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Abstract 
 
Nowadays, sensor networks are widely installed around the world. Typical sensors provide data for health-
care, energy management, environmental monitoring, etc. In the future sensors will become a part of critical 
infrastructures. In such a scenario the network operator has to monitor the integrity of the network devices, 
otherwise the trustworthiness of the whole system is questionable. The problem is that every integrity proto-
col needs a secure channel between the devices. Therefore, we will introduce a covert channel for hidden 
transportation of integrity monitoring messages. The covert channel enables us to hide integrity check mes-
sages embedded into regular traffic without giving potential attackers a hint on the used integrity protocol. 
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1. Introduction 
 
A possible scenario for a distributed system that needs 
close monitoring of its integrity is a wireless sensor net-
work (WSN). Aside from secure communication chan-
nels, the main concern in WSN is the integrity of nodes, 
since the widespread use of shared secrets, if any, in 
communication protocols is based on the assumption that 
nodes are not compromised. 

Integrity of nodes may for example be verified by an 
attestation protocol, which uses a trusted platform mod-
ule (TPM) to attest the integrity of cluster heads [1]. But 
in order to enable a WSN-operator to react to tampering 
attempts, information about node integrity needs to be 
exchanged throughout the network. If such information 
is exchanged overtly, attackers may be aware of the fact 
that the network is being monitored. Analysis of ex-
changed information may even reveal how often such 
information is exchanged and if no appropriate crypto-
graphic countermeasures are taken, it may also be possi-
ble to tell what information is exchanged. 

As a solution, the integrity monitoring information 
could be covertly embedded into traffic that fits the well- 
known purpose of the WSN, e.g., measurements of en-
vironment temperature. This does not only prevent at-
tackers from determining what information is exchanged 
in order to assess node integrity, but it will even be dif-
ficult if not impossible to tell whether the integrity of a 

particular network is actually being monitored. Plain 
encryption of the communication channel in contrast 
does not provide a similar level of deception, since it 
may still be possible to distinguish ordinary traffic from 
integrity monitoring traffic, e.g., by tampering nodes 
while monitoring the change of message frequency or 
size. 
 
2. Requirements 
 
According to [2], the “quality of the covert channel can 
be expressed in terms of detectability (arbitration must 
be measurable by the recipient), indistinguishableness 
(hidden data cannot be separated from the cover infor-
mation) and bandwidth (ratio of hidden data to cover 
data).” Yet, a covert channel for integrity monitoring 
must not only be of sufficient quality in terms of this 
definition but it must also meet some specific require-
ments derived from surveillance scenarios. 

1) Delay: Typically, covert channels have a compara-
ble low ratio of hidden data to cover data. In addition to 
that, they rely on the occurrence of network traffic that 
can be used as a disguise for the hidden communication. 
But to provide the means for efficient administrative 
reaction, a reasonable maximum delay for event notifica-
tions is required. In case of covert channels, signaling a 
critical system event would rely on ordinary cover traffic 
taking place. A general question is, what can be done if 
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there is not enough cover traffic or no cover traffic at all 
when a critical event needs to be signaled. Regarding 
scenarios such as monitoring critical infrastructure or 
even in military scenarios, continuous and sufficient 
network traffic are assumed. 

2) Recurrence: If a covert channel is used to repeat-
edly communicate possibly unchanged information of a 
node, care must be taken to avoid recurring patterns 
when embedding this information into traffic that would 
otherwise not have recurring patterns. The challenge is 
therefore not only to hide occasional, differing event 
notifications but also to disguise the transmission of re-
curring events or health information. 

3) Unidirectional channel: For the purpose of this dis-
cussion only a unidirectional channel is required, even if 
WSNs in surveillance and military scenarios would ben-
efit from a bidirectional communication channel for de-
livering sensor control commands. This is because for 
the sake of simplicity the focus of this work is narrowed 
and the results from a unidirectional communication 
channel can possibly be transferred to a bidirectional 
situation. 
 
