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ABSTRACT 

In this work, we present the study of electromagnetic wave propagation through a medium with a variable dielectric 

function using the concept of Gaussian Beam. First of all, we start with wave equation 
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which we obtain the solution in terms of the electric field and intensity distributions approximate to Gaussian Function, 
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 . With this, we analyze the dependency of r on Gaussian beam distribution spread, the distant from the 

axis at which the intensity of the beam distribution begins to fall at a given estimate 
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 of its peak value. The influ-

ence of the optimum beam waist wo and the beam spread on the intensity distribution will also be analyzed. 
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1. Introduction 

Along with the rapid evolution of fiber optics, integrated 
optics and application of laser in both medicine and 
technology, there has been a growing interest in the study 
of Gaussian beam propagation. This is based on the fact 
that Gaussian beam has to do with focusing and modifi-
cation of shape of propagating electromagnetic wave or 
laser beam. From the earlier finding on the research on 
laser beam, it has been found that laser beam propagation 
can be approximated by an ideal Gaussian beam intensity 
profile [1,2]. Understanding of the basic properties of 
Gaussian beam has been specifically found to be very 
vital. I select the best optics for practical application [3]. 
Sequel to this, lots of scientists had worked on Gaussian 
beam applications in electromagnetic wave propagation 
and in optics. For instance, a work has been carried out 
on nonspecular phenomena for beam reflection at mono- 
layer and multilayered dielectric interface respectively 
from where it has revealed that under various conditions 
nonspecular beam phenomena is more realizable [4-6]. 
Tamir on his own presented a unified and simplified 
analysis of the lateral and longitudinal displacement with 

angular deflection on reflection of a Gaussian beam at a 
dielectric interface with two or more layer [7,8]. 

However in this paper, we intend to study electromag-
netic wave propagation using the concept of Gaussian 
beam starting from general wave equation with which 
obtain the Gaussian function in which waves operating 
on the fundamental transverse mode is approximated to 
Gaussian profile. The distribution profile is analyzed with 
intent to observe the influence of the beam waist on the 
profile. 

2. Theoretical Framework 

In this case we start with wave equation in terms of elec-
tric field given as 
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where r  is the dielectric constant as a function wave 
solution of the form 

 , , , exp rE E x y z i t k r              (2) 

Which if we consider medium with non-uniform re-
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fractive index, we have 
2

0 0rE     2              (3) 

where the propagation constant in the medium is given 
by 

0rk                    (4) 

With this, Equation (2) becomes  

 2 2E k r E                  (5) 

In general, if the medium is absorbing or exhibit gain, 
the its dielectric constant r  is considered to have real 
and imaginary part, but in a situation where the medium 
conducts with conductivity .  then the complex propa-
gation vector is introduce which obeys. 
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However, a simple solution of this type is inadequate 
to describe the field distributions of transverse mode. As a 
result, we seek solution to the plane wave equation of the 
form. 

 0 , , exp zE E x y z ik            (7) 

Propagating in the z-direction and localized the z-axis. 
Thus the idea is to obtain a solution of the wave equation 
that gives phase front that can be approximated over a 
narrow region. Thus substituting Equation (7) into Equa-
tion (4) we obtain. 
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Since we are looking for a paraxial beam-like solution, 
then  varies slowly with 0E z  and Equation (8) becomes 
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With a solution given as 
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where  is the square distant of the points x, 
y from the axis of propagation where 

2 2r x y 

 zp  and  zq  
are beam parameters Equation (10) gives the fundamen-
tal Gaussian beam of time-independent wave equation. 

3. Intensity of Gaussian Beam 

The intensity of  ,x yI  of Gaussian beam is given by 
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where  zp  and  zq  are the complex conjugate of 

 zp  and  zq  respectively hence 
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Considering two real beam parameters that  zR  and 
  relating to  zq  by depend on z  
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 zp  is that describes the axial distance from the Gaus-
sian beam waist. 

