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ABSTRACT 

In this work, receptor models were used to identify the PM2.5 sources and its contribution to the air quality in residential, 
comercial and industrial sampling sites in the Metropolitan Area of Costa Rica. Principal component analysis with ab- 
solute principal component scores (PCA-APCS), UNIMX and positive matrix factorization (PMF) was applied to ana- 
lyze the data collected during 1 year of sampling campaign (2010-2011). The PM2.5 samples were characterized through 
its composition looking for trace elements, inorganic ions and organic and elemental carbon. These three models iden- 
tified some common sources of PM2.5: marine aerosol, crustal material, traffic, secondary aerosols (secondary sulfate 
and secondary nitrate resolved by PMF), a mixed source of heavy fuels combustion and biomass burning, and industrial 
emissions. The three models predicted that the major sources of PM2.5 in the Metropolitan Area of Costa Rica were re- 
lated to anthropogenic sources (73%, 65% and 69%, respectively, for PCA-APCS, Unmix and PMF) although natural 
sources also contributed to PM2.5 (21%, 24% and 26%). On average, PCA and PMF methods resolved 94% and 95% of 
the PM2.5 mass concentrations, respectively. The results were comparable to the estimate using UNMIX.  
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1. Introduction  

The atmospheric particulate matter (PM) consists of par- 
ticles which have their origin by several sources and 
processes, such as direct emissions from mobile sources, 
space heating, metal processing, refuse incineration, ero- 
sion and resuspension, gas-to-particle conversion and 
long range transport. PM is composed of inorganic salts, 
organic material, crustal elements and trace metals and 
possess a range of morphological, physical, chemical and 
thermodynamic properties. Airborne particles can change 
in the atmosphere in size and/or composition through 
condensation of vapor species or by evaporation, by co- 
agulating with other particles, by chemical reaction, or 
by activation in the presence of supersaturated water va- 
por to become cloud and fog droplets 1. 

The sources, characteristics and potential health effects 
of the larger or coarse particles (>2.5 µm in diameter) 
and smaller or fine particles (<2.5 µm in diameter) are 
very different. Many studies indicate that the fine aerosol 
fractions have the greatest impact on health because they 

can go all the way into the respiratory tract, inducing 
chronic respiratory illness, asthma, cancer and premature 
dead 2,3. PM concentrations have been routinely moni- 
tored. However, this level of monitoring is insufficient 
and a measurement of the elemental and chemical com- 
position of PM is recommended.  

One of the main difficulties in air pollution manage- 
ment is to determine the quantitative relationship be- 
tween ambient air quality and pollutant sources. Source 
apportionment is the process of identification of aerosols 
emission sources and quantification of the contribution of 
these sources to the aerosol mass and composition. Iden- 
tification of pollutant sources is the first step in the proc- 
ess of devising effective strategies to control pollutants. 
After sources are identified, characterization of the source’s 
emission rate and emission inventory can be followed by 
the development of a control strategy including the pos- 
sibility of revised or new regulations. 

Under the supposition that chemical components 
found in a given ambient sample, have a strong corre- 
spondence to the chemical composition of the source 
emissions, during last years, receptors models have been *Corresponding author. 
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one of the most important tools in source apportionment 
studies 4-7. All receptor models use ambient air meas- 
urements of the different chemical species to infer the 
source types, locations and contributions that affect am- 
bient pollutant concentrations. Receptor models allow 
correlation of the concentrations of measured chemical 
species in a site known as a receptor with the emission 
sources. Receptor models have been used to quantify 
source contributions to PM10 and PM2.5, identify un-in- 
ventoried sources, improve emission inventories and 
track the long term effectiveness of pollution control 
strategies 8. 

While source models need spatial and temporal resolu- 
tion and accurate emissions rates, receptor models need 
only a seasonal or annual average wide area inventory to 
identify potential source categories. Receptor models are 
based on the chemical mass balance (CMB) principle 
where the main assumption is that the composition of PM 
remains constant and the chemical species do not react 
with each other. CMB equations may be solved by effec- 
tive variance (EV), Positive Matrix Factorization (PMF), 
or Unmix methods 9. The EV-CMB solution uses both 
source profiles and ambient concentrations as inputs and 
calculates source contribution estimates (SCEs) and their 
uncertainties for individual samples. The PMF-CMB and 
Unmix-CMB solutions derive source factors and contri- 
bution estimates simultaneously from a time series and/or 
spatial distribution of ambient measurements, and then 
associate these factors with source types by comparison 
with measured source profiles. Validation tests are speci- 
fied for the EV-CMB solution that have not been adapted 
or applied yet to the PMF or Unmix solutions. Compari- 
son of SCEs from these solutions provides an independ- 

ent validation test, consistent with the “weight of evi- 
dence” approach to SCEs. In addition, a CMB solution 
should be consistent with the conceptual model, or rea- 
sonable modifications to the conceptual model are re- 
vealed 10. 

The objectives of the present paper are to 1) analyze 
the concentration and chemical composition distribution 
of atmospheric PM2.5 at five sites in the Metropolitan 
Area of Costa Rica and 2) compare the results of three 
different receptor models used for the characterization of 
potential PM2.5 sources. 

2. Methodology  

2.1. Study Area Description 

The study was carried out in the Metropolitan Area of 
Costa Rica located in a central plateau of around 3000 
km2 surface within a mountain system that cross the 
country from NW to SE, with peaks with a maximum 
height of around 4000 meters (Figure 1). The metropoli- 
tan area is the highest-ranking center in the urban system 
in Costa Rica, accounting for 75% of the vehicle fleet 
(approximately 734,200 units), 65% of the domestic in- 
dustry and 60% of the country's population (2,580,000), 
according to data from the last population census con- 
ducted in 2010. Lack of urban planning have led to an 
accelerated deterioration of air quality, as a result of 
growth experienced by the cities of the Metropolitan Area 
of Costa Rica during the past 20 years.  

2.2. Sampling 

For the PM2.5 sampling, five monitoring sites were se- 
lected (Table 1). The sites were representative of com- 

 

 

Figure 1. Location of the sampling sites in the Metropolitan Area of Costa Rica. 
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Table 1. Description of sampling sites used in the PM2.5 analysis. 