3. Related Work 
 
Covert channels were first defined by Lampson as chan-
nels “not intended for information transfer at all, such as 
the service program’s effect on the system load” [3]. 
Covert channels can be classified in the broader scope of 
information hiding. However, there is no clear distinction 
between steganography and covert channels. A possible 
explanation is that covert channels establish information 
flows between entities which would otherwise not be 
allowed to communicate at all or using channels that are 
not intended for communication, while steganography 
enables entities to convey additional information among 
legitimate, or disclosed, data. The term “covert channels” 
seems to have prevailed in the context of networks and is 
used to describe any information hiding approaches in 
network communications, sometimes merrily mixed with 
“steganography”. 

Simmons et al. [4] introduced an illustrative, yet for-
mal setting for the steganographic problem: Two prison-
ers (e.g., Alice and Bob) are only allowed to communi-
cate through a warden (e.g., Willie). Their goal is to de-
vise an escape plan without the warden noticing while 
the warden hopes to deceive them by altering communi-
cation or introducing bogus messages. Further, active 
wardens, which might deliberately alter or introduce 
messages, and passive wardens, which are limited to 
observing communication, are distinguished [5]. 

Lampson [3] defined covert channels in the context of 
process isolation within a single host operating system. 

Today the possibility of covert channels in distributed 
systems is a major concern, e.g. if organizations intend to 
control particularly outbound information flows from the 
organization’s network. 

In practice, two types of covert channels can be dis-
tinguished by their realization [6]. Storage-based covert 
channels involve the direct or indirect reading and writ-
ing of storage locations between different processes and 
timing-based channels use an modulation of system re-
sources that can be observed by another process. Appar-
ently, covert channels can also be characterized by the 
layer(s) of the OSI reference model on which they oper-
ate. Handel and Sandford [2] demonstrated, how each 
OSI layer could be used as a basis for implementing a 
covert channel. 

The evaluation of covert channels is only possible 
with regard to a specific deployment. Still, it is assumed 
that protocol header manipulation will deliver better per-
formance than payload steganography. At the same time, 
a protocol header manipulation algorithm for a commu-
nication protocol introduces less requirements on the 
particular type of cover traffic compared to applying 
steganography to the cover payload. Hence, this section 
is focused on covert channels based on network header 
manipulation. 
 
4. Model of a Network Covert Channel for 

Integrity Monitoring (NCCIM) 
 
This section develops a model of a unidirectional chan-
nel that connects a sensor agent application and moni-
toring application, which are running on different net-
work nodes. This model of a Network Covert Channel 
for Integrity Monitoring (NCCIM) is intended to be a 
modular framework for providing robust communication 
between sensor and monitor. The framework is based on 
the OSI reference model to provide flexibility for im-
plementations. 

The sending stack of the NCCIM is responsible for 
embedding the covert traffic on a node that is monitored 
by a sensor agent. It interfaces with the sensor agent ap-
plication and the cover traffic source, which is the sub-
system handling network traffic generated by other ser-
vices running on that node. Similarly, the NCCIM re-
ceiving stack extracts the covert monitoring information 
on the node running the monitoring application. It inter-
faces with the cover traffic sink, which is the subsystem 
responsible for receiving network traffic of that node, 
and the monitoring application. The NCCIM model pro-
vides a framework for the modification and interception 
of cover traffic. Monitoring information is covertly com-
municated from sensors to a monitor. The covert channel 
is developed given the following assumptions about the 
nodes running the sensor agent or monitoring agent: 
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1) The overt services running on the node being moni-
tored generate a continuous traffic flow that provides an 
upper bound on the delay of the covert channel. 

2) The subsystem of the nodes responsible for deliv-
ering network traffic (traffic source) and the subsystem 
responsible of receiving network traffic (traffic sink) 
allow traffic to be modified and to be intercepted, re-
spectively. 

3) The nodes running the sensor agents are based on 
an execution model that supports concurrency. 

4) Each sensor agent reports to the same monitor. 
NCCIM is not responsible for gathering monitoring 

data, which is performed by the sensor agents, or ana-
lyzing such data, which is the task of the monitoring 
agent. However, the covert channel must ensure some 
requirements on the monitoring information being trans- 
mitted. Given the characteristics of a covert channel as 
the limited capacity and the need for hiding any commu-
nication associations, the relationship between sensor 
agents and monitoring agents should be managed by the 
NCCIM. In addition to that, ordinary communication 
tasks from transport to physical layer need to be per-
formed. Hence, the NCCIM must operate on OSI layers 
1 (Physical Layer) to 6 (Session Layer). For further dis-
cussion, problems that can be solved in a more or less 
platform-independent way are assigned to different enti-
ties based on the OSI-reference model. 

