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Abstract 
 
This paper discusses the hysteretic behavior of beams with external elements made from auxetic materials. 
The damping force is modeled by using the nonlocal theory. Unlike the local models, the damping force is 
modeled as a weighted average of the velocity field over the temporal and spatial domains, determined by a 
kernel function based on distance measures. The hysteresis operator is continuous and it is defined in con-
nection with the Euler-Bernoulli equation. The problem is solved by reducing it to a system of differential 
inclusions. 
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1. Introduction 
 
The term auxetic is coming from the Greek word auxetos, 
meaning that which may be increased. Instead of getting 
thinner like an elongated elastic band when stretched, an 
auxetic material gains volume, expanding laterally [1]. 
For non-homogeneous linear elastic materials, it is dem- 
onstrated that even for the simplest loading case, i.e. 
quasi-static uniaxial, the Poisson’s ratio is spatial and 
temporal dependent and not a constant [2]. The Poisson’s 
ratio can be considered an auxetic descriptor only on 
such spatial and temporal domains where it gains nega- 
tive values. Generally, the Poisson’s ratio is a function of 
the spatially and temporally changing moduli and stresses, 
and varies accordingly. For instance, we have 
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Auxetic materials have a negative Poisson’s ratio for 
large spatial; and temporal domains and are expected to 
have interesting mechanical properties, such as high en- 
ergy absorption, fracture toughness, indentation resis- 
tance and enhanced shear moduli, which may be useful 
in some applications [2-6]. Scientists have been aware of 

the existence of auxetic materials for over a hundred 
years, though without very special attention, and treating 
them as an accident or a curiosity. In the case of an iso- 
tropic material, the range of Poisson’s ratio is from –1.0 
to 0.5, based on thermodynamic considerations of strain 
energy in the theory of elasticity. The auxetic behavior is 
found in materials from molecular and microscopic levels 
up to the macroscopic level. Love [7] presented an ex- 
ample of a cubic single crystal pyrite as having the Pois- 
son’s ratio of –0.14, and he suggested that the effect may 
be caused by twinned crystals. Subsequently, an auxetic 
behavior has been observed in other naturally single- 
crystal materials [8-10], in real materials with a high 
degree of anisotropy, such as conventional honeycomb 
network, re-entrant honeycomb and hexagonal structures 
(Figure 1), reticulated metal foams, the skin covering a 
cow’s teats, certain rocks and minerals, living bone tis- 
sue, etc. In the auxetic materials the shear modulus is 
significantly greater then the elastic Young modulus 

It is well known that all major classes of materials 
(polymers, composites, metals and ceramics) can exist in 
auxetic form. A specific feature exhibeted by auxetic 
materials in comparison with other foams is their sig- 
nificant damping capacity at various loading levels, with 
increase up to 16 times compared to conventional foams 
[11-13]. The size-dependent theories of the damping 
capacity of auxetic foams have received increasing atten- 
tion in recent years due to the need to model and analyse 
very small-sized mechanical interactions inn the rapid 
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developments of micro-nanotechnologies [14-16]. The 
nonlocal theory becomes significant when dealing with 
such problems. The advantages of this theory over the 
classical local theory are in the high accuracy which can 
be obtained when employing the energy loss per unit 
volume versus the number of hysteretic cycles. The 
nonlocal estimation of the energy loss shows a better 
approximation of the experimental results than the local 
energy loss [15,16]. 

The starting point in the nonlocal damping theory of 
structures is the damping force which depends at a given 
point on the past history of a velocity field over a certain 
domain, through a kernel function. The nonlocal damp- 
ing force is modeled as a weighted average of the veloc- 
ity field over the spatial domain, and it is determined by 
a kernel function based on distance measures [17]. The 
damping capacity of the auxetic foam, in particular the 
conventional grey open-cells polyurethane foam [18], is 
tested by adding it under the form of the external ele- 
ments to conventional materials [19-21].  

