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ABSTRACT 

A second-order Mond-Weir type dual problem is formulated for a class of continuous programming problems in which 
both objective and constraint functions contain support functions; hence it is nondifferentiable. Under second-order 
strict pseudoinvexity, second-order pseudoinvexity and second-order quasi-invexity assumptions on functionals, weak, 
strong, strict converse and converse duality theorems are established for this pair of dual continuous programming 
problems. Special cases are deduced and a pair of dual continuous problems with natural boundary values is constructed. 
A close relationship between the duality results of our problems and those of the corresponding (static) nonlinear pro-
gramming problem with support functions is briefly outlined. 
 
Keywords: Continuous Programming; Second-Order Generalized Invexity; Second-Order Duality; Nonlinear  

Programming; Support Functions; Natural Boundary Values 

1. Introduction 

Chen [1] was the first to identify second-order dual for-
mulated for a constrained variational problem and estab-
lished various duality results under an involved invexity- 
like assumptions. Husain et al. [2] have presented Mond- 
Weir type second-order duality for the problem of [1] 
and by introducing continuous-time version of second- 
order invexity and generalized second-order invexity, vali-
dated various duality results. Subsequently, for a class of 
nondifferentiable continuous programming problems, 
Husain and Masoodi [3] studied Wolfe type second-order 
duality while Husain and Srivastava [4] investigated Mond- 
Weir type second-order duality. Recently, in the spirit of 
Mangasarian [5], Husain and Masoodi [6] studied Wolfe 
type second-order duality for a continuous programming 
problem having support functions appearing in the inte-
grand of the functional as well as in the constraint func-
tions under second-order invexity and second-order pseu-
doinvexity conditions. They also incorporated a pair of 
second-order dual variational problems with natural bound-
ary values rather than fixed end points and indicated their 
close relationship with those of corresponding (static) 
second-order duality results established for nonlinear pro-
gramming problem with support functions, considered by 
Husain et al. [7]. The popularity of this type of nondif-
ferentiable continuous programming problems seems to  

originate from the fact that, even though the objective 
function and/or constraint functions are non-smooth, a 
simple representation of the dual problem may be written. 
The theory of non-smooth mathematical programming 
deals with more general type of functions by means of 
generalized subdifferentials. However, square root of posi-
tive semi-definite quadratic form and support functions 
are amongst few cases of the nondifferentiable functions 
for which one can write down the subdifferentials explic-
itly. 

In this paper, we formulate Mond-Weir type second- 
order dual to the continuous programming containing sup-
port functions in order to further weaken the second- 
order generalized invexity of [6]. Usual duality theorems 
for this pair of Mond-Weir type second-order dual con-
tinuous programming problems are validated under gen-
eralized second-order invexity assumptions. Special cases 
are derived. Further, a pair of Mond-Weir second-order 
dual variational problems with natural boundary values 
rather than fixed end points is presented and the proofs of 
the duality theorems are claimed to follow analogously. 
It is also pointed out that our second-order duality results 
can be considered as dynamic generalizations of corre-
sponding (Static) second-order duality results established 
for nonlinear programming problem with support func-
tions considered by Husain et al. [7]. 
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2. Pre-Requisites 

Let  ,I a b  be a real interval : n nI R R R     and 
: n n mI R R  R   be twice continuously differenti-

able functions. In order to consider     t, ,t x t x  ,  
where : nx I  R  is differentiable with derivative x  
denoted by x  and x   the first order derivative of   
with respect to  x t  and  x t  respectively, that is, 

T T

1 2 1 2
, , , , , , ,x xn nx x x x x x

                        


  
.


  

Denote by xx
 

the  Hessian matrix of n n   and 

x  the  Jacobian matrix respectively, that is, 
with respect to 
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 x t , that is,  
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The symbols , , andx xx xx x      

: n

 have analogous rep-
resentations. Designate by X the space of piecewise 
smooth functions x I R , with the norm 

x x Dx


 


   d
t

a

u Dx x t u s s   

 where the differentiation operator  D

is given by , Thus 
d

d
D

t
  

except at discontinuities. 
We incorporate the following definitions which needed 

in the subsequent analysis: 
Definition1. (Second-Order Invex): 
If there exists a vector function  , , nt x x R    

where : n n nI R R R     and with 0 


n n

 at t = a 
and t = b such that for a scalar function 

 
the 

functional  where 
 , ,t x x 

 , , d
I

t x x t  : I R R  R   
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Then  is second-order invex with respect   , , d
I

t x x t 

to   where 2 32 ,xx xx xxD D xxG D        

 , n


 
the space of -dimensional continuous 

vector functions. 

