq} dt\right)^{\frac{1}{pq}} \left(\int_{x}^{b} t^{-1} dt\right)^{\frac{1}{q^{2}}}$$
$$= \left(p\sqrt[p]{\left|\ln\frac{b}{x}\right|}\right)^{(p-1)^{2}} \left(\int_{x}^{b} t^{p-1} f(t)^{\frac{p^{2}}{p-1}} dt\right)^{\frac{1}{p}}$$

We need to show that there exists $x_0 \in (a,b)$ such that for any $x \in (a, x_0)$, equality in (4) does not hold. If otherwise, there exist a decreasing sequence $(x_n)_{n \in \mathbb{N}}$ in (a,b), $x_n \searrow a$ such that for $n \in \mathbb{N}$ the inequality (4), written $x = x_n$, becomes an equality. Then, to every $n \in \mathbb{N}$ there correspond real constants c_n and $d_n \ge 0$ not both zero, such that $c_n \left[t^{\frac{1}{q}} f(t) \right]^p = d_n \left[t^{-\frac{1}{q}} \right]^q$ almost everywhere in (x_n, b) .

Copyright © 2013 SciRes.

There exists positive integer N such that for n > N, $f(t) \neq 0$ almost everywhere in (x,b). Hence, $c_n = c \neq 0$ and $d_n = d \neq 0$ for n > N, and also

$$\int_{a}^{b} f^{p}(t) dt = \lim_{n \to \infty} \int_{x_{n}}^{b} f^{p}(t) dt$$
$$= \frac{c}{1-p} \left(b^{1-p} - x_{n}^{1-p} \right) = \infty$$

This contradicts the facts that $0 < \int_{a}^{b} f^{p}(t) dt < \infty$. The lemma is proved.

Theorem 4 Let $f(x) \in L^{p}(X)$, $g(x) \in L^{q}(X)$ be finite non-negative measurable functions on $(0,\infty)$, $0 < a < t < b < \infty$ and $\frac{1}{p} + \frac{1}{q} + 1 = \frac{1}{r}$ with 1such that <math>a < x < b, then the following inequality holds:

$$\left[\int_{a}^{b} \frac{1}{x^{q}} \left(\int_{x}^{b} \left(fg\right)^{q} \mathrm{d}t\right) \mathrm{d}x\right]^{\frac{r}{q}} \leq C \left(\int_{a}^{b} t^{p-1} \left(fg\right)^{\frac{p^{2}}{p-1}} \mathrm{d}t\right)^{r}$$
(5)

where

$$C = \frac{(t-a)^{1-r}}{1-r} \left| \ln \left| \frac{b}{(t-a)} \right|^{\frac{2}{p-1}} + \frac{2}{(1-r)(p-1)} \left(\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} (n-1) - (k-1)p \right) \ln \left| \frac{b}{t-a} \right|^{R} \right]$$

and

$$R = \frac{1}{p-1} \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \left[\left(n+1 \right) - \left(k-1 \right) p \right] \quad \forall k (1) n$$

Proof

$$\begin{split} &\left[\int_{a}^{b} \frac{1}{x^{q}} \left(\int_{x}^{b} (fg)^{q} dt\right) dt\right]^{\frac{r}{q}} \\ &\leq \left[\int_{a}^{b} \frac{1}{x^{q}} \left(\int_{x}^{b} |f|^{q} dt\right) \left(\int_{x}^{b} |g|^{q} dt\right) dx\right]^{\frac{r}{q}} \\ &\leq \left[\int_{a}^{b} \frac{1}{x^{q}} \left(\ln\left|\frac{b}{x}\right|\right)^{\frac{2}{p-1}} \left(\int_{x}^{b} t^{p-1} (fg)^{\frac{p^{2}}{p-1}} dt\right)^{\frac{1}{p}} dx\right]^{\frac{r}{q}} \\ &= \left[\int_{a}^{b} x^{-q} \left(\ln\left|\frac{b}{x}\right|\right)^{\frac{2}{p-1}} \left(\int_{a}^{t} t^{p-1} (fg)^{\frac{p^{2}}{p-1}} dt\right)^{\frac{1}{p}} dx\right]^{\frac{r}{q}} \\ &\leq \int_{a}^{b} x^{-r} \left(\ln\left|\frac{b}{x}\right|\right)^{\frac{2}{p-1}} dx \left(\int_{a}^{b} t^{p-1} (fg)^{\frac{p^{2}}{p-1}} dt\right)^{r} \\ &= C \left(\int_{a}^{b} t^{p-1} (fg)^{\frac{p^{2}}{p-1}} dt\right)^{r} \end{split}$$