Such models represent a generalization of the viscous 
damping, and examples include the beams and nano- 
beams with external patches [22,23], the auxetic com- 
posites [24-26], the micropaddles with the periodic 
auxetic cores [27], the multifunctional nanofoils based 
on the carbon nanotubes and the auxetic foams [14]. A 
nonlocal damping model including the time and spatial 
hysteresis effects for beams and plates is analysed in [14] 
by using the Galerkin method. The hysteresis in connec- 
tion with PDEs and applicative problems are analyzed in 
[28-34]. Details on the nonlinear semigroups and differ- 
ential equations in Banach spaces can be found in [35]. 

In this paper we apply the nonlocal theory to analyze 
the hysteretic behavior of the Euler-Bernoulli beams with 
external elements made from the auxetic material. The 
hysteresis operator is continuous and it is defined in con- 
nection with the motion equation of the beam. 
 
2. Motion Equation with Hysteresis 
 
Let us consider a beam of length L, in which a number 

pk  of external damping elements of thickness ph  are 
attached at ( )1 1 1,x x x+ ∆  ( ) ( )2 2 2, ,k k kx x x x x x+ ∆ + ∆L , 

2 1 1x x x≥ + ∆ , 1 1i i ix x x− −≥ + ∆ , 2, , ,i k= L  as shown in 
Figure 2. The length L, the transverse displacement 

( ),u x t , and the coordinate x are non-dimensionalized by 
the length of the beam, so that dimensionless quantities 
( ), ,L u x′ ′ ′  are given by 1,L L L′ = =  ,u u L′ =  x′ =  
x L . 

The bending stiffness is ( ) ( )0EI x EI J x′= , where E is 
the Young’s modulus of elasticity and ( ) ( )0I x I J x′=  
the moment of inertia, 0I  is a constant moment of inertia, 
and ( )J x′  the dimensionless moment of inertia. The 
cross-sectional area A is non-dimensionalized by 2L , 
and the time t by 11 ω , where 1ω  is the first natural 
frequency. The potential energy is non-dimensionalized 
by 0EI L , and the density of the bar ρ  is non-di- 
mensionalized by 6 2

0 1EI L ω . The virtual work due to 
the damping force per unit length is non-dimensionaliz- 
ing by 0EI L  and the damping force by 3

0L EI . The 
dimensionless non-conservative work is expressed as 

( )1

0
, dx t w xδ′ ′ ′ ′Π∫ , where ( ),x t′ ′Π  is the external damp- 

ing force per unit length defined over the spatial subdo-
mains ( ),i i ix x x′ ′ ′+ ∆ , 1, 2, ,i k= L . 

 

     
Figure 1. Conventional honeycomb network, re-entrant honeycomb and hexagonal structures, with negative Poisson’s ratio. 
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Figure 2. The beam with damping elements. 
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The state of the beam is characterized by two variables 
confined to a set 2D R⊂ : the external damping force 

( ),u x t  acting over the spatial subdomains ( ),i i ix x x+ ∆ , 
1, 2, ,i k= L , and the transverse displacement ( ),w x t% . 

Using the extended Hamilton’s principle, by including 
the non-conservative damping force ( ),U x t , the equa-
tion of motion for the beam is written as, by omitting the 
prime 

( )( ) ( ) ] [2
, , , 0,   in  0,xx txx

J x u Au x t R Tρ+ + Π = ×  (2.1) 

with 

( ) ( ) ( ),
1

, , , , d d .
i i

i

x x tk

t
i x

x t C x t u tξ τ ξ τ ξ
+∆

= −∞

Π = −∑ ∫ ∫   (2.2) 

The comma in (2.1) represents the differentiation with 
respect to the specified variable. The Poisson ratio is an 
important factor in defining the kernel ( ), ,C x tξ τ− , 
which is assumed to be separable in space and time 

( ) ( ) ( ) ( ), , .C x t H x c x g tξ τ ξ τ− = − −     (2.3) 

The expression (2.2) and (2.3) represent the general 
form of the nonlocal damping force. The Heaviside func- 
tion ( )H x  denotes the presence of damping. We have 

( ) 0H x H=  (constant) if x is within the patch, and 
( ) 0H x =  otherwise. The spatial kernel function ( )c x ξ−  

 is normalized to satisfy the condition ( ) 1c x dx
∞

−∞
=∫ . 