  
 , nI Rp C

Definition 2. (Second-Order Pseudoinvex): If the func- 

tional  , , d
I

t x x t   satisfies 

      

       

TT T d 0
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, , d , , d .
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x x
I
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I I
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Then  , , d
I

t x x t   is said to be second-order pseu- 

doinvex with respect to .  
Definition 3. (Second-Order Strictly Pseudoinvex):  

If the functional  , , d
I

t x x t   satisfies 

    

       

TT T

T

d 0

1
, , d , , d ,

2

x x
I

I I

D Gp t t

t x x t t x x p t Gp t t

    

 

  

    
 



 




 

then  , , d
I

t x x t   is said to be second-order strictly  

pseudoinvex with respect to  . 
Definition 4. (Second-Order Quasi-invex): 

If the functional  , , d
I

t x x t   satisfies 

       

      

T

TT T

1
, , d , , d

2

d 0.

I I

x x
I

t x x t t x x p t Gp t t

D G t p t t

 

    

   
 

   

 

 


 

Then  , , d
I

t x x t   is said to be second-order quasi-  

invex with respect to .  
Consider the following nondifferentiable continuous 

programming problem with support functions treated by 
Husain and Jabeen [8]: 

(CP): Minimize      , , d
I

f t x x S x t K t   

subject to 

  0  ,x a x  b                 (1) 

    , , 0, 1,2, , , ,j jg t x x S x t C j m t I        (2) 

where f and g are continuously differentiable and each 
 , 1, 2, ,jC j m   is a compact convex set in  .nR

Husain and Jabeen [8] derived the following optimal-
ity condition for (CP): 

Lemma 1. (Fritz-John Necessary Optimality Con-
ditions): 

If the problem (CP) attains a minimum at x x X   
then there exist r R  and piecewise smooth functions 

: my I R  with         1 2, , , my t y t y t y t  ,   
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: nz I R  and : ,j nw I R   such that  1, 2, , ,j   m

         

     

, ,

, , ,

j jt g t x x

t x x t I



 
 

 

 

1

T

, ,

, ,

m
j

x x
j

x x

r f t x x z t y w t
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       T

1

, , 0,
m
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      T
,x t z t S x t K t I   

      T
, 1, 2, , ,j jx t w t S x t C j m t I     

   , , 1,2, , ,j jz t K w t C j m t I      

  , 0,r y t t I   

  , 0,r y t t I   

The minimum  x t  of (CP) may be described as 
normal if 1,r   so that the Fritz John optimality condi-
tions reduce to Karush-Kuhn-Tucker optimality condi-
tions. It suffices for 1r   that Slater’s [8] condition 
holds at  x t . 

Now we review some well known facts about a sup-
port function for easy reference. 

Let K be a compact set in , then the support func-
tion of  is defined by 

nR
K

         T
max : , .S x t K x t v t v t K t I    

A support function, being convex everywhere finite, 
has a subdifferential in the sense of convex analysis i.e., 
there exist  such that   ,nz t R t I 

            T
.S y t K S x t K y t x t z t    

From [9], the subdifferential of  S x t K   is given by  

            T
, such that .S x t K z t K t I x t z t S x t K      

For any set , the normal cone to  at a point 
 is defined by 

nR  
 x t 

              0,nN x t y t R y t z t x t z t     



 

It can be verified that for a compact convex set C, 
 if and only if    Cy t N x t

      T
, .S y t C x t y t t I   

3. Mond-Weir Type Second-Order Duality 

In this section, we present the following problem as the 
Mond-Weir type dual to (CP) and validate usual duality 
theorems: 

(M-WCD): 

         T T1
Maximize , , d

2I

f t u u u t z t p t FP t t
   
    

subject to 

  0u a u b                   (3) 

      

      
1

T
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m
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          T T

1

1
d
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m
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y t g u t t p t Gp t t


 
0   

 
 (5) 