Monitoring information gathered by the sensor agents 
can be represented in various formats. Well-known stan-
dard formats include syslog messages or the RMON 
MIB. Custom formats may be based on XML, but it is 
also possible to use an optimized binary format. The ac-
tual representation of the monitoring information is 
therefore out of the scope of this architecture. However, 
it is relevant if all messages are of fixed size or if vari-
able length messages must be handled (Pa6.1, see Table 
1). Regardless of the fact whether messages have vari-
able size, the (maximum or general) message length de-
termines if fragmentation is necessary at the Data Link 
Layer (Pa6.2). Messages smaller than the maximum 
message size can be padded (Pa6.3). 
 
4.1. Managing the Relationship Between Sensor 

Agent and Monitoring Agent 
 
The Sensor Session Entity provides three access points to 
the sensor agent application (see Table 2). The Sensor 
Agent Up and Sensor Agent Down primitives indicate 
that the sensor agent is started and stopped, respectively. 
The Sensor Agent Information primitive is used to send 
event or status information. 

The Monitor Session Entity requires according upper 
layer interfaces, to inform the monitor application about 

Table 1. Presentation layer parameters. 

ID Name Description 

Pa6.1
Fixed message 
size 

Boolean value that determines, if 
monitoring information is represented 
in fixed size messages. 

Pa6.2
Maximum 
message size 

Unsigned integer value denoting the 
maximum size of monitoring infor-
mation to be transmitted. If fixed size 
messages are used or messages are 
padded, this is the size of all mes-
sages. 

Pa6.3
Message 
padding 

Boolean value that is true if a padding 
is appended to messages smaller than 
the maximum message size. Is only 
used if the application does not pro-
vide fixed size messages. 

 
Table 2. Session layer interfaces. 

ID Primitive Parameters 

Sensor Session Entity 

Pr5.1 Sensor Agent Up
Identifier of the node that is 
started and optional information 
payload. 

Pr5.2 
Sensor Agent 
Down 

Identifier of the node that is 
stopped and optional informa-
tion payload. 

Pr5.3 
Sensor Agent 
Information 

Identifier of the node sending 
the information and the infor-
mation payload to be delivered.

Monitor Session Entity 

Pr5.1 
Received Up 
Information 

Node identifier and optional 
information payload. 

Pr5.2 
Received Down 
Information 

Node identifier and optional 
information payload. 

Pr5.3 
Received Moni-
toring Informa-
tion 

Node identifier and monitoring 
information payload. 

 
Sensor Association Created, Sensor Association Deleted 
and to deliver monitoring messages (Sensor Information 
Received). In addition to that, the Sensor Association 
Timeout primitive is used to notify the monitor applica-
tion if a sensor agent failed to send a keep-alive message 
within the expected time range. 

On receipt of a Sensor Agent Up primitive, the Sensor 
Session Entity creates an association between the given 
sensor agent node identifier and the monitor node identi-
fier (in Table 3), which is known beforehand. This asso-
ciation is created by invoking the Send Up Information 
primitive of the Sensor Transport Entity with the sensor 
agent node identifier. If the Monitor Session Entity re-
ceives an Up Information Received primitive, the asso-
ciation is created at the monitor. A similar procedure is 
used for the Sensor Agent Down primitive, which deletes 
the association. The Sensor Agent Information primitive 
is mapped to the Send Monitoring Information primitive. 
Node registration and authentication are out of scope of 
this architecture and should be provided by the sensor 
and monitor application, respectively. 
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Table 3. Application layer interfaces. 

ID Primitive Parameters 

Monitor 
Application 
Entity 

  

Pr7.1 
Sensor Association 
Created 

Sensor agent node identifier 
for which the association was 
created. 

Pr7.2 
Sensor Association 
Deleted 

Sensor agent node identifier 
for which the association was 
deleted. 

Pr7.3 
Sensor Information 
Received 

Sensor agent node identifier 
for which information was 
received and the information 
payload. 

Pr7.4 
Sensor Association 
Timeout 

Sensor agent node identifier 
for which no keep-alive mes-
sage was received within the 
expected time interval. 