A particular case of (2.3) refers to the spatial hystere- 
sis with ( ) ( )g t tτ δ τ− = −  where δ  is the delta func- 
tion in time. In this case, the force depends only on the 
instantaneous value of the velocity or strain rate, but de- 
pends on the spatial distribution of the velocities. Also, 
the velocities at different locations within a certain do- 
main can affect the damping force at a given point.  

The external damping force ( ),U x t  is related to the 
peculiar deformation mechanisms of the auxetic materi- 
als. In fact, the auxetic materials expand in all directions 
when pulled in only one, leading to an unusual volume 
change of the solid itself. The auxetic behaviour does not 
contradict the classical theory of elasticity. A homoge- 
neous, isotropic material has a Poisson’s ratio range be- 
tween –1.0 and 0.5, while the magnitude of the Poisson’s 
ratio can be even larger in the case of anisotropic solids. 
Negative Poisson’s ratio materials can exhibit slow decay 
of stress according to Saint-Venant’s principle. The choise 
of the function ( )c x ξ−  in (3) depends on the Pois- 
son’s ratio. To understand this, some previous results are 
further presented [20,21]. The idea was to make a com- 
parison between the non and auxetic grey open-cells 
polyurethane foams from the point of view of the damp- 
ing capacities. The Poisson’s ratio values are all strain 
dependent, tending towards near-zero, negative or posi- 
tive values depending on the pore dimensions. For ex- 

ample, the conventional foam has a Poisson’s ratio posi- 
tive of 0.25 at compressive strain of 10%, which de- 
creases sharply with the increase of compressive loading, 
to become slightly negative from 60 to 80% of tensile 
strain. The auxetic foam exhibits a negative Poisson’s 
ratio of –0.185 at compressive strain from 10 to 25%, 
showing a sharp increase for rising compressive strain, 
reaching then a zero value at 55% of compressive strain 
and a positive Poisson’s ratio of 1.33 at 80% [36]. Fig- 
ure 3 shows the compressive constitutive law of the 
conventional and auxetic foams for cylinders having the 
diameter of 30 mm and length of 170 mm. 

We determine the best form for ( )c x ξ−  so that the 
variation of the energy loss per unit volume with respect 
to the number of compressive cyclic loadings is the clos- 
est to the experimental data [36,37]. The polyurethane 
sample is obtained from cylinders having the diameter of 
30 mm and length of 170 mm. Then, it is compressed 
inside the mould obtaining a final nominal diameter of 
20 mm and length of 100 mm. Figure 4 defines the com- 
pressive loading and displays the variation of the Pois- 
son’s ratio with respect to compressive strain for this  
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Figure 3. Comparison between compressive stress–strain 
curves of the considered types of foams. 
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Figure 4. Poisson’s ratio versus compressive strain for 
auxetic foam [21]. 



M. POIENARIU  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                 WJM 

9 

sample [21]. For any given loading cycle, the dissipated 

energy is max

min
d

ε

ε
σ ε∫ , where minε  and maxε  are the 

minimum and maximum strains, respectively, and 
,xEuσ = . It is interesting to notice the higher energy 

absorption characteristics of the auxetic foam for the 
same strain ranges compared to the non-auxetic one. 

Accordingly to [3], the calculations of the damping 
capacities for both non and auxetic foams are carried out 
on four forms of the spatial kernel ( )c x ξ− : the expo- 
nential decay function, ( ) ( )2 exp ,xα β ξ− −  the error 
function, ( ) ( ) ( )( )1 2 222 exp 1 2 xα π β ξ− − − ,  the hat 
function, 1