where C is as stated in the statement of the theorem and this proves the theorem.

The next results are on convex functions as it applies to Hardy-type inequalities.

Lemma. local minimum of a function f is a global minimum if and only if f is strictly convex.

Proof

The necessary part follows from the fact that if a point x is a local optimum of a convex function f. Then $f(z) \ge f(x)$ for any z in some neighborhood U of x. For any y, $z = \lambda x + (1-\lambda)y$ belongs to U and $\lambda < 1$ sufficiently close to 1 implies that x is a global optimum. For the sufficient part, we let f be a strictly convex function with convex domain. Suppose f has a local minimum at a and b such that $a \neq b$ and assuming $f(a) \le f(b)$. By strict convexity and for any $\lambda \in (0,1)$, we have,

$$f(\lambda a + (1-\lambda)b) < \lambda f(a) + (1-\lambda)f(b)$$

$$\leq \lambda f(b) + (1-\lambda)f(b) = f(b).$$

Since any neighborhood of *b* contains points of the form $\lambda a + (1 - \lambda)b$ with $\lambda \in [0,1]$, thus the neighborhood of *b* contains points *x* for which f(x) < f(b). Hence, *f* does not have a local minimum at *b*, a contradiction. It must be that a = b, this shows that *f* has at most one local minimum.

Lemma. Let $0 < b < \infty$ and $-\infty \le a < c \le \infty$. If φ is a positive convex function on (a,c), then

$$\int_{0}^{b} \varphi \left[\frac{1}{x^{q}} \int_{0}^{x} h(t) dt \right] dx$$

$$\leq \frac{1}{1-q} \int_{0}^{b} \varphi \left(h(t) \right) \left(b^{1-q} - t^{1-q} \right) dt$$
(6)

Proof

$$\int_{0}^{b} \varphi \left[\frac{1}{x^{q}} \int_{0}^{x} h(t) dt \right] dx \leq \int_{0}^{b} \frac{1}{x^{q}} \left(\int_{0}^{x} \varphi(h(t)) dt \right) dx$$

= $\int_{0}^{b} \varphi(h(t)) \left(\int_{t}^{b} \frac{1}{x^{q}} dx \right) dt = \int_{0}^{b} \varphi(h(t)) \left(\frac{b^{1-q} - t^{1-q}}{1-q} \right) dt$
= $\frac{1}{1-q} \int_{0}^{b} \varphi(h(t)) (b^{1-q} - t^{1-q}) dt$

Hence the proof.

Lemma. Let h(x,t) be non-negative for $x,t \ge 0$, λ non decreasing and $-\infty \le a \le b \le \infty$. then

$$\int_{a}^{x} h(x,t)^{1/pq} d\lambda(t)$$

$$\leq \left[\int_{a}^{x} d\lambda(t)\right]^{1-\frac{1}{p}} \left[\int_{a}^{x} h(x,t)^{1/q} d\lambda(t)\right]^{\frac{1}{p}}$$
(7)

Proof

Let Φ be continuous and convex, If Φ has a continuous inverse which is neccessarily concave, then by Jensen's inequality we have

$$\phi^{-1}\left[\frac{\int_{a}^{x}h(x,t)\mathrm{d}\lambda(t)}{\int_{a}^{x}\mathrm{d}\lambda(t)}\right] \geq \frac{\int_{a}^{x}\phi^{-1}[h(x,t)]\mathrm{d}\lambda(t)}{\int_{a}^{x}\mathrm{d}\lambda(t)}$$