Site  Sampling site Type Municipality Location Reference 

SJ-03 

Commercial/Industrial area with 
high traffic flow 
−6.75 m of the street and 3 m 
above the ground 

San Jose 
National Electrical Company (CNFL) 
Office 

9˚57'07.85"N 84˚06'30.59"W 

SJ-06 

-Transition between comercial 
and residencial zone. High  
traffic flow 
−8 m of the street and 2.5 m 
above the ground level 

San Jose San Jose Municipality Central Office 9˚55'50.09"N 84˚05'31.32"W 

HE-01 

Commercial zone with high 
traffic flow 
−5.5 m of the street and 6 m 
above the ground level 

Heredia 
National University Central Administration 
Building 

9˚59'19.96"N 84˚06'33.35"W 

BE-02 

-Industrial zone, Metropolitan 
Area wind exit 
−6 m of the highway and 5 m 
above the ground 

Belen Intermodal Company Office 9˚58'47.54"N 84˚09'59.11"W 

MO-01 

-Residential zone, Metropolitan 
Area wind enter 
−6 m of the street and 3 m above 
the ground 

Moravia EATON Company Office 9˚58'07.59"N 84˚05'12.42"W 

 
mercial, industrial and residential areas, all located in the 
Costa Rica metropolitan area. Sampling campaign was 
conducted between May 2010 and July 2011. Samples 
were collected once each three days for a total of 110 by 
sampling site. To collect the samples, two low volume air 
samplers, Air Metrics were used with a flow rate of 5 l 
min−1in each sampling site. The separation of the PM2.5 
fraction takes place at the entrance of the sample by a 
head with two impactors, one (located on the top) that 
separates the total PM10 and a second impactor that 
separates the fraction of PM2.5 particles of the PM10. 
PM2.5 samples were collected on 47-mm Teflon mem- 
brane filters (nominal pore size 2 μm) (Pall Corporation, 
Ann Arbor, MI, USA) and 47-mm quartz filters (Pallflex 
TYPE:Tissuquartz 2500QAT-UP002C 

Clifton, NJ, USA). Samples were collected during 24 h 
on a pre-fired (at least 5 h at 900˚C) quartz fibre filters 
(Pallflex TYPE: Tissuquartz 2500QAT-UP). Before and 
after collection, the samples were stored in the freezer 
and they were also kept frozen during transport. After 
particle collection, the Teflon membrane filters were 
reconditioned for another 24 h in an air conditioned room 
and subsequently analysed for total mass. After sampling, 
the exposed quartz filters were stored in a freezer at −5˚C 
to limit losses of volatile components. Special care was 
taken during the handling of the filters to avoid any pos- 
sible contamination. 

2.3. Chemical Analysis 

Samples collected in Teflon membrane filters were used 
for gravimetric analysis in order to determinate the PM2.5 
concentrations. The weighing of the low volume filters  

was performed using a semimicroanalytic balance (Met- 
tler). The readability of the balance is 10 g with a preci- 
sion of ±40 g corresponding to mass concentration un-
certainty of ±0.86 g/m3 for PM2.5 samples. They were 
weighed at least three times to obtain constant values. 

Quartz filters were cut in three equal parts to analyse 
chemical composition. A small portion of quartz filters 
were analyzed for Organic Carbon (OC) and Elemental 
Carbon (EC) using DRI Model 2001 Thermal/Optical 
Carbon Analyzer (Atmoslytic Inc., Calabasas, CA, USA). 
A 0.68 cm2 punch from each filter was analyzed for eight 
carbon fractions following the IMPROVE TOR protocol. 
This produced four OC fractions (OC1, OC2, OC3, and 
OC4 at 120˚C, 250˚C, 450˚C, and 550˚C, respectively, in 
a helium atmosphere), a pyrolyzed carbon fraction (OP, 
determined when reflected laser light attained its original 
intensity after oxygen was added to the combustion at- 
mosphere), and three EC fractions (EC1, EC2, and EC3 
at 550˚C, 700˚C, and 800˚C, respectively, in a 2% oxy- 
gen and 98% helium atmosphere). IMPROVE OC is op- 
erationally defined as OC1 + OC2 + OC3 + OC4 + OP 
and EC is defined as EC1 + EC2 + EC3 − OP. For the 
OC and EC determination, the analyzer was calibrated 
using different aliquots (0, 3, 5, 7, 10, 12, 15, 20 and 25 
l) of a standard sucrose solution (4260 mg/l) over a fil- 
ter blank (pre-heated Quartz filter punch). The detection 
limits (LODs) for OC and EC were 746 ngm−3 and 180 
ngm−3, respectively. Analytical uncertainties for OC and 
EC were estimated to be 16% and 9%, respectively. 
NIST 8785 reference material was used in order to eva- 
luate the analytical method accuracy for the determina-  
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tion of organic and elemental carbon in PM2.5. This ref- 
erence material consists in a thin fraction of SRM 1649 
(Urban Dust) deposited on a quartz fiber filter. Seven 
replicates of NIST 8785 were analized and the results are 
showed in Table 2. There is not a significative difference 
between obtained values and reference values, a confi- 
dence level of 95%, according to a t test for medians 
comparation. 

Another filter portion was extracted in 50 ml desion- 
ized water during 35 minutes in an ultrasonic bath. The 
analysis of ionic species was performed by dual mi- 
crobore suppresed Ion Chromatography using a DIONEX 
ICS-3000 equipment with a quaternary pump. A fresh 
calibration curve were prepared for every 20 samples, 
together with a dissolution of quality control of 5 mg·l−1 
prepared from a certified DIONEX synthetic sample. 
Detection limits for each ion are shown in Table 3. 
 
Table 2. Results of SRM 8785 reference material analysis 
for Organic carbon and elemental carbon percent aje. 

Obtained Values 
Reference values 

SRM 8785  
% OC % EC % TC % OC % EC % TC

Average 0.1085 0.1099 0.2185 0.1120 0.1110 0.2230

Standard Deviation 0.0071 0.0248 0.02730.0845 0.03350.0285 

 
Table 3. Limit of detection (LOD) of different chemical 
species analyzed in PM2.5. 

