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ABSTRACT 
With the popularization of wind energy, the further reduction of power generation cost became the critical problem. As 
to improve the efficiency of control for variable speed Wind Turbine Generation System (WTGS), the data-driven 
Adaptive Neuro-Fuzzy Inference System (ANFIS) was used to establish a sensorless wind speed estimator. Moreover, 
based on the Supervisory Control and Data Acquisition (SCADA) System, the optimum setting strategy for the maxi-
mum energy capture was proposed for the practical operation process. Finally, the simulation was executed which sug-
gested the effectiveness of the approaches. 
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1. Introduction 
Nowadays, wind energy is growing rapidly [1, 2]. The 
crucial problem of popularizing wind energy has become 
the further reduction of power generation cost. Thus, the 
higher efficiency and more optimal operation for wind 
power generation are required. In order to improve the 
efficiency of WTGS, the notion of maximum energy 
capture is introduced. And with the emergence of varia-
ble speed variable pitch technique, the operation optimi-
zation can be deepened. 

In the practice, many anemometers have to be used to 
measure the wind speed which can derive the optimum 
setting values of rotor speed and generator power. And 
not only the single WTGS but also the wind field needs 
many anemometers to provide adequate information. 
However, due to the varied environment, the measure-
ment may provide inaccurate signal to the system and the 
traditional optimum setting strategy may have some drift 
to the initial setting after a period of operation. Besides, 
the installation and maintenance of the anemometers in-
crease the cost and reduce the reliability of the whole 
system. 

Recently, several kinds of sensorless maximum energy 
capture method were proposed in the literatures. Bhow-
mik et al. [3] used the power coefficient polynomial to 
estimate wind speed by solving the polynomial roots 
online with an iterative algorithm. Because the poly-
nomial was seventh order, the calculation was complex 
and time-consuming. Tan [4] and Simoes [5] et al. ap-

plied a two-dimensional (2D) look-up table of power 
coefficient and power mapping method to estimate the 
wind speed, but the technique needed huge memory 
space and suboptimum solution was often caused by the 
inherent slow searching mechanism. H. Li et al. [6] used 
the Artificial Neuro Network (ANN) to establish a sen-
sorless wind speed estimator but the neuro-network is 
easy to be over-fitting or fall into the local minima. V. 
Calderaro et al. [7,8] combined the advantages of T-S 
fuzzy system [9], Genetic Algorithms (GA) and Fuzzy 
C-Means clustering (FCM). Then, an adaptive optimum 
setting strategy was realized. However, the GA was un-
stableness and also time- consuming to train the parame-
ters of T-S fuzzy system.  

In [10], the ANFIS was firstly proposed by Jang J-SR. 
In [11], a kind of ANFIS was applied on the data-mod- 
eling for thermal processes. In the paper, in order to im-
prove the training efficiency and accuracy, the ANFIS 
was adopted which fully combined the advantages of T-S 
fuzzy system and neuro-network and is very useful for 
data-driven modeling. 

In section 2, the system analysis of WTGS is carried 
out and the profile mapping between rotor speed, wind 
speed and mechanical power is discussed. In section 3, 
based on the characteristic data from the wind tunnel test, 
an adaptive sensorless wind speed estimator is firstly 
established by ANFIS. Then, using the wind speed esti-
mator and the measured data source in the SCADA sys-
tem for wind power generation process, the optimum 
setting strategy based on measured value is given. In 
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section 4, the simulation is executed to validate the effec-
tiveness of the approaches. And in section 5, we con-
clude the paper. 

2. System Analysis 
Generally speaking, the variable speed variable pitch 
WTGS include two control level, the wind turbine con-
trol level and Doubly-Fed Induction Generator (DFIG) 
control level [12]. From Figure 1, we can see that in or-
der to realize the maximum energy capture, the optimum 
setting values of rotor speed rω  and turbine mechanical 
power mP  are needed besides their measured values. 
Usually, the mechanical power extracted from the wind 
energy can be represented as 

( )2 30.5 ,m PP R C Vρπ λ β=  

where ρ  is the air density, R is the rotor radius, 
( ),PC λ β  is the power coefficient, rR Vλ ω=  is the 

tip-speed-ratio and β  is the pitch angle. When λ  and 
β  get the optimum values, ( ),PC λ β  reaches the 
maximum value. Then, the wind turbine has the most 
efficiency to extract wind energy. 