Taking $\phi(u) = u^p$, $p \ge 1$, we obtain

$$\left[\frac{\int_{a}^{x}h(x,t)d\lambda(t)}{\int_{a}^{x}d\lambda(t)}\right]^{\frac{1}{p}} \geq \frac{\int_{a}^{x}h(x,t)^{\frac{1}{p}}d\lambda(t)}{\int_{a}^{x}d\lambda(t)}$$

for $1 \le p \le q$, we have

$$\left[\frac{\int_{a}^{x}h(x,t)^{\frac{1}{q}} \mathrm{d}\lambda(t)}{\int_{a}^{x} \mathrm{d}\lambda(t)}\right]^{\frac{1}{p}} \geq \frac{\int_{a}^{x}h(x,t)^{\frac{1}{pq}} \mathrm{d}\lambda(t)}{\int_{a}^{x} \mathrm{d}\lambda(t)}$$

which we write as

$$\int_{a}^{x} h(x,t)^{\frac{1}{pq}} \mathrm{d}\lambda(t) \leq \left[\int_{a}^{x} \mathrm{d}\lambda(t)\right]^{1-\frac{1}{p}} \left[\int_{a}^{x} h(x,t)^{\frac{1}{q}} \mathrm{d}\lambda(t)\right]^{\frac{1}{p}}$$

This complete the proof.

Theorem 5 If $0 < b \le \infty$ and $-\infty \le a < c \le \infty$, let f, g be defined on (0,b) such that a < f(x), g(x) < c, then

$$\int_{0}^{b} \exp\left[\frac{1}{x^{q}}\int_{0}^{x}\ln\left(fg\right)dt\right]dx$$

$$\leq \frac{e}{1-2q}\int_{0}^{b}t(fg)\left(b^{1-2q}-t^{1-2q}\right)dt$$
(8)

Proof

$$\int_{0}^{b} \exp\left[\frac{1}{x^{q}} \int_{0}^{x} \ln(fg) dt\right] dx$$

=
$$\int_{0}^{b} \exp\left(\frac{1}{x^{q}} \int_{0}^{x} \left(\ln t(fg) - \ln t\right) dt\right) dx$$

=
$$\int_{0}^{b} \left[\exp\left(\frac{1}{x^{q}} \int_{0}^{x} \ln t(fg) dt\right) \times \exp\left(\frac{-1}{x^{q}} \int_{0}^{x} \ln t dt\right)\right] dx$$

Since $f(x) = e^x$ is a convex function, applying Jensen's inequality to the above gives

$$\int_{0}^{b} \exp\left[\frac{1}{x^{q}} \int_{0}^{x} \ln(fg) dt\right] dx$$

$$\leq \int_{0}^{b} \frac{1}{x^{q}} \left[\int_{0}^{x} t(fg) dt \times \frac{1}{x^{q-1}} \exp(-\ln x + 1)\right] dx$$

$$= e \int_{0}^{b} \frac{1}{x^{2q}} \left(\int_{0}^{x} t(fg) dt\right) dx = e \int_{0}^{b} t(fg) \left(\int_{t}^{b} \frac{1}{x^{2q}} dx\right) dt$$

$$= \frac{e}{1 - 2q} \int_{0}^{b} t(fg) (b^{1 - 2q} - t^{1 - 2q}) dt$$

The result follows.