We can express Equation (11) as 
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Signifying the dependency of Gaussian beam intensity 
to r while w signifies the distance from the axis at z   

where the intensity of the beam falls to 
2
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e
 of it its peak  

value on the axis  zp  total power of the beam with 
these parameters Equation (10) is now written as 
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 zp  is evaluate to give 

0q q z                   (17) 

where 0  is a constant of integration the expresses the 
value of the beam parameter at the plane 
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where 0In i q   defines a constant of integration sub-
stituting Equation (18) into (16) we have  
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The factor exp ip   is a constant phase factor. Thus 
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4. Diffraction Effect 

The limitations of Gaussian beam based on the fact that 
even if the wave fronts were made flat at some plane, it 
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quickly acquires curvature and begin to spread in accor-
dance with 
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where z  is the distance propagated from the plane 
where the wave-front is flat    wavelength of light,  

 is the radius of the 
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 irradiance contour at the  w

plane where wave-front is flat,  zw  is the radius of the  
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 contour after the wave has propagated a distance  

z . 
Considering the optimum starting beam radius for a  

distance z , we have 
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 Equation (22) can  

be reduced to  
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With the irradiance distance distribution of the Gaus-
sian beam described as 
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where  zw w  and  is the total power in the beam 
which is the same at all cross sections of the beams we 
also obtain that  
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at optimism starting beam radius for a given distance, 
z . 
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5. Discussion 

From the displayed results in Figure 1, the distribution 
profile when y = 2, x = 2 and w = 2, the distribution beam 
width ranged within −5 to 5, In Figure 2, for y = 2 and x 
= 3 when w = 2, the width of the beam ranged from −6.5 
to 6.5. In Figures 3 and 4 the distribution profiles dis-
played is found to be departed from normal distribution 
shape as in the other figures when w is increased to 5 for  
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Figure 1. Gaussian distribution profile when y = 2, w = 3. 
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Figure 2. Gaussian distribution profile when y = 2, w = 4. 
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Figure 3. Gaussian distribution profile when y = 2, w = 5. 
 

y = 2 when w = 10, the departure became more pro-
nounced pattern as shown in Figure 5. However, the 
distribution profile of percentage irradiance as function  
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Figure 4. Gaussian distribution profile when y = 2, w = 5. 
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Figure 5. Gaussian distribution profile when λ = 0.50 m, y 
= 2, w = 10. 

 
contour radius as displayed in Figure 6 indicate the fact 
that as the contour decreases, the beam distribution tap-
pers showing that there is a point known as spot size  

where the intensity of the distribution is fallen to 
1

e
.  

This indicates that Gaussian distribution function de-
pends on r as shown in Equation (16) that depicts char-
acteristic of normal distribution function. 

However, the shape of the distribution depends gener- 

ally on diameter at which the intensity has fallen of 
1

e
  

as in Figure 7 when x = y coupled with the optimum  

beam waist that is given as  
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tion (22) with o
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w
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  [9] These values provide the  

best combination for minimum starting beam diameter 
for good minimum spread according to [10] whose ratio  

is 
 w z

z
 over a distant z and a particular wavelength.  

Figure 8 

6. Conclusions 

Gaussian intensity profiles as observed from this study 
seem to manifest one feature that is based on the fact that 
beam waist, w plays a role in determining the distribution 
profile. This explains the fact that the far-field divergence  

 

 

Figure 6. Percentage irradiance. 
 

 

Figure 7. Gaussian distribution intensity as function of pro-
file width, w. 

 

 

Figure 8. Gaussian beam width w(z) as a function of the 
axial distance z. 
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must be measured at a distance greater than the half width 
of intensity distribution while the near or mid-field di-
vergence values are obtained by measuring a distance less 
than the half width of the intensity distribution in order to 
obtain a good normal distribution profile. Therefore in 
order to achieve optimum beam spread, and collimation 
over a distance, the optimum starting beam radium/waist 
must be determined. Though one should note that this 
depends strictly on the type of beam that is whether the 
beam is coherent or not, the general expression for opti-
mum starting beam radius for any given distance, z  is  

 
1 2

0 optimum .
z

w
    

 

This study also reveals that the concept of Gaussian 
beam is realizable when it is focused on a small spot as it 
spreads out rapidly as it propagate away from the spot 
From Figures 3 to 6, it is clearly shown that at certain 
value of the beam waist, the distribution profile changes. 
Therefore for a beam to be well collimated, it must have 
a large diameter. This relation is as a result of diffraction. 
Thus in order to achieve normal Gaussian beam distribu-
tion, the product of the width and divergence of the beam 
profile must be as small as possible to be achieved when 
paraxial approximation is considered. Thus this implies 
that the idea of Gaussian beam model is realizable and 
valid only for beam whose width is larger than that of 
equation. 
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