 
If keep-alive messages are used, the session layer 

maintains a timer for each association scheduling the 
next keep-alive message. The timer is initialized during 
the creation of the association and is set to the keep-alive 
interval (Pa5.1) minus a pseudo-random offset. If a keep 
alive message is due, the Send Monitoring Information 
primitive is invoked for the particular association with an 
optional additional payload provided by the sensor ap-
plication (which can be used for latency measurement if 
clocks are synchronized) and the timer is re-initialized as 
described above. If a monitoring message is sent for this 
association, the timer for the next keep-alive message is 
reset to its initial value. Accordingly, the Monitor Ses-
sion Entity keeps track of all associations and the latest 
valid arrival time for a keep-alive message. If this time is 
exceeded, the Sensor Association Timeout primitive of 
the monitor application is invoked. The latest valid arri-
val time is set on creation of the association and on re-
ceipt of a Received Monitoring Information primitive 
from the Monitor Transport Entity. It is calculated from 
the current time, the keep-alive interval (Pa5.1, as shown 
in Table 4) and an implementation dependent tolerance 
offset (Pa5.2). 
 
4.2. Transport Layer 
 
As shown in Table 5, the Sensor Transport Entity pro-
vides the access points Send Up Information, Send Down 
Information and Send Monitoring Information to the 
Sensor Session Entity. Analogous to the sensor, the Mon-
itor Transport Entity issues the primitives Received Up 
Information, Received Down Information and Received 
Monitoring Information. The task of the transport layer 
in this architecture basically is to perform integrity 
checks (Pa4.3). 

The channel provided by this architecture is unidirec-
tional and thus unreliable, which avoids the complexity 

Table 4. Session layer parameters. 

ID Name Description 

Pa5.1 
Keep-alive 
interval 

Unsigned integer value indicating the 
maximum time between two keep-alive 
messages (in seconds). If zero, sending 
entities do not verify the covert channel 
availability by periodically sending 
keep-alive messages. 

Pa5.2 
Keep-alive 
tolerance 

Unsigned integer value giving an im-
plementation dependent tolerance for 
the keep-alive interval. 

 
Table 5. Transport layer interfaces. 

ID Primitive Parameters 

Sensor Transport Entity 

Pr4.1 
Send Up 
Information 

Identifier of the node that is 
started and data to be sent, which 
is the data header (including node 
identifier) and an optional moni-
toring payload. 

Pr4.2 
Send Down 
Information 

Identifier of the node that is 
stopped and data to be sent, which 
is the data header (including node 
identifier) and an optional moni-
toring payload. 

Pr4.3 
Send Monitoring 
Information 

Identifier of the node that sends 
the monitoring information and 
data to be sent, which is the data 
header (including node identifier) 
and the monitoring payload. 

Monitor Transport Entity 

Pr4.1 
Received 
Segment 

Node identifier and the segment, 
which may be constructed from 
several frames. 

 
of a bidirectional protocol and reduces requirements that 
must be met by an underlying communication platform. 
However, loss of messages can be detected by the re-
ceiver if both, sender and receiver, use a consistent seg-
ment (sequence) numbering scheme (Pa4.2). The initial 
sequence number for a new association is when the Sen-
sor Transport Entity processes a Send Up Information 
primitive. The algorithm to determine the initial se-
quence number from the node identifier and other suit-
able characteristics known by the sensor as well as the 
monitor is implementation dependent and may be based 
on a shared secret, which acts as a seed. A non-trivial 
assignment of initial sequence numbers enables the mon-
itor to authenticate the process of creating an association, 
as the result of this check is included in the Received Up 
Information primitive. 

The MIC value is calculated by an implementation 
dependent function. The input for the MIC calculation 
consists of segment header, where the MIC field is set to 
all zeros, and segment body. 

If a Received Segment primitive is issued by the Moni-
tor Data Link Entity for a node identifier for which no 
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proper Up segment was received before, the Received Up 
Information primitive is issued prior to the Received 
Monitoring Information primitive. This behavior ac-
counts for the unidirectional channel and will further be 
referred to as implicit association creation. 

The distinction between up, down and message seg-
ments is introduced for the sole purpose of managing the 
process of assigning sequence numbers and the associ-
ated resources. The segment is composed from the seg-
ment header, which consists of the segment type field 
(Pa4.1, Table 6) and the sequence number, if any, and 
the segment body containing the monitoring information. 