Theorem 6 Let g be a continuous and nondecreasing on [a,b], $0 \le a \le b \le \infty$, with g(x) > 0 for x > 0and $a \le t < b$. Let $1 \le p \le q$ and f(x) be nonnegative and Lebesgue-Stieltjes integrable with respect to g(x) on [a,b]. Suppose r is a real number such that $0 > r > -\infty$ then,

$$\left[\int_{a}^{b}g\left(x\right)^{\frac{rq}{p}}\left(\int_{0}^{x}f\left(t\right)\mathrm{d}g\left(t\right)\right)^{q}\mathrm{d}g\left(x\right)\right]^{\frac{1}{q}} \leq C\left(a,b,p,q,r\right)\left[\int_{a}^{b}g\left(x\right)^{\frac{p-1}{r}}f\left(x\right)^{p}\mathrm{d}g\left(x\right)\right]^{\frac{1}{p}} \tag{9}$$

where

$$C(a,b,p,q,r) = \left(\frac{r}{r-1}\right)^{\frac{p-1}{p}} \left(\frac{p}{p+rq}\right)^{\frac{1}{q}} \left(g(b)^{\frac{r-1}{r}} - g(a)^{\frac{r-1}{r}}\right)^{\frac{p-1}{p}} \left(g(b)^{\frac{p+rq}{p}} - g(a)^{\frac{p+rq}{p}}\right)^{\frac{1}{q}}$$

and

Proof

In the inequality (2.5), we let

$$h(x,t) = g(x)^{rq} g(t)^{\frac{pq}{r}} f(t)^{pq}$$

Then, the left hand side of (2.5) becomes

 $\mathrm{d}\lambda(t) = g(t)^{\frac{-1}{r}} \mathrm{d}g(t)$

$$\int_{a}^{x} g(x)^{\frac{r}{p}} g(t)^{\frac{1}{r}} f(t) g(t)^{\frac{-1}{r}} dg(t) = \int_{a}^{x} g(x)^{\frac{r}{p}} f(t) dg(t) = g(x)^{\frac{r}{p}} \int_{a}^{x} f(t) dg(t)$$

and the right hand side reduces to

$$\begin{split} & \left[\int_{a}^{x}g\left(t\right)^{\frac{-1}{r}}\mathrm{d}g\left(t\right)\right]\frac{p-1}{p}\left[\int_{a}^{x}g\left(x\right)^{r}g\left(t\right)^{\frac{p}{r}}f\left(t\right)^{p}g\left(t\right)^{\frac{-1}{r}}\mathrm{d}g\left(t\right)\right]^{\frac{1}{p}} = \left[\int_{a}^{x}g\left(t\right)^{\frac{-1}{r}}\mathrm{d}g\left(t\right)\right]\frac{p-1}{p}\left[\int_{a}^{x}g\left(x\right)^{r}g\left(t\right)^{\frac{p-1}{r}}f\left(t\right)^{p}\mathrm{d}g\left(t\right)\right]^{\frac{1}{p}} \\ & = \left[\frac{r}{r-1}g\left(t\right)^{\frac{r-1}{r}}\left|_{a}^{x}\right]^{\frac{p-1}{p}}g\left(x\right)^{\frac{r}{p}}\left[\int_{a}^{x}g\left(t\right)^{\frac{p-1}{r}}f\left(t\right)^{p}\mathrm{d}g\left(t\right)\right]^{\frac{1}{p}} \\ & = \left(\frac{r}{r-1}\right)^{\frac{p-1}{p}}\left[g\left(x\right)^{\frac{r-1}{r}}-g\left(a\right)^{\frac{r-1}{r}}\right]^{\frac{p-1}{p}}g\left(x\right)^{\frac{r}{p}}\left[\int_{a}^{x}g\left(t\right)^{\frac{p-1}{r}}f\left(t\right)^{p}\mathrm{d}g\left(t\right)\right]^{\frac{1}{p}} \end{split}$$