Inorganic Ions (g/m3) LOD 

F− 0.01 

Cl− 0.05 

Br− 0.02 

2NO  0.02 

3NO  0.01 
3

4PO   0.06 
2

4SO   0.03 

4NH  0.01 

Metals (ng/m3) LOD 

Na 125 

K 57 

Ca 34 

Mg 17 

Cu 0.78 

Fe 0.54 

Mn 0.43 

Al 0.88 

Cr 0.97 

Ni 0.51 

V 0.14 

Pb 0.35 

The last filter portion was extracted adding 5 ml of ul- 
tra-pure concentrated nitric acid and 25 ml of desionized 
water and heated on a hot plate until almost dryness. The 
remaining solution was poured into a 25 ml volumetric 
flask. A second extraction was done with 1 ml of con- 
centrated HClO4. Metals analysis was made using graph- 
ite furnace atomic absorption spectroscopy (PERKIN 
ELMER AANALYST 700). Detection limits in ngm−3 
were obtained according IUPAC method 11. The re- 
sults are shown in Table 3. Blank filters were analyzed 
for metals and inorganic ions, obtaining concentrations 
about 5% lower than those found in samples. The accu- 
racy of the metal chemical analysis was periodically 
checked using a certified standard (SRM 1648) for blank 
filter enrichment. An overall bias between −8% and 13% 
was obtained for metal concentrations measured in en- 
richment samples.  

Finally, contents of Si and  were indirectly de- 
termined from the contents of Al, Ca and Mg, on the ba- 
sis of previous experimental equations (Al × 1.89 = 
Al2O3, 3Al2O3 = SiO2; 1.5Ca + 2.5Mg = 

2
3CO 

2
3CO  ) 12. 

2.4. Receptor Models 

The 2007 Costa Rica Metropolitan Area criteria pollutant 
emission inventory 13 attributed 60.8% of primary 
PM2.5 emission to non-point (area) sources, followed by 
mobile sources (26.7%) and point (12.5%) emitters. 
Non-point sources include fugitive dust emissions from 
paved roads, unpaved roads, and agricultural tilling, as 
well as residential waste burning emissions, prescribed 
burning, and wildfires. Although the authors identified 
the source types that might contribute to ambient PM2.5, 
they do not have information about the specific sources 
profiles. PCA-APCS, UNMIX and PMF were applied to 
the collected data in order to estimate source profiles and 
contributions.  

Principal Component Analysis (PCA) model belongs 
to the category of factor analysis (FA) techniques, i.e. it 
is a multivariate method used to study the correlations 
among the measured chemical concentrations at the re- 
ceptor. With this method, the principal components ex- 
plain the observed variance of the data for the analyzed 
chemical species, and then it’s interpreted to identify 
possible sources. The main objective of PCA is to reduce 
a large number of variables to a smaller set of factors that 
retain most of the information (variability) from the 
original dataset 14. To ensure that both elements with 
low or high concentrations are treated equally, PCA re- 
quires the original variables to be normalised and dimen- 
sionless. 

 ij i

ij
i

x x
z




            (1) 

where: i = 1, ···, m elements and j = 1, ···, n samples, zij is 
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the reduced mass concentration of the ith element in the 
jth sample, xij is the ith elemental mass concentration 
measured in the jth sample, xi is the mean mass concen- 
tration of the ith element, σi is the standard deviation as- 
sociated to the xi. 

PCA assumes that the variables (here concentrations) 
are linearly-related to a number p of factors (assumed 
here to be the sources) so that the reduced concentration 
of each element is made up of the linear sum of elemen- 
tal contributions from each pollution source at the recap- 
tor site: 

1

p

ij ik kj
k

z a


  c           (2) 

where, aik is the factor loading of the ith element to the 
kth component (source) and ckj is the factor score of the 
kth component (source) to the jth sample. This equation 
is solved by eigenvector decomposition. Varimax rota- 
tion is often used to redistribute the variance and provide 
a more interpretable structure to the factors. 

APCS (Absolute Principal Component scores) is then 
used, based on the PCA factor scores, to derive quantita- 
tive estimates of source contributions and source profiles 
14. Because the PCA results are based on normalized 
data, the true zero for each factor score should be calcu- 
lated as: 

 0

0 j j

j
j j

C C
Z

 


              (3) 

The rescaled scores are known as APCS. Finally, re- 
gression can be used to derive the source contributions, 
expressed as 

0
1

APC
p

i k
k

kiM S 


            (4) 

where Mi is the measured mass concentrations in sample 
i. APCSki is the rotated absolute component score for 
source k in sample i. ζkAPCSki is the mass contribution in 
sample i made by source k. ζ0 is the mass contribution 
made by sources unaccounted for in the PCA.  

The UNMIX model is a refined multivariate receptor 
model that uses a new transformation method based on 
the self-modeling curve resolution technique to derive 
meaningful factors. UNMIX incorporates user-specified 
non-negativity constraints and edge-finding algorithms to 
derive a physically reasonable apportionment of source 
contributions 15,16.  

The edges are constant ratios among chemical com- 
ponents that are detected in multi-dimensional space. The 
ones detected by this model are translated into source 
profile abundances. This model doesn’t require a previ- 
ous knowledge about emission sources, although it is 
necessary a big number of measurements to estimate the 
different factors, as well as the magnitude of their con- 

tributions 16,17.  
The first step adopted is applying “NUMFACT” to de- 

termine the number of influencing sources. This is 
analogous to factor analysis methods that establish the 
number of factors (or sources), but with different criteria 
being invoked. Singular value decomposition (SVD) is 
then performed on the normalized measured chemical 
concentration data to reduce the dimensions related to the 
retained number of factors (or sources). Once the edges 
of the data set are established, they are used to determine 
the source profiles. Contributions of these source catego- 
ries can be calculated using the singular value decompo- 
sition model. 

The PMF model is a multivariate receptor model that 
has been described in detail by 18 and implemented in 
the PMF2 program, which doesn’t require source profile 
knowledge unlike traditional source receptor models 
(CMB). This program is now being widely used to ana- 
lyze airborne particulate matter sources 19-21.  

