
Energy and Power Engineering, 2013, 5, 116-120 
doi:10.4236/epe.2013.54B022 Published Online July 2013 (http://www.scirp.org/journal/epe) 

Modeling and Optimization of Capacitive Converter for 
Energy Scavenging System 

Jinxin Huang, Nannan Gao, Hongbo Li 
State Grid of China Technology College, Jinan, China 

Email: linbowhjx@163.com 
 

Received March, 2013 

ABSTRACT 

A new converter with spherical cap for energy scavenging is proposed. Based on the method of separated variables 
within the torrid coordinate system, a corresponding analytical model for spherical cap converter is further established 
so as to obtain the analytic expressions of the topology capacitance and the output voltage. The concept of energy in-
crement factor is specifically defined to denote the improvement of energy storage efficiency. With regard to spherical 
cap converters of different dimensions, the measured values of energy increment factor coincide well with the theoreti-
cal equivalents, indicating an effective verification of the proposed analytical model for the spherical cap converter to-
pology. 
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1. Introduction 

With the development of smart grid and wireless sensor 
technology, it’s necessary to study energy scavenging 
technology [1-5] to collect the energy in the surrounding 
environment (such as solar energy, vibration energy, 
thermal energy and electromagnetic energy) and convert 
them into electricity for powering sensor nodes. There 
contains much electromagnetic energy in high voltage 
substations and it provides a basis for energy scavenging 
system based on electric field energy. Under the specific 
environmental conditions in substations, the system has 
some unique advantages compared with other ones. 

At present, a British research team has conducted a 
preliminary study of it and this provides a fundament for 
reference [6]. A traditional flat-plate capacitive converter 
is adopted in their researches. The electric field is very 
complex in the substations, so the electric field sur-
rounding the capacitive converter maybe come from dif-
ferent directions. For the traditional flat-plate one, it has 
good effect only at the vertical direction. In order to col-
lect the electric field energy preferably from different 
directions, a new capacitive topology with spherical cap 
is proposed, as Figure 1 shows. This new topology is not 
only more suitable for collecting all directions of the 
electric field, but also conducive to offer electromagnetic 
shielding for conditioning unit, and avoid marginal dis-
charge. 

It can increase energy storage capacity of the converter 
by optimizing the parameters. This depends on the accu-

rate modeling and analysis of the converter. The opening 
of converter destroys the spherical symmetry, so it be-
comes difficult to solve the charge and electric potential 
distribution and capacitance expressions directly in the 
Cartesian coordinate system. Calculation model of the 
converter in the torrid coordinate system [7] is estab-
lished to get analytic formulas of non-complete spherical 
cap by using variables separation and Laplace equation. 

2. Mathematical Modeling of Capacitive 
Converter 

According to different sizes of spherical topology, it can 
be divided into three cases: more halfsphere, halfsphere, 
and less half sphere which corresponding δ and 0 are 
different, as shown in Figure 2. Torrid coordinate system 
is a generalized orthogonal curvilinear coordinates, the 
three parameters are (, , ) and they have a relation 
with Cartesian coordinates (x, y, z) as equation (1) shows. 
 

 

Figure 1. Capacitive converter with spherical cap. 
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Figure 2. Analytical model of spherical cap converter in 
torrid coordinate system. 
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where, 0≤＜∞，0≤≤2π，0≤＜2π, a is a parameter in 
torrid coordinate and denotes opening radius of the 
spherical cap. 

Assume that the radius is R, the electric potential is u. 
External space of the converter meets the Laplace equa-
tion . In torrid coordinate system,  is rotational 
symmetry and there is no relation between u and  . 
Omit partial differential item on  and make Laplace 
expansion as (2). 
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Use separation of variables to represent ( , , )u      
2ch 2ch cos ( ) ( )X Y     and take it into equation 

(2), so equation (3) and (4) can be obtained, where b is 
the coefficient. 
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Equation (4) is the Legendre equation, its solution is 
the Legendre function as (5) shows. 
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Because the potential function is bounded, the equa-
tion (4) remains bounded and just take the first Legendre 
equation of (5) into account, where  1
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The spherical cap meets β=β0 and point coordinates 
outside the spherical cap meet β0≤β≤β＋2π, and expres-
sion (6) can be adapted to (7). 
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According to the boundary conditions 
0 u   

0 2 0   u u  and method of undetermined coefficients, 
C1(τ) and C2(τ) can be established by expression (8). 
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Then with substitution Equation (7) is rewritten as 
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Use integral formula of Legendre 

     
1 0
2

cos2
ch ch d  

π 2ch 2chi
P



  

 





     (10) 

Finally, the electric potential distribution formula (11) 
can be got by using Fourier integral transformation. 
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Based on the space distribution of electric potential, 
the capacitance of the converter can also be deduced by 
the following steps. 

b iP ch


,  . 
To get the general expression of potential function u as 
(6) shows, take the solutions of equation (3) and (4) into 
it, denoting the coefficient functions of τ by A(τ) and 
B(τ). 