Here, we take the operating region below rated wind 
speed for example. The main operating mode is the vari-
able speed fixed pitch operation and the main control 
task is the maximum energy capture. Thus, the pitch an-
gle is fixed at zero degree to maintain the maximum 
power coefficient ( ),PC λ β . Consequently, the nonli-
near profile mapping between λ , β  and ( ),PC λ β  
can be simplified to the one between rω , V  and 

( ),PC λ β . There are many ways to demonstrate the non-
linear profile mapping such as fitted nonlinear function 
and look-up table. Using the nonlinear function in [13], a 
schematic of the profile curve can be shown in Figure 2. 

3. Algorithms Application 
In this section, we introduce the ANFIS to establish the 
sensorless wind speed estimator. While considering the 
the possible drift of the optimum power coefficient curve 
to the initial setting, a novel optimum setting mechanism 
is proposed based on the SCADA system. 
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Figure 1. Wind Turbine Generation System. 

3.1. Wind Speed Estimation 
From the analysis in section 2, we know that a two di-
mensional inverse mapping between rω , mP  and V  
needs to be established. Using the characteristic data of 
wind tunnel test, the data-driven modeling approach, ANFIS, 
is introduced. The modeling mechanism is shown in 
Figure 3. 

The fuzzy system mainly includes the Mamdani fuzzy 
system and the Takagi-Sugeno fuzzy system. Because 
the neuro-network usually deals with the numerical data, 
choosing the T-S fuzzy system which has numerical 
outputs is more convenient. Thus, we choose T-S fuzzy 
system and a kind of neuro-network to approximate the 
inverse mapping. For establishing the whole T-S fuzzy 
system, it usually includes the identification of premise 
parts and consequent parts. The BP neuro-network [14, 
15] is used to identify the premise parameters of the T-S 
fuzzy system. However, it is a kind of globally approx-
imating network which is easily to fall into the local mi-
nimums. Then, we adopt sub-clustering method [16] to 
partition the input space of the premise variables by 
which we try to compensate the disadvantages of BP 
neuro-network. After the determination of the number 
and shape of membership functions, the combination of 
BP neuro-network and Least Square (LS) algorithm [17, 
18] is used to identify the premise structure parameters 
and the consequent parameters respectively. 
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Figure 2. Wind turbine mechanical power curve. 
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The diagram of the algorithms is shown in Figure 4. 
The first layer is the input layer. And each node in the 

second layer computes the membership degree of each 
input value. The third layer and the forth layer complete 
the fuzzy inference together. The third layer mainly deals 
with the premise parts of the T-S fuzzy rules. Then the 
consequent parts are tackled by the fourth layer. The fifth 
layer is the output layer which gives the numerical values. 
It is noted that the premise parameters are given by the 
BP neuro-network algorithm and the consequent parame- 
ters are determined by the LS algorithm. At last, the sen-
sorless wind speed estimator is established. 

3.2. Optimum Setting Strategy 
For the WTGS control, usually, we just concern the con-
trol method more. However, in the industrial process, the 
correct setting values also matter a lot. As to realize the 
maximum energy capture in the operation process of 
WTGS, we need to provide the optimum setting values 
of rotor speed rω  and mechanical power mP . In gener-
al case, we use the measured wind speed values to esti-
mate the optimum mP . And the optimum PC  is used to 
set the optimum rω . However, in the practice, the effi-
ciency of the wind energy conversion process may be 
changed and the optimum PC  may have some drift with 
time and varied environment. Thus, the setting values 
determined by the initial status of WTGS need to be up-
dated according to the current operating status of WTGS. 