PMF is a receptor model based on the principle that a 
relationship between sources and receptor exists when 
mass conservation can be assumed 22. In this case, and 
when chemical speciation of ambient PM is available, a 
mass balance equation of the following form can be writ- 
ten: 

1

p

ij ih hj ij
h

x g f e


               (5) 

where xij is j-th species in the i-th sample. The mass frac- 
tion of species h in source i is ih a (e.g. source composi- 
tion) and fhj is the total mass of material from source h in 
the j sample (e.g. source contribution). Obviously, equa- 
tion above represents the general mixture problem and 
includes errors eij which may be the result of analytical 
uncertainty and variations in the source composition. The 
corresponding matrix equation is 

 X GF E               (6) 

where X is a n × m matrix with n measurements and m 
number of elements. E is an n × m matrix of residuals. G 
is n × p source contribution matrix with p sources, and F 
is a p × m source profile matrix. 

The signal-to-noise ratio (S/N) was used to select the 
species for further analysis. Species with S/N ratio below 
0.2 were classified as bad values and were thus excluded 
from further analysis. The application of PMF depends 
on the estimated uncertainties for each of the data values. 
The uncertainty estimation provides a useful tool to de- 
crease the weight of missing data and values below the 
detection limit data, in the solution. The procedure was 
used to assign measured data and the associated uncer- 
tainties as the input data to the PMF. The concentration 
values were used for the measured data, and the sum of 
the analytical uncertainty and 1/3 of the detection limit 
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value was used as the overall uncertainty assigned to 
each measured value. Values below the detection limit 
were replaced by half of the detection limit values and 
their overall uncertainties were set at 5/6 of the detection 
limit values. Missing values were replaced by the geo- 
metric mean of the measured values and their accompa- 
nying uncertainties were set at four times of this geomet- 
ric mean value. In addition, the estimated uncertainties of 
species that have scaled residuals larger than 72 need to 
be increased to reduce their weight in the solution 23. 

3. Results and Discussion 

3.1. PM2.5 Levels and Chemical Composition 

The average PM2.5 concentrations at the 5 sites ranged 

between 18 and 37 g/m3 (Table 4). The higher concen- 
trations were found in high traffic commercial (HE-01) 
and industrial (BE-02) sites, 37 g/m3 and 36 g/m3, 
respectively. It was found that the PM2.5 concentrations 
in all the sampling sites were higher than 15 μg/m3, the 
US National Ambient Air Quality Standard. Daily con- 
centrations exhibited 34% and 26% exceedances of the 
24-h limit of the USA PM2.5 National Ambient Air Qual- 
ity Standard (35 μg/m3) at the high traffic comercial (HE- 
01) and the industrial site (BE-02), respectively. This 
indicates the need for local authorities to establish ap- 
propriate measures for PM emissions reduction. The 
comparation was done with USA standards due to Costa 
Rica doesn’t have an air quality standard for PM2.5, both 
daily and annual. 

 
Table 4. Annual average PM2.5 levels and its chemical composition at the Metropolitan Area of Costa Rica (±standard devia- 
tion). 

 SJ-03 MO-01 HE-01 BE-02 SJ-06 

N 64 61 59 62 64 

(μg/m3)      

PM2.5 26 ± 7 18 ± 5 37 ± 12 36 ± 15 28 ± 11 

F− 0.04 ± 0.06 0.05 ± 0.03 0.06 ± 0.03 0.08 ± 0.02 0.07 ± 0.03 

Cl− 0.52 ± 0.51 0.51 ± 0.47 0.46 ± 0.42 0.57 ± 0.77 0.48 ± 0.37 

2NO  0.15 ± 0.04 0.14 ± 0.05 0.18 ± 0.06 0.14 ± 0.04 0.23 ± 0.05 

3NO  0.63 ± 0.15 0.58 ± 0.27 0.74 ± 0.39 0.60 ± 0.29 0.81 ± 0.36 

3

4PO   0.31 ± 0.28 0.24 ± 0.34 0.40 ± 0.15 0.53 ± 0.12 0.54 ± 0.17 

2

4SO   3.34 ± 1.23 3.15 ± 1.66 3.52 ± 1.38 3.81 ± 1.62 3.82 ± 1.65 

4NH  1.59 ± 0.57 1.46 ± 0.49 1.71 ± 0.61 1.55 ± 0.47 1.62 ± 0.74 

OC 6.73 ± 2.17 4.45 ± 2.37 13.86 ± 6.57 12.55 ± 5.12 7.81 ± 3.02 

EC 4.5 ± 2.24 1.37 ± 0.85 3.74 ± 1.25 3.55 ± 1.83 2.77 ± 1.61 

Metals (ng/m3)      

V 2.9 ± 1.1 0.9 ± 0.7 2.1 ± 0.9 3.6 ± 2.4 2.7 ± 1.2 

Pb 7.6 ± 3.7 7.29 ± 2.17 8.75 ± 1.77 9.9 ± 4.7 8.42 ± 2.18 

Cr 7.0 ± 2.6 5.1 ± 1.9 6.7 ± 1.1 7.9 ± 2.5 7.3 ± 1.3 

Cu 43 ± 20 57 ± 41 62 ± 43 96 ± 51 60 ± 54 

Ni 3.86 ± 0.95 2.94 ± 1.81 1.74 ± 0.55 5.9 ± 2.4 4.05 ± 0.88 

Mn 61 ± 29 44 ± 17 67 ± 36 58 ± 17 65 ± 22 

Al 259 ± 174 278 ± 71 274 ± 61 353 ± 191 323 ± 95 

Fe 257 ± 162 141 ± 25 191 ± 85 212 ± 108 178 ± 132 

Ca 208 ± 83 184 ± 68 152 ± 90 232 ± 175 192 ± 91 

Mg 47 ± 28 41 ± 27 37 ± 29 55 ± 44 52 ± 33 

Na 615 ± 317 554 ± 392 677 ± 357 665 ± 228 621 ± 291 

K 125 ± 91 81 ± 45 65 ± 32 117 ± 81 102 ± 45 

Si 1467 ± 375 1577 ± 387 1554 ± 543 2002 ± 492 1591 ± 411 
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The largest mass contributions for all the sampling 

sites come from organic carbon (OC). OC is often emit- 
ted from burning sources, e.g., heavy fuels combustion 
and biomass burning, and from secondary organic aero- 
sols (SOA). It is well know that many volatile organic 
compounds (VOCs) can suffer several photochemical 
reactions that can lead to the formation of SOA. The next 
important component (in absolute value) is sulphate, fol- 
lowed by elemental carbon (Figure 2). 