Because of the absence of multiple monitors (assump-
tion 4), no logical addressing of recipients is required. 
Furthermore, the realization of multi-hop communication 
using the covert channel is highly implementation de-
pendent as explained below. Hence, introducing a network 
layer is regarded as an unnecessary overhead and seg-
ments are directly interchanged with the Data Link Layer. 

If possible at all, multi-hop communication with the 
monitor using a covert channel can be realized using 
different approaches. Flooding may be implemented by 
embedding the covert channel in traffic to all communi-
cation partners. Static upstream routes can be represented 
as filters, selecting which PDU of the overt channel are 
used for embedding the covert information. This decision 
may for example be based on the destination address of a 
PDU and enables the exploitation of more complex 
routes of the overt channel. Such procedures belong to 
the physical layer of the covert channel, which is imple-
mentation dependent. 
 
4.3. Encoding into Cover Traffic 
 
The data link layer and physical layer are responsible for 
embedding the covert channel into overt traffic. While 
most aspects of the physical layer depend on the specific 
implementation used, the concepts of the data link layer 
can be formulated in a generic way. As shown in Table 7, 
the Sensor Data Link Entity provides the Push Segment 
access point to the Sensor Transport Entity and the Pop 
Frame access point to the Sensor Physical Entity, while 
the Monitor Data Link Entity issues the Received Seg-
ment primitive to the Monitor Transport Entity. 
 

Table 6. Transport layer parameters. 

ID Name Description 

Pa4.1 
Segment Type 
Size 

Unsigned integer giving the size of the 
segment type field in bits. 

Pa4.2 
Sequence Number 
Size 

Unsigned integer value indicating the 
size of sequence numbers. If zero, no 
sequence numbers are sued. 

Pa4.3 
Message integrity 
size 

Unsigned integer value which is zero if 
no message integrity check is per-
formed. 

Table 7. Data link layer interfaces. 

ID Primitive Parameters 

Sensor Data 
Link Entity 

  

Pr2.1 Push Segment 

Identifier of the node for which 
the segment is sent and the 
segment to be sent, which may 
require fragmentation. 

Pr2.2 Pop Frame (no parameters) 

Monitor 
Data Link 
Entity 

  

Pr2.1 Push Frame 
A buffer containing the re-
ceived frame. 

 
These entities performs the task of (de-)fragmentation, 

if the sum of the maximum size of monitoring informa-
tion (Pa6.2) and the size of all headers is larger than the 
maximum frame size (Pa2.2, Table 8). An implementa-
tion determines the frame size from the maximum num-
ber of bits that can be embedded in a cover PDU. If 
fragmentation is required, it can be necessary to prefix 
the frame not only with a node identifier (Pa2.1) but also 
with a fragment number (Pa2.3). The prefix is then used 
to determine the right ordering of the frames to get the 
original segment. It is only required if the protocol used 
for traffic encoding does not guarantee sequential deliv-
ery of data (for example IP) or if the traffic interception 
is done in such a ways that the or dering features of a 
sequential protocol cannot be used (for example inter-
cepting TCP traffic in the systems IP stack). The number 
of bits available for representing the fragment number 
(Pa2.4) limits the number of possible fragments. Thus, it 
should be consistent with the maximum data size (Pa6.2), 
if not, errors may be introduced. 
 

Table 8. Data link layer parameters. 

ID Name Description 

Pa2.1 
Node identifier 
size 

Unsigned integer value denoting the 
size of node identifiers. 

Pa2.2 Frame size 

Unsigned integer giving the number 
of bits to be sent in one block. De-
termines if fragmentation is neces-
sary. 

Pa2.3 
Fragment 
numbering 
required 

Boolean value indicating if fragments 
must be numbered. 

Pa 2.4 
Fragment 
number size 

Unsigned integer indicating the num-
ber of bits available for representing 
the frame number. 

Pa 2.5 
Maximum 
frame delay 

Unsigned integer value giving a 
maximum time for a frame to be sent 
(in seconds). 