   , , , 1, 2,j jz t K w t C t I j m    ,       (6) 

  0,y t t  I                (7) 

where 
1)   ,np t R t I   
2) 2 32 ,uu uu uu uuF f Df D f D f t I       

   
 

3)  T T

     T T2 3

2uu u
u

uu uu

G y t g D y t g

D y t g D y t g

 

 



  

 

Theorem 1. (Weak Duality): Let  x t X
 
be fea-

sible solution of (CP) and  

              1 2, , , , , , ,mu t y t z t w t w t w t p t  

be feasible for (M-WCD). Assume that for all feasible  

              1 2, , , , , , , mx t u t y t z t w t w t w t  

and with respect to vector function   , , ,t x u 

1)       T
,.,. . d

I

f t z t t  is second-order pseudo- 

invex and 

2)         T T

1

,.,. . d
m

j j j

jI

y t g t w t t


  is second-or-  

der quasi-invex. 
Then, 

  inf CP sup M-WCD  . 

Proof: Since  x t  is feasible for (CP) and 

              1 2, , , , , , ,mu t y t z t w t w t w t p t  

is feasible of (M-WCD), we have  

      

        

   

1

T

1

T

, , d

, ,

1
d

2

m
j j j

j I

m
j j j
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y t g t x x S x C t
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Copyright © 2013 SciRes.                                                                                  AM 



I. HUSAIN  ET  AL. 1444 

Using       T
/ , , 1, 2, ,j j ,x t w t S x t C t I j m   

 we have,  
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By integrating by parts, we have 
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Using 0,   at  and t , this yields, t a b
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Using equality constraint (4), we have 
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As earlier, this becomes 

       TT T d 0u u
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This, because of second-order pseudoinvexity of  
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Since       T
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1
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implying, 

  inf CP sup M-WCD  . 

Theorem 2. (Strong Duality): 
If  x t X  be an optimal solution of (CP) and is 

normal, then there exist piecewise smooth functions 
: ,my I R   and : nz I R :j nw I R  such that 
            , 0t p t 1, , , , mx t y t z t w t w  is a feasi-

ble solution of (CD) and the two objective values are 
equal. Furthermore, if the hypothesis of Theorem1 holds, 
then             , , ,m1, , ,x t y t z t w t  w t p t  is an op-
timal solution of (M-WCD). 

Proof: From Lemma 1 there exist piecewise smooth 
functions : ,my I R  : nz I R  and :j nw I R  
 1,2, ,j   m  such that  

          
      

1

, , , ,

, , , , 0,

m
j j j

x x
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x x

f t x x z t y t g t x x w t
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, , 0,
m

j j j

j

y t g t x x x t w t t I
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/ ,x t z t S x t K t I   

      T
/ , 1, 2, , ,j jx t w t S x t C j m t I    

   , , 1, 2, , ,j jz t K w t C j m t I     

  0,y t t  I  

The above relations imply that  

            1, , , , , , 0mx t y t z t w t w t p t 
 

is feasible  

for (M-WCD). 
Also 

     

         T

, , d

1
, , d .

2

I

I

f t x x S x t K t

f t x x x t z t p t Fp t t



    
 








 

This shows the equality of objective functions of the 
problem. Hence the optimality of  

            1, , , , , ,mx t y t z t w t w t p t  for (M-WCD) 
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follows from weak duality theorem (Theo
me that  

(C  is second-or

pseu is  

second-order quasi-invex with respect to the same 

rem1). 
Theorem 3 (Strict Converse Duality): Assu

1):       T

 der strictly ,.,. . d
I

f t z t t

doinvex and  
1

m

jI

y t

       T

,.,. .j j jg t w t
 

 
   

 . 
(C2):  x t  is an optimal solution for (CP), If 
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WCD), then     , .I  

Proof: We
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 assume that    u t x t  and show that a 
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 The

n optimal solution 
of (CP), it follows from orem 2, there exist 
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 ,m  suc: ,j nw I R 1, 2,j   h that  
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is optimal solution of (M-WCD).  
Since  

             1 2, , , , , , ,my t z t w t w t w t p t  
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This, because of (C1) we have  
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Combining (8) and (9), we have  
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contradicting the equality constraint of (M-WCD), hence 
    ,u t tt x I 