Further clustering of components reveals that the ones 
related to total carbon matter (TCM) (OM + EC) are the 
most dominant. OM was obtained by multiplying the 
measured concentration of organic carbon (OC) by a 
factor of 1.6, which is based on an average of the rec- 
ommended ratios (Turpin and Lim, 2001). This factor is 
commonly used to estimate the unmeasured hydrogen 
and oxygen in organic compounds. The TCM concentra- 
tions are higher at high traffic commercial and industrial 
sites (69.9% - 65.0%) whereas lower percentages are 
found at the residential stations (44.5%). 

Organic carbon (OC), a mixture of hydrocarbons and 
oxygenates, is formed by a variety of processes, includ- 
ing combustion and secondary organic carbon (SOC) 
formation. The concentration of secondary organic car- 
bon (SOC) can be estimated from: 

OC
OCsec OCtot EC primary

EC
    
 

     (7) 

where OCsec is the secondary OC, and OCtot the meas- 

ured total OC. The primary organic carbon (POC) could 
be calculated from the term “EC(OC/EC) primary”. 
However, the primary ratio of OC/EC is usually not 
available because it is affected by many factors such as 
the type of emission source as well as its variation in 
temporal and spatial scales, ambient temperature, and 
carbon determination method, etc. In many case, (OC/EC) 
primary was represented by the observed minimum ratio 
((OC/EC) min), and assumptions regarding the use of 
this procedure as were discussed in detail by 24. 

The annual average concentrations of estimated SOC 
in the Metropolitan Area of Costa Rica PM2.5 samples 
resulted in values between 2.31 to 7.01 g/m3 (Table 5), 
accounting for 40% - 55% OC in PM2.5. Compared with 
rainy season results, there is an overall trend toward 
lower SOC levels but with a higher percentage of SOC in 
the TOC at each site during the dry season 25. Higher 
 
Table 5. Levels of SOC and POC obtained for PM2.5 sam- 
ples in the Metropolitan Area of Costa Rica. 

Sampling Site SOC (µg/m3) POC (µg/m3) 

SJ-03 2.31 3.42 

SJ-06 3.55 3.92 

HE-01 7.01 3.38 

BE-02 3.78 5.34 

MO-01 2.67 1.78 

 

 

Figure 2. Chemical mass closure of PM2.5 at five sampling sites in the Metropolitan Area of Costa Rica.    
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temperatures and more intense solar radiation during the 
summer months provide favorable conditions for photo- 
chemical activity and SOC production. 

The second dominant contribution to PM2.5 comes 
from secondary inorganic aerosol (SIA) (sum of 2

4SO  , 

3 , 4 ): it ranges between 16.1% and 27.2% with 
a maximum at the residential area (MO-01). The contri- 
bution of the remaining components like sea salt (2.2% - 
4.8%), crustal material (22.7% - 11.3%) and metals 
(0.5% - 0.8%) is relatively small in PM2.5 and rather in- 
dependent of measurement site.  

NO NH

Crustal material contribution was calculated as the 
sum of typical crustal materials, including Al, K, Fe, Ca, 
Mg, Ti and Si. Each of these species was multiplied by 
the appropriate factor to account for its common oxides 
based on the following equation 11,26: 

CM = 1.89Al + 1.21K + 1.43Ca + 1.66Mg + 2.14Si.  

The crustal contribution to PM2.5 mass increased from 
11% - 13% in industrial and commercial areas to 23% in 
residential areas, this can be due to the existence of non- 
urban lands nearby. Because these regions are subjected 
to wind resuspension (or entrainment) processes. The 
resuspension of dust (crustal materials of diameter < 20 
μm) by wind provides a potential source of particles to 
the atmosphere 11 

The Sea Salt contribution was computed as the sum of 
measured chloride ion concentration plus the sea salt 
fraction of concentrations of Na+, Mg2+, K+, Ca2+, 2

4SO  . 
Additionally, metals contribution was estimated using the 
following equation: TE = 1.47[V] + 1.29[Mn] + 1.27[Ni] 
+1.25[Cu] +1.08[Pb] + 1.31[Cr]. The contribution of 
marine aerosol varies between 2% to 5% for sampling 
sites presenting a fairly regular basis. This evidences that 
the contribution of this component is due more to re- 
gional scale phenomena.  

3.2. Source Identification with PCA 

Principal component analysis was performed on the 
PM2.5 data sets of three sampling sites categories: resi- 
dential (MO-01), commercial (HE-01, SJ-03, SJ-06) and 
industrial (BE-02), with the results shown in Table 6. A 
total of 18 variables were considered in the PCA with 
Varimax rotation, F− and 2  were excluded from the 
analysis because there isn’t a significative change of their 
levels in different samples so they won’t be sensitive to 
PCA. The lowest eigenvalue for extracted factors was 
restricted to more than 1.0. The analysis extracted four 
diferent factors for residential and five for commercial 
and industrial sampling sites (Table 6). 

NO

 
Table 6. PCA factor loadings for PM2.5 in residential, commercial and industrial sites. 