0l
−  for 0 2x lξ− ≤  and 0 otherwise, and 

the triangular function, ( )1 1
0 01l l x ξ− −− −  for 0 ,x lξ− ≤  

and 0 otherwise, respectively. In these expressions, α  
and β  are characteristic parameters of the damping 
material, and 0l  is the influence distance parameter. 
The numerical results are quite satisfying. The following 
conclusions can be drawn: 1) for nonauxetic foams the 
exponential decay function and triangular functions yield 
to similar values of energy loss per unit volume (15 
mJ/cm3) after 20000 cycles; 2) all functions show a good 
correlation of the energy loss per unit volume with ex- 
perimental data for auxetic materials; 3) while the hat 
and triangular functions yield to similar values of energy 
loss per unit volume (mJ/cm3) after 20000 cycles, the 
error function and respectively, exponential decay func- 
tion are closer to an average value of 27 mJ/cm3, and 
respectively, 29 mJ/cm3. One feature of all results is the 
high energy dissipated by auxetic foam compared to the 
conventional foam for the same loading level. 

Therefore, we choose for the spatial kernel function 

the exponential decay with 1
E
ν

β α
+

=  and 0.22α =  

( ) 1exp .
2

c x x
E

α ν
ξ α ξ

+ − = − − 
 

      (2.4) 

The reacting character of the damping of the auxetic 
foams suggests to consider another particular case of 
(2.3), i.e. the temporal hysteresis, in which ( )c x ξ−  
may be the Dirac delta function ( )xδ ξ− , which re-
flects the reacting character of the damping force 

( ) ( ).c x xξ δ ξ− = −                  (2.5) 

In this case we 

( ) ( ) ( ) ( ), , .c x t H x x g tξ τ δ ξ τ− = − −    (2.6) 

The ability to dissipate energy is one of the main rea- 
sons for using auxetic materials. Stress relaxation refers 
to the behavior of stress reaching a peak and then de- 
creasing or relaxing over time under a fixed level of 
strain. For the kernel function ( )g t τ−  depending on 

the past time histories, we consider 

( ) ( )( )0 exp ,g t g tτ µ µ τ− = − −      (2.7) 

with µ  the time relaxation constant of the auxetic 
foams and 0g  a constant. Both constants depend on the 
Poisson’s ratio (Figure 5). 

In this paper we deal with the Euler-Bernouli problem 
(2.1) and (2.2) that contain a continuous hysteresis op- 
erator ( )F u  

( )( ) ( )( ) ( ) ] [2
, ,

, 0,  in 0,xx txx
J x u A u F u x t R Tρ+ + + Π = ×  

(2.8) 

( ) ( )( ) ( ),
1

, , , , d d .
i i

i

x x tk

t
i x

x t C x t u wξ τ ξ τ τ ξ
+∆

= −∞

Π = − +∑ ∫ ∫  

(2.9) 
The initial conditions attached to (2.8) are given by 

( )( ) ( ) ( )
( ) ( ) ( )

0 0

2
0,

,0 ,

,0 0, R .t

u w x u x w x

u w x u L

+ = +

+ = ∈
     (2.10) 

The boundary conditions are written, for example, for 
a simple supported beam 

( ) ( ),, 0,  , 0  for  0,   xxu x t u x t x x L= = = =  (2.11) 

In view of inserting of the delayed relay operator in 
(2.1) as expressed in (2.8), let us fix any pair :γ =  
( ) 2

1 2, Rγ γ ∈  with 1 2γ γ<  (Figure 6). This operator is 
not closed. For any continuous function [ ]: 0, Ru T →  
is uniformly continuous, hence it may have a finite 
number of oscillations between the thresholds 1 2,γ γ . 
For any [ ]: 0, Ru T →  and { }1,1ξ ∈ − , we set ( ) :uX t =  

] ] ( ){ }1 20, :  or  t uτ τ γ γ∈ =  and 

( )
( )

( )
( )

1

1 2

2

1 if 0 ,
0 :      if 0 ,

1 if 0 ,

u
w u

u

γ
ξ γ γ

γ

− ≤
= < <
 ≥

     (2.12) 
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Figure 5. Poisson’s ratio versus 0g  and µ . 
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Figure 6. Relay operator. 
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(2.13) 
with ( )0,w BV T∈  [29-31]. We define the rate-inde- 
pendent hysteresis operator hγ  