Hence, inequality (2.5) becomes

$$g(x)^{\frac{r}{p}} \left(\int_{a}^{x} f(t) \mathrm{d}g(t) \right) \leq \left(\frac{r}{r-1} \right)^{\frac{p-1}{p}} \left[g(x)^{\frac{r-1}{r}} - g(a)^{\frac{r-1}{r}} \right]^{\frac{p-1}{p}} g(x)^{\frac{r}{p}} \left[\int_{a}^{x} g(t)^{\frac{p-1}{r}} f(t)^{p} \mathrm{d}g(t) \right]^{\frac{1}{p}}$$

for $q \ge p$, we have

$$g(x)^{\frac{rq}{p}} \left(\int_{a}^{x} f(t) \mathrm{d}g(t) \right)^{q} \leq \left(\frac{r}{r-1}\right)^{\frac{q(p-1)}{p}} \left[g(x)^{\frac{r-1}{r}} - g(a)^{\frac{r-1}{r}} \right]^{\frac{q(p-1)}{p}} g(x)^{\frac{rq}{p}} \left[\int_{a}^{x} g(t)^{\frac{p-1}{r}} f(t)^{p} \mathrm{d}g(t) \right]^{\frac{q}{p}}$$

Integrating both sides with respect to g(x) and then raising both sides to power $\frac{p}{q}$ yields

$$\left[\int_{a}^{b} g(x)^{\frac{rq}{p}} \left(\int_{a}^{x} f(t) dg(t) \right)^{q} dg(x) \right]^{\frac{p}{q}} \\ \leq \left[\left(\frac{r}{r-1} \right)^{\frac{q(p-1)}{p}} \int_{a}^{b} g(x)^{\frac{rq}{p}} \left(g(x)^{\frac{r-1}{r}} - g(a)^{\frac{r-1}{r}} \right)^{\frac{q(p-1)}{p}} \left(\int_{a}^{x} g(t)^{\frac{p-1}{r}} f(t)^{p} dg(t) \right)^{\frac{q}{p}} dg(x) \right]^{\frac{p}{q}} \right]^{\frac{p}{q}}$$

Copyright © 2013 SciRes.

Applying Minkowski integral inequality to the right hand side implies

$$\leq \left(\frac{r}{r-1}\right)^{p-1} \int_{a}^{b} g\left(t\right)^{\frac{p-1}{r}} f\left(t\right)^{p} \left[\int_{t}^{b} \left(g\left(x\right)^{\frac{r-1}{r}} - g\left(a\right)^{\frac{r-1}{r}}\right)^{\frac{q(p-1)}{p}} g\left(x\right)^{\frac{rq}{p}} dg\left(x\right)\right]^{\frac{p}{q}} dg\left(t\right) \\ \leq \left(\frac{r}{r-1}\right)^{p-1} \left(g\left(b\right)^{\frac{r-1}{r}} - g\left(a\right)^{\frac{r-1}{r}}\right)^{p-1} \int_{a}^{b} g\left(t\right)^{\frac{p-1}{r}} f\left(t\right)^{p} \left[\int_{t}^{b} g\left(x\right)^{\frac{rq}{p}} dg\left(x\right)\right]^{\frac{p}{q}} dg\left(t\right)$$

Since r < 0

$$=\left(\frac{r}{r-1}\right)^{p-1}\left(\frac{p}{p+rq}\right)^{\frac{p}{q}}\left(g\left(b\right)^{\frac{r-1}{r}}-g\left(a\right)^{\frac{r-1}{r}}\right)^{p-1}\int_{a}^{b}g\left(x\right)^{\frac{p-1}{r}}f\left(x\right)^{p}\left(g\left(b\right)^{\frac{p+rq}{p}}-g\left(t\right)^{\frac{p+rq}{p}}\right)^{\frac{p}{q}}\mathrm{d}g\left(x\right)$$

$$\leq C(a,b,p,q,r)\int_{a}^{b}g\left(x\right)^{\frac{p-1}{r}}f\left(x\right)^{p}\mathrm{d}g\left(x\right)$$

Hence, we have

$$\left[\int_{a}^{b} g\left(x\right)^{\frac{rq}{p}} \left(\int_{0}^{x} f\left(t\right) \mathrm{d}g\left(t\right)\right)^{q} \mathrm{d}g\left(x\right)\right]^{\frac{1}{q}} \leq C\left(a, b, p, q, r\right) \left[\int_{a}^{b} g\left(x\right)^{\frac{p-1}{r}} f\left(x\right)^{p} \mathrm{d}g\left(x\right)\right]^{\frac{1}{p}}$$

Which complete the proof of the Theorem.