 Residential sites Commercial sites Industrial sites 

PCA Factor 
loadings 

Crustal Marine Traffic
Secondary 
Aerosols 

Crustal Marine Traffic Industrial
Secondary 
Aerosols

Industrial
Secondary 
Aerosols 

Marine Crustal Traffic

OC 0.22 0.07 0.74 0.61 0.05 0.15 0.87 0.54 0.77 0.88 0.85 0.00 0.13 0.81

EC 0.08 0.14 0.59 0.22 0.03 0.22 0.76 0.68 0.13 0.82 0.41 0.05 0.10 0.66

2

4SO   0.41 0.28 0.54 0.92 0.27 0.37 0.69 0.70 0.89 0.95 0.81 0.36 0.22 0.71

3NO  0.32 0.09 0.22 0.84 0.21 0.08 0.55 0.44 0.92 0.36 0.93 0.21 0.15 0.69

4NH  0.03 0.16 0.07 0.57 0.00 0.00 0.29 0.36 0.69 0.31 0.69 0.09 0.00 0.15

Cl− 0.19 0.77 0.03 0.12 0.08 0.62 0.18 0.11 0.23 0.05 0.24 0.81 0.24 0.07

Na 0.27 0.65 0.14 0.04 0.35 0.58 0.25 0.08 0.15 0.24 0.13 0.73 0.16 0.22

K 0.42 0.32 0.08 0.26 0.38 0.24 0.14 0.19 0.07 0.27 0.32 0.41 0.31 0.11

Ca 0.81 0.39 0.25 0.01 0.73 0.42 0.21 0.25 0.12 0.34 0.09 0.47 0.77 0.35

Mg 0.64 0.41 0.08 0.08 0.58 0.38 0.16 −0.06 0.09 0.16 0.14 0.48 0.62 0.16

Al 0.91 0.07 0.10 0.34 0.86 0.11 0.15 0.02 0.28 0.22 0.42 0.18 0.83 0.22

Fe 0.78 0.22 0.81 0.15 0.65 0.08 0.72 0.05 0.12 0.09 0.27 0.35 0.70 0.74

Mn 0.34 0.09 0.07 0.07 0.21 0.15 0.01 0.17 0.14 0.23 0.13 0.18 0.27 0.17

V 0.02 0.18 0.18 −0.04 0.00 0.24 0.08 0.61 −0.05 0.68 0.07 0.04 0.00 0.29

Ni −0.09 0.07 −0.03 0.19 0.01 0.17 −0.06 0.77 0.02 0.82 0.23 −0.02 0.02 −0.17

Cu 0.11 −0.11 0.31 0.28 0.05 −0.03 0.24 0.52 0.17 0.75 0.37 −0.08 0.07 0.32

Cr 0.02 0.08 0.17 0.31 0.00 0.10 0.20 0.05 0.20 0.24 0.39 0.17 0.10 0.05

Pb 0.05 0.25 0.28 −0.17 0.04 0.17 0.15 0.13 −0.07 0.33 0.26 0.31 0.15 0.11

% Variance 17.8 9.5 23.2 13.4 15.5 9.9 26.7 7.2 18.1 12.1 14.5 9.8 13.3 20.6
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3.2.1. Factor 1: Crustal 
The crustal source is common to all the sampling sites, 
with Al, Fe, Ca and Mg as main tracers although other 
crustal elements such as K or Mn are also present. This 
factor represents the contribution of mineral particulate 
matter from natural (soil resuspension) and anthropo- 
genic (construction activities, soil resuspension generated 
by traffic road, etc.) sources. The explained variance for 
this factor corresponds to 17.8% and 13.3% for residen- 
tial and industrial sites, respectively. 

3.2.2. Factor 2: Marine 
This PM2.5 factor is present in all the sites. It takes into 
account the presence of Na and Cl and Mg in the parti- 
cles. The latter is also a typical marine component (mag- 
nesium-sulfate) 27. The percentage of variance ex- 
plained by this factor is very similar in residential, com- 
mercial and industrial sites due to the contibution of re- 
gional wind patterns. Costa Rica is a narrow country that 
receives the influence of the Pacific Ocean and the Car- 
ibbean Sea. The Metropolitan Area is located in valley 
constantly ventilated by the winds coming from both 
sides, some of them dominate according to the season. 
This ensures a continuously renewal of the air and an 
input of marine aerosols. 

3.2.3. Factor 3: Traffic 
This factor was identified in all the sampling sites. It is 
constituted by components which are typically associated 
with the vehicle exhaust ( 3 , , OC, EC), road 
dust (Ca and Fe) and brake lining particles (Cu) 28. A 
high percentage of the variance was better explained by 
this factor in commercial (26.7%) and residential (23.2%) 
than on industrial (20.6%) sites. 

NO 2
4SO 

3.2.4. Factor 4: Secondary Aerosols 
This is characterized by high sulfate, nitrate, and ammo- 
nium that could be identified as a mixture of secondary 
sulfate and secondary nitrate. These secondary products 
are often originated from the oxidation of SO2 and NOx 
and the neutralization of NH3 29. Also, the presence of 
OC explains the important contribution of SOA to the 
PM2.5 found at the sites. This is mainly produced by 
radical-initiated tropospheric reactions of hydrocarbons 
precursors, generating non-volatile and semivolatile or- 
ganic products which lead both to particulate matter and 
nucleation reactions to form new particles. 

Many studies have related the OC/EC ratio to secon- 
dary organic particle formation. A primary OC/EC ratio 
of 2.2 or 2.0 has been usually regarded as an indication 
of the presence of SOC 30. In other words, the addi- 
tional OC that causes the OC/EC ratio to exceed 2.2 or 
2.0 can be considered to be secondary in origin. Accord- 
ing to this hypothesis, SOC might play an important role 

in carbonaceous pollution in the MACR. The average 
OC/EC ratios at the sampling sites ranged from 1.40 - 
3.96 for PM2.5. These values tend to be higher in the 
rainy season as compared to the dry season. 

Another part of that OC comes from emissions of 
combustion activities which produce primary organic 
carbon (POC) as fine particles, typically PM2.5. The EC 
and OC PM2.5 inventory for the area includes a contribu- 
tion of 8140 tons/year from OC and 2518 tons/year from 
EC. On an annual basis, the major sources of primary OC 
emissions are industrial combustion (92.3%), diesel ve- 
hicles (3.51%) and gasoline vehicles (2.65%). On an an- 
nual basis, the major EC sources are industrial combus- 
tion (74.7%), diesel vehicles (15.7%), residential com- 
bustion (5.4%) and gasoline vehicles (1.22%) 25.  

The influence of this factor in the variance of the PM2.5 
composition data was higher in commercial and Indus- 
trial sites due to the contribution of different combustion 
and area sources emissions, including SOA. 