[ ]( ) { } ( ) ( )0: 0, 1,1 0, : , ,h C T BV T u wγ ξ= × − → a  

in the sense of Visintin [29-31]. For any increasing con- 
tinuous function : R Rϕ + +→ , if ( )w h uγ= .we have 

( )w h uγϕ ϕ=o o . 
Visintin has defined the completed relay operator 

[ ]( ) { } ( )( )0: 0, 1,1 0,k C T P BV Tγ × − → , where ( )( )0,P BV T  
is the set of parts of ( )0,BV T  (Figure 7). This opera-
tor is defines as follows. For any [ ]( )0 0,u C T∈  and 
any { }1,1ξ ∈ − , we set ( ),w k uγ ξ∈  if and only if w  
is measurable in ] [0,t  

( )
( )

( )
( )

1

1 2

2

1 if 0 ,

0 :      if 0 ,

1 if 0 ,

u

w u

u

γ

ξ γ γ

γ

− <


= ≤ ≤
 >

     (2.14) 
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1 1 2

1 2 1
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( ) : 1,1 if ,  , 0,

1 if ,  .
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u t u t

γ γ γ
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γ γ
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

= − ≤ ≤ = ∀ ∈
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(2.15) 
In conformity to (3.4), w is constant in a neighbour- 

hood of t in the first case, w is nonincreasing in a 
neighbourhood of t in the second case, and w is nonde- 
creasing in a neighbourhood of t in the last case. 

The completed relay operator can be regularized by a 
regularized relay operator kε

γ  

[ ]( ) { } [ ]( ) ( )0 0: 0, 1,1 0, 0, :k C T C T BV t u wε
γ = × − → ∩ a  

 

1γ  

w 
1

-1

u 2γ  

 
Figure 7. Completed relay operator. 

 
The regularized relay operator kε

γ  may be written an 
the weak form 

( )( )
( )( ) ] [2

1

1 0,
1,    a.e. in  0,

1 0,
w u w

w T
w u w

ε γ
ε γ

 − − − ≥≤  + − − ≥
(2.16) 

( ) [ ]( ) ] ]0

0

d ; 0, ,   0, ,
t

u w w w t t Tγε ψ− ≥ ∀ ∈∫     (2.17) 

or 

[ ]( ) ( ) ( )

[ ]( ) ] ]

0 2 2

0

d ; 0, 0
2

; 0, ,  0, ,

t

u w w t w t w

w t t T

γ

ε
γ

ε
ψ

ψ

 ≥ + − 

= ∀ ∈

∫     (2.18) 

The hysteresis motion Equation (2.8) may be rewritten, 
by taking 

( )
( ) ( ) ( ) ( )( ) ( )

( )
0 0

2
0 0 0

,

, , , , ,

, R ,    1 a.e. in R.

u F u u w

w x t k u x u x w x t

u w L w

ε ε

ε
γ

+ = +

 =  
∈ ≤

L    (2.19) 

We also assume that 0ε ≥ , and provide a unified 
formulation of our problem for both the completed relay 
operator kγ  and its regularization kε

γ  with 0ε > . In 
this way, the problem can be formulated as 

Find ( )( )20, ; Ru L T Lε
∞∈  and ] [( )R 0,Tw Lε

∞∈ ×  
such that 0 1w ≤  a.e. in ] [R 0,T×  and 

( )( ) ( ) ( ) ] [2
, , , 0,  in 0, ,xx txx

J x u A u w x t R Tε ε ε ερ+ + + Π = ×  

(2.20) 

( ) ( )( ) ( ),
1

, , , , d d
i i

i

x x tk

t
i x

x t C x t u wε ε εξ τ ξ τ τ ξ
+∆

= −∞

Π = − +∑ ∫ ∫  

(2.21) 
This problem may then be interpreted as a weak for- 

mulation of the problem (2.8), (2.9). Henceforth we shall 
write ( ),u w  in place of ( ),u wε ε . 

The hysteresis relay operator can be either continuous 
or discontinuous, but in this paper only the continuous 
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case is studied. 
 