3. Conclusion

This work obtained considerable improvement on Adeagbo-Sheikh and Imoru results and applications for measurable and convex functions are also given.

REFERENCES

- G. H. Hardy, "Notes on a Theorem of HILBERT," Mathematische Zeltschrift, Vol. 6, 1920, pp. 314-317.
- [2] R. A. Adams, "Sobolev Spaces," Academic Press, New York-London, 1975.
- [3] G. H. Hardy, J. E. Littlewood and G. Polya, "Inequalities," Cambridge University Press, Cambridge, 1952, MR0046395(13:727e), Reprinted 1991.
- [4] A. Kufner and L.-E. Persson, "Weighted Inequalities of Hardy Type," The American Mathematical Monthly, World Scientific, New Jersey, London, Singapore, Hong Kong, 2003. <u>http://dx.doi.org/10.1142/5129</u>
- [5] A. Kufner, L. Maligranda and L.-E. Persson, "The Hardy Inequality—About Its History and Some Related Results," Vydavatelsky Servis Publishing House, Pilsen, 2007.
- [6] C. P. Niculescu and L.-E. Persson, "Convex Functions and Their Applications. A Contemporary Approach," Springer, Berlin, Heidelberg, New York, Hong Kong, London, Milan, Paris, Tokyo, 2005.
- [7] B. Opic and A. Kufner, "Hardy Type Inequalities," Longman, Harlow, 1990.

- [8] K. Rauf, J. O. Omolehin and J. A. Gbadeyan, "On Some Refinement of Results on Hardy's Integral Inequality," *International Journal of Scientific Computing*, Vol. 1, No. 1, 2007, pp. 15-20.
- [9] Y. Bicheng, Z. Zhuohua and L. Debnath, "Note on New Generalizations of Hardy's Integral Inequality," *Journal* of Mathematical Analysis and Applications, Vol. 217, No. 1, 1998, pp. 321-327. http://dx.doi.org/10.1006/imaa.1998.5758
- [10] A. G. Adeagbo-Sheikh and C. O. Imoru, "An Integral Inequality of the Hardy's Type," *Kragujevac Journal of Mathematics*, Vol. 29, 2006, pp. 57-61.
- [11] S. S. Dragomir and N. M. Ionescu, "Some Converse of Jensen's Inequality and Applications," *Revue d'Analyse Numérique et de Théorie de l'Approximation*, Vol. 23, No. 1, 1994, pp. 71-78.
- [12] C. O. Imoru and A. G. Adeagbo-Sheikh, "On Some Weighted Mixed Norm Hardy-Type Integral Inequalities," *Journal of Inequalities in Pure and Applied Mathamatics*, Vol. 8, No. 4, 2007, pp. 1-12.
- [13] S. Kaijser, L. Nikolova, L.-E. Persson and A. Wedestig, "Hardy-Type Inequalities via Convexity," *Mathematical Inequalities & Applications*, Vol. 8, No. 3, 2005, pp. 403-417.
- [14] K. Rauf and J. O. Omolehin, "Some Notes on an Integral Inequality Related to G.H. Hardy's Integral Inequality," *Punjab University Journal of Mathematics*, Vol. 38, 2006, pp. 9-13.
- [15] M. Z. Sarkaya and H. Yildirim, "Some Hardy Type Integral Inequalities," *Journal of Inequalities in Pure and Applied Mathematics*, Vol. 7, No. 5, 2006, pp. 1-5.
- [16] L. Zhongxue, G. Mingzhe and L. Debnath, "On New

Generalizations of the Hilbert Integral Inequality," Journal of Mathematical Analysis and Applications, Vol. 326, No. 2, 2007, pp. 1452-1457. http://dx.doi.org/10.1016/j.jmaa.2006.03.039