The charge distribution of the converter can be solved 
through the following equations. 
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where, in and ex is the density of internal and external 
surface charge respectively. 

The charge on the internal surface of the converter qin 
is calculated as (15), the same method can be used to 
calculate qex, finally the total charge qall can be completed 
by (16). 
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Here, δ=π-β0 and sinβ0=sinδ=a/R, then equation (16) is 
rewritten as 
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The capacitance of converter is got. 
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The capacitance formula (19) with parameters of R 
and a is rewritten by using the coordinate transformation, 
corresponding to the three cases in Figure 2. 
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3. Optimization of Capacitive Converter 

In order to compare the effect of energy harvesting, de-
fine the incremental coefficient n which is the ratio of the 
two capacitances within the same volume. 
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As a result, optimization of the converter can be 
transformed into the optimization of incremental coeffi-
cient n, described as equation (21). 
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Its goal is to maximize the increment factor n, while 
the constraint is limited by its volume V. Bring the ca-
pacitance of traditional flat-plate converter and the 
spherical cap one into formula (20) then equation (22) 
can be got. 
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where, >90°, V is limited by a cylinder with radius R 
and height R+a, while <90°, V is limited by a cylinder 
with radius a and height R-a. 

It is clear that incremental coefficient n is the function 
of a/R, and it satisfies 0<a/R<1. As a reference, Table 1 
shows the calculated incremental coefficient n for dif-
ferent a/R, which reflects changes of opening radius a to 
the improvement of efficiency. 
 
Table 1. Incremental factor for different sizes of converter. 

δ>90o δ<90o 

a/R n a/R n 

0.1 9.97959 0.1 0.12775 

0.2 9.9158 0.2 0.25813 

0.3 7.8041 0.3 0.39403 

0.4 7.638 0.4 0.53913 

0.5 7.408 0.5 0.69843 

0.6 7.1003 0.6 0.8796 

0.7 6.692 0.7 1.0959 

0.8 6.1407 0.8 1.3745 

0.9 5.3418 0.9 1.791 
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Table 1 shows that, when >90°, the smaller is the 
opening radius a, the more close to a ball, the greater is 
the capacitance, and the more energy it stores. Limited 
by the bottom plate grounded, the spherical cap can not 
be infinitely close to a ball. When <90°, the smaller is 
the opening radius a, the less energy it can store. When 
a/R is 0.7, the increment factor n is 1.0959, it begins to 
increase the stored energy. Therefore, a/R at least se-
lected in 0.7 can improve the efficiency of energy storage 
(equivalent to the flat-plate converter). In particular, 
when =90°, the incremental coefficient n is 3.27. 

4. Experiment about Incremental Coefficient 

To verify the validity of the analytical model, an experi-
ment about the increment factor n is done. It can get 
measured capacitance for different sizes of flat-plate 
converter and the spherical cap one by using high preci-
sion LCR meter named Quadtech1869 M. Figure 3 
shows different samples of the converter with different 
dimensions. The height of two plates can be regulated by 
insulating pillars to meet the limitations of volume. 
Measurements and theoretical values of incremental co-
efficient n are shown in Table 2. 

The results in Table 2 show that the measured values 
n agree well with the theoretical ones. For  > 90°, 
when a/R is 0.5, the error of measured values n with the 
theoretical ones is small; but when a/R increases to 0.6, 
the measured values is smaller, because with a/R in-
creases,  
 

 
(a) Flat-plate converter 

 
(b) Spherical cap converter 

Figure 3. Different samples of the converter with different 
dimensions. 

Table 2. Theoretical value and measured value of incre-
mental factor. 

Types a/R Theoretical value n Measured value n 

0.5 7.408 7.013 7 
δ>90o 

0.6 7.100 3 5.947 2 

0.6 0.879 6 0.774 5 
δ<90o 

0.8 1.374 5 1.462 8 

δ=90o 1.0 3.273 89 3.156 29 

 
the spherical cap is more close to a ball, the electrostatic 
shielding becomes stronger. For  < 90°, only when a/R 
is greater than 0.7, it can improve the effect of energy 
storage. In particular, for  = 90°the measured value is 
3.156, and the capacitance increases three times compared 
with the flat-plate converter in the same volume. The 
experiment shows that the analytical model of spherical 
cap converter in the torrid coordinate system is valid. 

5. Conclusions 

This paper focuses on capacitive converter of energy 
scavenging system based on electric field energy to carry 
out research on theoretical analysis, modeling, optimiza-
tion, and experiments. Analytic forms of the electric po-
tential and capacitance is deduced based on the separated 
variables in the torrid coordinate system. Incremental 
factor about energy storage is proposed to compare the 
effect of energy harvesting. At last, the proposed model-
ing and optimization methodology are verified by testing 
experiments. 
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