3.2.5. Factor 5: Industrial 
This source could be a mixture of heavy oil combustion 
and biomass burning because PCA exhibited high levels 
for OC, EC, Ni, V and K. High levels of OC and EC can 
be found in combustion emissions 31. Both the chemi- 
cal analysis of ambient PM2.5 samples 32 and source 
profiles measured in the laboratory 31 have indicated 
that K can be considered an elemental tracer for biomass 
burning. This factor was identified for commercial and 
industrial sites, which explained 7.2% and 12.1% of the 
variance, respectively. 

3.3. Source Identification with UNMIX 

The model identified five and six sources for residential 
and commercial sampling sites, respectively, using 18 
species. Some species were discarded by the model ac- 
cording to a suggest exclusion due to specific variances 
being greater than 0.5. The minimum correlation coeffi- 
cient (r2) was 0.88 with a minimum signal to noise ratio 
of 2.41, fulfilling the requirements of this model (r2 > 
0.80 and signal/noise >2.0). The uncertainties were cal- 
culated by Unmix using a bootstrap procedure resam- 
pling the data. The source profiles as mass fractions, the 
estimated uncertainty in mass fraction and the relative 
certainty of each species mass fraction are shown in Ta- 
ble 7. 

Three of the five sources matched with the ones iden- 
tified by the PCA-APCS model for the residential site. 
These were marine aerosol (S5: Na, Cl−, K and Mg), 
crustal (S1: Al, Fe, K, Ca) and traffic (S2: OC, EC, 

2
4SO  , Fe and Pb). The crustal source has large contribu- 

tions from Al, Ca, Fe and K, mostly likely related to ex- 
posed soil, unpaved roads an  construction activities in  d   

Copyright © 2013 SciRes.                                                                                  ACS 



J. H. MURILLO  ET  AL. 571

 
Table 7. UNMIX source composition (mass fraction) for PM2.5 sampling sites. 

 Residential sites Commercial site Industrial sites 
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OC 0.075 0.194 0.213 0.391 0.015 0.042 0.255 0.213 0.305 0.027 0.157 0.067 0.324 0.275 0.294 0.012 0.211

EC 0.010 0.047 0.068 0.051 0.002 0.004 0.031 0.068 0.042 0.018 0.124 0.002 0.029 0.051 0.055 0.026 0.152

2

4SO   0.044 0.176 0.327 −0.041 0.026 0.058 0.199 0.327 −0.038 0.043 0.073 0.077 0.281 0.354 −0.071 0.056 0.089

3NO  0.017 −0.055 0.041 0.224 0.001 0.021 0.041 0.041 0.275 0.005 0.025 0.015 0.054 0.027 0.302 0.031 0.046

4NH  0.001 0.004 0.060 0.053 0.008 0.000 0.000 0.060 0.074 0.012 0.031 0.001 0.003 0.083 0.089 0.028 0.047

Cl− 0.014 0.001 0.003 0.001 0.139 0.008 0.005 0.003 0.000 0.214 0.002 0.004 0.007 0.000 0.005 0.273 0.012

Na 0.025 0.007 0.002 0.015 0.122 0.030 0.011 0.002 0.024 0.188 0.001 0.041 0.008 0.000 0.037 0.189 0.008

K 0.042 0.042 0.054 0.029 0.084 0.056 0.057 0.054 0.043 0.073 0.045 0.056 0.076 0.062 0.056 0.076 0.056

Ca 0.013 0.023 0.006 0.017 0.026 0.027 0.014 0.006 0.028 0.030 0.009 0.019 0.042 0.005 0.040 0.032 0.029

Mg 0.037 0.018 0.002 0.010 0.045 0.049 0.025 0.002 0.014 0.027 0.005 0.055 0.019 0.001 0.022 0.021 0.015

Al 0.082 0.013 0.000 0.002 0.038 0.097 0.009 0.000 0.004 0.042 0.002 0.101 0.008 0.000 0.018 0.055 0.012

Fe 0.075 0.052 0.008 0.005 0.004 0.089 0.071 0.008 0.011 0.002 0.008 0.084 0.087 0.004 0.015 0.013 0.008

Mn 0.007 0.009 0.020 0.003 0.003 0.004 0.005 0.020 0.004 0.001 0.000 0.011 0.031 0.017 0.005 0.009 0.009

V 0.001 0.007 0.033 0.005 −0.005 0.001 0.009 0.033 0.008 −0.009 0.006 0.000 0.027 0.025 0.006 −0.011 0.018

Ni 0.006 0.000 0.005 −0.002 0.001 0.003 0.000 0.005 −0.001 0.000 0.004 0.006 0.000 0.002 0.011 0.034 0.023

Cu 0.009 0.045 0.000 0.012 0.000 0.005 0.067 0.000 0.000 0.000 0.001 0.008 0.037 0.017 0.018 0.025 0.011

Cr 0.004 0.021 0.001 0.009 0.003 0.003 0.041 0.001 0.000 0.001 0.000 0.004 0.023 0.023 0.022 0.027 0.016

Pb 0.002 0.032 0.016 0.005 −0.002 0.001 0.050 0.016 0.002 −0.005 0.004 0.000 0.062 0.031 0.005 0.008 0.014

 
the region. The profiles related to high loadings of OC 
and EC with small loadings of metallic species indicate 
the impact of motor vehicle emissions because the 
OC/EC ratio is about 2.5 - 3.3 for gasoline exhaust, while 
it is 0.3 - 0.5 in diesel emissions for PM2.5 33,34. The 
ratio of OC/EC in UNMIX in this source was 3.15.  

A different source associated with OC, EC, 2
4SO   

and K was obtained by the Unmix model. This factor was 
associated with heavy oil combustion and biomass burn- 
ing. The other new factor, that includes OC and 3NO , 
could be associated to the contribution of secondary ni- 
trate. In the commercial and industrial sites, the principal 
difference with PCA was that the secondary aerosol was 
divided in two new sources: secondary sulfate and nitrate. 
It may be due to the secondary sulfate and secondary 
nitrate have opposing seasonal patterns, as high tem- 
peratures can accelerate sulfate formation and render 
secondary nitrates unstable 29. 