(Converse Duality):
(H1): 

. 
Theorem 4.  Assume that 

              1 2, , , , , , ,mx t y t z t w t w t w t p t  
mal solution of (M-WCD). is an opti

(H2): The vectors  , , 1,2, ,i iF G i m 
i

 are linear 
independent where F  and iG  are the ith row of F and 
G respectively, and 

(H3):  

           Tj j j
x xy t g w t D y t g G t p t 0,

t I

    


 

and 

(H4): either       T
d 0xx

I

p t G y g p t t
T
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d p t      T

1

d 0
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j j j
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jI
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      T T
d 0xx

I
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and  
jI
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1

d 0
m

j j j
xy t g w t t   

 x t  Then is feasible for (CP) and the two objective 
ionals have the same value. Also, if Theorem1 holds 

feasible solution of (CP) and (M-WCD), then 
funct
for all 
 x t  is an optimal solution of (CP). 
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 Since  Proof:
           1, , , , , ,m 

       j

j j
Ct y t x t N w t         (14) 
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solution of (M-WCD), by results of Sc
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This, in view othesis (H4) 
  0,p t t I   we have     kx t N z t  and  
     , 1,2, ,j

j

C
.x t N w t j m  
 These respectively imply       T

x t z t S t K  
and 

x
      T

, 1,2, ,j jx t w t S x t C j m   . 
Multiplying the relation (11) by  jy t  and using (16) 

ith along w   0,p t t I  , we have 
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1

0,
m

j j j

j

y t g x t w t t I


    

and also     , , 0,j jg t x x S x t C t I    im lying the 
feasibility of 

p
 x t  for (CP). 

Finally, 
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By Theorem 1, it implies that  x t  i
P). 

4. Special Cases 

,

s an optimal so-
lution of (C

Let for t ,I     , , 1, 2, ,jA t B t j m 
us on .

 be positive 
semidefinite matrices and continuo I  

Then          
1 2T

, ,x t A t x t S x t K t I   where  

          T
1,K A t z t z t A t z t t I   

         
1 2T

, 1,2, , ,j j .x t B t x t S x t C j m t I    

Replacing   S x t K  by       1 2T
x t A t x t  and  

   ,jS x t C

      1 2T
, 1,2, , ,j .x t B t x t j m t I   

We have the following problems: 

           d
1 2T

2CP : Minimize , ,
I

f t x x x t A t x t 

subject to 

t  

   0 ,x a x   b

        1 2T
, , 0,

, 1,2, , .

j jg t x x x t B t x t

t I j m

 

 




 

(M-WCD2): 
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      1, , 1, 2, ,j j jw t B t w t t I j m     

If       1 2T j , 1, 2, ,x t B t x t j m   are suppressed  

from the constraints of (CP2), we have the following 
problem studied for duality by Husain and Srivastava [4]. 

          1 2T

3CP : Minimize , , d
I

f t x x x t A t x t t  
    

subject to 

   0x a x   b

 , , 0, .g t x x t I   

(M-WCD3): 
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dual variational problems with natural boundary values
rather than fixed end points. 

5. Problems with Natural Boundary Values 

In this section, we formulate a pair of nondifferentiable 
 

       0CP : Minimize , , d
I

f t x x S x t K t   
subject to    0x a x  ,b  

    , , 0, , 1,2 ,j jg t x x S x t C t I j m      
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  0,y t t I   

   , , 1,2, , ,j jz t K w t C j m t I     

 , , 0 at and ,uf t u u t a t b    

   T
, , at and .ug t u u t a t b0,y t      

6. Nonlinear Programming Problems 

If all functions in the problems (CP0) and (M-WCD0) are 
independent of t, then these problems will reduce to the 
following nonlinear programming problems ied by 
Husain et al. [7]. 

(CP1): Minimize 

stud

   f x S x K  
subject to 

    0, 1, 2, , .j jg x S x C j m     

    T T
1

1
CD : Maximize

2
f u u z p Fp 

 subject to 

      
1

0
m

j j j
u u

j

f u z y g u w F G p


      

 T T

1

1
0,

2

m
j j j

j

y g u w p Gp


 
   

 
  

, , 1, 2,j jz K w C j m     , ,

where  uuF f u  and 
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