Pa 2.6 
Frame delay 
tolerance 

Unsigned integer providing an im-
plementation dependent monitor side 
tolerance offset. 
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The Sensor Data Link Entity maintains a queue of 
frames to be sent (frame queue). The entries of this 
queue consist of the frame and the latest valid encoding 
time. The latest valid encoding time is calculated from 
the time when the first frame of the current segment got 
pushed into the queue plus a maximum encoding delay 
(Pa2.5). If this time is exceeded, the whole segment is 
invalidated and the Segment Encoding Timeout primitive 
is issued, which is handed through the layers to the sen-
sor application. 

The actual encoding of bits is done by an implementa-
tion specific function (for example a packet injection 
hook) that retrieves a frame from the frame queue and 
encodes it into the cover traffic. 
 
4.4. Channel Characteristics 
 
Several characteristics useful for the evaluation of 
NCCIM implementations can be formulated. First, the 
overhead overhead  for a particular monitoring message m 
in bits is a linear function of the number of fragments 

 required to encode m, the size of a frame 
header ov  and the size of a segment header 

s

erhead

 fragn m
s

*segmenthdrs . 

 overhead frag framehdr segmenthdrs n m s s   

While the message size |m| and thus the number of frag-
ments may be variable, the other values are implementa-
tion dependent constants derived from the size of the 
different header fields indicated by s. In particular, 

s frame
 is the total size of a frame and as described 

below, it depends on the encoding function used. 

 frag
frame framehdr

m
n m

S S

 
  

  
 

framehdr fragnum nodeids s s   

segmenthdr segtype seqnum mics s s s    

Given an encoding function c that encodes a secret 
frame into a cover-PDU x, the ratio between the cover- 
PDU size |x| and the number of secret bits encoded by c 
can be expressed as 

   ,
c

encoded c

x
r x

n x
  

For the majority of observed covert channel imple-
mentation,  is a constant, i.e., the number of 

bits encoded does not depend on the particular 
cover-PDU. This is assumed for all NCCIM implementa-
tions. Furthermore, a frame is expected to be the smallest 
bit sequence that can be transmitted in one piece. In this 
case, . 

,encoded cn

,c framen Sencoded

The number of cover-PDU required to encode a moni-
toring message m is therefore . However, the 

above characteristics can only be expressed with respect 
to secret and overt network traffic samples. Thus, a gen-
eral evaluation of a NCCIM implementation is possible, 
if corresponding average values are known or assumed. 
It is then possible to express the time required to transmit 
m as 

 fragn m

cov
ˆ

frag ert n t   

where covert  is the average inter-arrival time of cover- 

PDU. 
 
5. Prototypical Implementation for Wireless 

Sensor Networks 
 
In this section, a very basic implementation of the sce-
nario of a WSN covert channel is presented. The overt 
task of the WSN deployed in this implementation (see 
Figure 1) is to collect temperature information. To pro-
tect the network against theft of sensor nodes, a covert 
channel is used to alert the operator if a node is moved. 
This prototypical implementation is focused on 1) illus-
trating the utility of a covert channel for hidden network 
supervision and 2) demonstrating the feasibility of the 
infrastructural requirements of the NCCIM physical 
layer in a WSN deployment. Hence, this covert channel 
does not provide strong protection against detection or 
modification of the covert information. 
 
5.1. Hardware 
 
The implementation is based on Crossbow MICAz 
MPR2600 motes, which are a retail version of the MI-
CAz MPR2400. The following information is based on 
the description of the MPR2400 mote in [7]. These 
motes use a IEEE 802.15.4 compliant Chipcon CC2420 
radio and are operated using a Atmega128L micro-con- 
troller. For the temperature and acceleration measure-
ments, the Crossbow MTS400CA sensor board [8] is 
added. The particular sensors used are the Sensirion 
SHT11 (temperature) and the Analog Devices 
ADXL202JE (acceleration). The motes were pro-
grammed using the Crossbow MIB520 USB Interface 
Board. 
 
5.2. Implementation Overview 
 
The actual implementation is realized as software based 
on TinyOS 2.1 and the BLIP. It consists of a mote pro-
gram, which measures temperature and detects node 
movement by acceleration changes, and two distinct 
programs running on the gateway host (see Figure 1). 
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Figure 1. Overview of the wireless sensor network setup. 
 