3.4. Source Identification with PMF 

The principal differences between PCA, UNMIX and 
PMF were found in the industrial site. A total of seven 

factors were chosen as the optimal number for the PMF 
model. These factors along with the chemical profiles 
(Figure 3) were associated to different sources. The first 
source was characterized with large amount of Cl−, Na+ 
and Mg, signature of fresh sea. The second source has 
large contributions from Al, Ca, Fe and K, mostly likely 
related to crustal material. The third source was identi- 
fied as vehicle exhaust based upon the abundances of EC, 
OC and certain amount of Fe. The fourth source was re- 
lated with the industrial due to the contribution of OC, Al, 
Cu, Cr and Pb. The next source includes OC and 3NO , 
could be associated to the contribution of secondary ni- 
trate. The secondary sulphate source was recognized due 
to the large contribution of OC and sulphate. The last 
source was the heavy fuels combustion, where OC, EC, 
V and Ni showed an important contribution. The 83% of 
the experimental PM2.5 was explained according to this 
model. 

Before estimating the source contributions, the per- 
formance of PCA/APCS, PMF and the UNMIX models 
were evaluated. The comparison of these three receptor 
models was performed by considering the following as    
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Figure 3. Percentage EV for the sources derived by PMF in an industrial site. 
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pects: the fitting quality between the measured PM2.5 and 
the predicted ones, the number and nature of the identi- 
fied sources. The quality of the models was shown by 
regressing the predicted PM2.5 for each model against the 
one measured. It was found that all three models pro- 
vided good results regarding their ability to reproduce 
measured PM2.5 concentrations with very similar slopes 
in all cases, being the PCA model the one with the best 
correlation and the closest slope to the unity. The inter- 
cepts were also similar with the lowest one for the PCA 
model (Table 8). However, if the calculated values by 
receptor models were compared with the measured con- 
centrations for each individual chemical species, the 
higher mean differences were found in OC (19%), 3NO  

(−17%) and  (13%) concentrations. This situation 
can be explained by the fact that these species have an 
important contribution of secondary products that maybe 
weren’t well predicted by the receptor models. 

2
4SO 

An inter-comparison was also performed between the 
models. Good correlations were found between the three 
models, in particular PCA-UNMIX (r2 = 0.91, slope = 
1.103) and PMF-UNMIX (r2 = 0.87, slope = 0.975).  
 
Table 8. Lineal regression equations between PM2.5 meas- 
ured values and the predicted by the receptor models in the 
Metropolitan Area of Costa Rica. 

Receptor Models Slope Intercept Correlation (R2)

PCA 0.968 0.084 0.95 

UNMIX 0.895 0.122 0.83 

PMF 0.910 0.097 0.89 

PCA vs UNMIX 1.103 0.078 0.91 

UNMIX vs PMF 0.975 0.024 0.87 

PMF vs PCA 0.825 0.102 0.82 

 
Table 9. Sources contributions (%) estimated by the three 
receptor models for the industrial sampling site. 

 PCA UNMIX PMF 

Marine 6.7 8.1 9.5 

Crustal mater 14.5 16.3 17.1 

Traffic 25.3 28.8 18.7 

Secondary aerosols 35.8   

Industrial 12.1 15.9 16.1 

Secondary Nitrate  11.4 14.8 

Secondary sulphate  8.75 11.3 

Heavy Fuel  
combustion 

  7.7 

TOTAL  
CONTRIBUTION 

94.4 89.2 95.2 

3.5. Source Contributions 

The contribution of each source in the different receptor 
models was estimated by regression analysis. The source 
contributions from PCA/APCS, UNMIX and PMF re- 
sults for the industrial site (BE-02) are shown in Table 9. 
The sum of secondary sulfate and secondary nitrate de- 
termined by UNMIX and PMF was 20.1% and 26.1%, 
respectively, and the secondary products apportioned by 
PCA was 35.8%. The secondary sulfate and secondary 
nitrate were not separated by PCA although they usually 
have opposing seasonal patterns. 

PCA extracted a level of 25% from motor vehicle con- 
tributions, close to the UNMIX results (28%). PMF ap- 
pointed a lower contribution to motor vehicle contribu- 
tion. The vehicles also emit an important amount of NOx 
and VOCs, which could be transferred to secondary ni- 
trate and secondary organic carbon (SOC) by photo- 
chemical reactions. If such particles were considered, the 
total contributions from motor vehicles to PM2.5 could be 
much higher. 

PCA and UNMIX appointed industry contributions of 
12.1% and 15.9%, respectively, in comparison with the 
23.8% found by the PMF model. PMF model divided the 
industrial contribution in two factors: heavy fuels com- 
bustion and industrial. This last source included biomass 
burning. 

In total, the PCA and PMF methods resolved 94% and 
95% of the PM2.5 mass concentrations, respectively. 
UNMIX resolved about 89%.  

4. Conclusions 

The particulate matter with aerodynamic diameter less 
than 2.5 m was apportioned using three multivariate 
receptor models: PCA-APCS, UNMIX and PMF. The 
present results confirmed that secondary aerosols and 
motor vehicles emissions were dominant mass contribu- 
tors to PM2.5 in the Metropolitan Area of Costa Rica. 
While UNMIX and PMF were more specific in the 
source identification with six and seven different factors 
in the industrial site, respectively, PCA was more con- 
servative and some sources could not be differentiated. It 
was found that all three models provided good results 
regarding their ability to reproduce measured PM2.5 con- 
centrations with very similar slopes in all cases but with 
the PCA model showing the best correlation and the 
closest slope to the unity. A reasonable agreement be- 
tween PMF and UNMIX was found, with both models 
identifying the same sources and with good correlations 
for the same identified sources.  

This work preliminarily suggests the need to set a ref- 
erence standard for PM2.5 in Costa Rica, since it only 
exists for PM10. Further research is needed to establish a 
recommendation for a PM2.5 standard in Costa Rica, 
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since there is no sufficient data about the hourly profiles. 
Automatic equipment is required for this task and will be 
included in future work. 

The important contribution of mobile and stationary 
combustion sources could be a short-term feasible way 
for the government to find control part of the PM2.5. 
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