3. Results and Conclusions 
 
In what follows, the example refers to a simply sup-
ported aluminum beam with constant diameter d = 
0.0025, with a single auxetic element 1pk = , 1 0.1x = , 

1 0.1x∆ = , and respectively, two auxetic elements pk =  
2 , 1 0.1x = , 2 0.8x = , 1 2 0.1x x∆ = ∆ = , with thickness 

0.0015ph = . The auxetic material has the density 
9 30.205 10 kg mρ −= × , the Poisson’s ratio 0.3v = −  

and the elastic modulus E = 259.93 MPa. 
Tables 1 and 2 tabulate the lower estimates for the 

first five eigenvalues for the beam with a single and re- 
spectively, two damping elements. It is observed that the 
temporal hysteresis gives larger damping ratios then the 
spatial hysteresis. These results agree to the previous 
results reported in [21,22]. 

It is the purpose of this section to present the per-for- 
mance of the method of including the relay operator into 
the Euler-Bernoulli beam with auxetic external elements. 
To do this, we solve numerically the system of differen- 
tial inclusions associated to the (2.20) and (2.21). As 
shown in Figures 8 and 9, the hysteresis loops for the 
ratios ( ),u w  for a cyclic variation of u are displayed for 
both cases of spatial and the temporal hysteresis, respect- 
tively. The calculations are carried out for 0u u u=%  
and 0w W w=%  in the middle of the beam, for the first 
four vibration modes in the case of the spatial hysteresis 
and respectively, for first four vibration modes in the 
case of the temporal hysteresis. 

According to Figures 8 and 9, it should be mentioned 
that the temporal hysteresis gives larger hysteresis loops 
then the spatial hysteresis. Moreover, the spatial loops 
look to be in some way to be stretched in the vertical 
direction. 

 
Table 1. First five eigenvalues for a simply supported beam (spatial hysteresis). 

Model Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

One element –4.97 ±  20.34i –0.35 ±  73.56i –0.050 ±  161.53i –0.023 ±  289.71i –0.0054 ±  455.73i 
Two elements –5.26 ±  22.84i –0.99 ±  74.57i –0.095 ±  161.40i –0.045 ±  291.54i –0.0108 ±  445.65i 

 
Table 2. First five eigenvalues for a simply supported beam (temporal hysteresis). 

Model Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 
One element –10.57 ±  19.75i –3.93 ±  72.78i –3.58 ±  160.63i –4.03 ±  287.56i –2.71 ±  440.35i 

Two elements –10.90 ±  17.17i –4.38 ±  72.86i –3.78 ±  141.39i –4.08 ±  270.16i –2.87 ±  420.69i 
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Figure 8. The temporal hysteresis for four vibration modes. 
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Figure 9. The spatial hysteresis for four vibration modes. 

 
A possible drawback of this method is the difficulty in 

extending the method to deal with discontinuous relay 
hysteresis operator. The main idea is to explain some 
features of the experimental results in which the singu- 
larities of the hysteresis loops and the presence of the 
unclosed loops are reported. 

For instance, in the Figure 10 we see that the dis- 
placement drift, the force relaxation and non-closure of 
hysteretic loops are present [38]. We remember that the 
displacement drift appears when cycled between two 
unequal forces, the force relaxation appears when cycled 
between two unequal displacements. We must specify 
that such responses exhibit multiple reversals of small 
amplitude and are experimentally put into evidence [39]. 
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Figure 10. The displacement drift and force relaxation [38]. 

4. Conclusions 
 
In this paper, the continuous relay hysteresis operator is 
illustrated, and a weak formulation is studied for the 
nonlocal Euler-Bernoulli equation of the beam with ex- 
ternal elements made from auxetic materials. The damp- 
ing force is modeled as a weighted average of the veloc- 
ity field over the temporal and spatial domains, deter- 
mined by a kernel function based on distance measures. 
The spatial and temporal hysteresis are defined when 
employing the presence of the auxetic elements. The 
problem is solved by reducing it to a system of differen- 
tial inclusions. From the numerical results presented in 
this study, we can conclude that the temporal hysteresis 
is associated with the larger hysteresis loops then in the 
case of the spatial hysteresis. 
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