Overtly, only the temperature and an internal counter 
value are sent to the gateway using UDP packets. The 
information about whether the node was moved or not is 
encoded into a rudimentary covert channel. The IPBas-
eStation program and the ip-driver used to connect the 
WSN to the host-only IPv6 network are provided by the 
BLIP software, which is included in TinyOS 2.1. 
 
5.3. Sensor Node Program 
 
The IPBasicSensor program running on the sensor nodes 
performs the measurement tasks and reports to the gate-
way host using UDP. It is written in NesC and uses sev-
eral components provided by TinyOS 2.1. Temperature 
and acceleration are measured by the program in inter-
vals of 250 milliseconds. The temperature is stored for 
later use, while the current acceleration is compared to 
that measured before. If the difference between both 
values is greater than a predefined tolerance, a node 
movement is detected. Because the program is only in-
tended to be a proof of concept implementation, the false 
positives or negatives resulting from this simple algo-
rithm are acceptable. Every five seconds, a UDP data-
gram containing a measurement report is sent to the 
gateway host. A modified BLIP stack is used to send the 
datagrams, which implements the encoding of covert 
information into the overt measurement reports. 

Among other, the program uses the UDPShellC com-
ponent, which is also included in TinyOS 2.1, to provide 
a simple CLI that can be accessed from IPv6 hosts using 
UDP. The CLI is used for debugging purposes, because 
it provides diagnostic utilities like a ping-command or 
custom commands displaying internal data structures. In 
addition to that, the predefined tolerance for the move-
ment detection can be adjusted using the CLI. 
 
5.4. Gateway Server and Sniffer 
 
In the implementation setup, there are two programs in-
tended to run on the server. basic_sensor_server is per-
forms the overt sensing task of the example WSN. The 
program creates a socket, which binds to the UDP port 
specified in the header file. As long as it is not inter-
rupted by the user, it receives the measurement reports 
sent by the sensor node and prints these reports to the 
command line. 

basic_sensor_sniffer can be used to decode the covert 
information from the traffic. The sniffer is using the 
PCAP library to capture IPv6 traffic on the specified 
interface. It displays a text message if the cover traffic 
contains the information that a node movement was de-
tected by IPBasicSensor. 
 
6. Covert Channel 
 
Because this implementation serves solely for demon-
stration purposes, it does not implement the layer model 
from Section 4. Instead, a basic covert channel data link 
layer is sufficient because the channel is only used to 
transmit an indication, whether the sensor node was 
moved or not. On the covert channel physical layer, this 
information is encoded in the IPv6 hop limit header field. 
For the sake of simplicity, the overt channel in this sen-
sor node example involves significant overhead regard-
ing the use of IPv6 and UDP headers compared to 32 bit 
sensor payload. In contrast, the covert channel introduces 
no overhead, as the 8 bit frame is directly written to the 
hop limit field, which is of the same size. This is why the 
covert channel is easy to detect. Besides, it does not pro-
vide integrity check and it does not enable loss detection 
or the tracking of associations between sensor and moni-
tor. This illustrates why a robust covert channel based on 
the model presented in Section 4 provides limited capac-
ity while requiring significant overhead at the same time. 
 
7. Conclusions 
 
As the presented proof-of-concept prototype in Section 5 
illustrates, network covert channels can be used to hide 
the integrity monitoring of a distributed WSN system. If 
implemented properly, a covert channel does not merely 
disguise that the distributed system is supervised, it also 
avoids disclosing what event or status information is 
transmitted and, given sufficient and continuous cover 
traffic, in which intervals this is done. 

The actual encoding of secret fragments into cover 
traffic is subject to extensive research, which is to some 
extent presented in Section 3. However, a deployment 
of a covert channel in the context of integrity monitor-
ing requires a certain degree of robustness, which is 
highly dependent on the deployment platform and the 
particular type of cover traffic. This characteristic is not 
provided by the majority of the proof of concept im-
plementations. 

The model of a network covert channel presented in 
Section 4 gives a modular description of the necessary 
tasks to ensure robust covert communications between 
sensor nodes and a monitor. The layer architecture of the 
model provides flexibility for specific requirements of 
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different deployment platforms or different types of 
cover traffic. From the description of several channel 
characteristics it can be seen that there is a trade-off be-
tween robustness and capacity of a covert channel. 
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