Based on the SCADA system, we can establish the 
profile mapping between meas

rω , meas
mP  and V . Then, 

using the estimated wind speed V̂ , we can search out 
the primarily optimum output power opt

mP  and rotor 
speed opt

rω  corresponding to the current status, meas
rω  

and meas
mP . 

The data acquisition process can be executed as fol-
low: 

1) Regulate the rotor speed until it can be stable at a 
fixed value. And then, store up the measured value of 

( )meas
r iω  into the SCADA system. 
2) Measure the corresponding turbine power 

( ),meas
mP i j . Meanwhile, estimate the wind speed ( )V j  

using the wind speed estimator and keep in storage. 
 



1x

nx
 





y

 
Figure 4. Train mechanism of ANFIS. 

3) Update the rotor speed to the next fixed value 
( 1)meas

r iω + . 
4) Repeat step 2) and 3) until data of most operation 

points has been collected in the SCADA system.  
5) With the collected data, a profile mapping can be 

established which has the same shape with Figure 2. 
It is noted that the profile mapping is discrete. Then, 

the curve fitting and other approaches can be used to 
establish one with high accuracy. Combining the wind 
speed estimator and the established profile mapping, we 
can search out the primarily optimum setting values of 

opt
mP  and opt

rω . However, the data are acquired in the 
closed loop and the controller can’t accurately tracking 
the setting values, so some compensation needs to be 
given according to the performance precision of the con-
troller. The process can be shown in Figure 5. 

Through the optimum setting strategy proposed above, 
we can get the optimum setting values, opt

mP  and opt
rω . 

4. Simulation 
Taking the 1.5 MW DFIG-based variable speed variable 
pitch WTGS for example, we mainly execute the ap-
proaches for fixed pitch variable speed operation mode. 
And for other operation modes, the processes are very 
the same. Using the data source in the Blade software, 
the characteristic data of the wind turbine for some kind 
of WTGS can be gotten by which we establish the wind 
speed estimator using ANFIS. Then, using the data 
source in the SCADA system, the profile mapping be-
tween meas

rω , meas
mP  and V  can be established and the 

optimum setting value of rω  can be given for the fixed 
pitch variable speed operation mode through searching. 

The DFIG-based variable speed WTGS has the fol-
lowing parameters: 

Rated power 1.5mP MW= ; turbine radius 40R m= ; 
Rated wind speed 11.5 /V m s= ; 
Optimum tip-speed-ratio 6.8optλ = . 
After being trained, the estimated wind speed and the 

error are shown in Figure 6 and Figure 7. The optimum 
rotor speed compared with the measured rotor speed is 
shown in Figure 8. The optimum tip-speed-ratio and the 
practical one is shown in Figure 9. 

From Figure 6 and Figure 7, we can find that the es-
timated wind speed approximates accurately to the actual 
wind speed which shows the effectiveness of the ANFIS 
approach. From Figure 8 and Figure 9, we can find that 
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Figure 5. Optimum setting strategy. 
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the actual rotor speed tracks closely to the optimum rotor 
speed which shows the availability of the optimum set-
ting strategy. 
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Figure 6. Comparison of estimated and actual wind speed. 

 

0 50 100 150 200

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time t/(s)

W
in

d 
sp

ee
d 

er
ro

r 
V

er
ro

r /
(m

/s
)

 
Figure 7. Error of estimated and actual wind speed. 
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Figure 8. Comparison of optimum and actual rotor speed. 
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Figure 9. Comparison of optimum and actual tip-speed-ratio. 

5. Conclusions 
As to further reduce the cost of the wind power genera-
tion, a kind of sensorless wind speed estimator is pro-
posed based on the ANFIS. Combining the wind speed 
estimation and the special data-acquisition mechanism in 
the SCADA system, a kind of optimum setting strategy is 
established. According to the simulation, the results show 
the effectiveness of the approaches. Especially, the ap-
proaches can not only be the optimum setting strategy 
but also be the scheduling setting strategy. For the mod-
ern wind power generation, the scheduling order form the 
grid side needs to be considered. Based on the optimum 
setting strategy, the way to give the setting values cor-
responding to the scheduling order can also be estab-
lished which will be studied in future. 
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