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ABSTRACT 

The space-time fractional advection dispersion equations are linear partial pseudo-differential equations with spatial 
fractional derivatives in time and in space and are used to model transport at the earth surface. The time fractional order 
is denoted by  0,1   and  0,2 

1

 is devoted to the space fractional order. The time fractional advection 

dispersion equations describe particle motion with memory in time. Space-fractional advection dispersion equations 
arise when velocity variations are heavy-tailed and describe particle motion that accounts for variation in the flow field 
over entire system. In this paper, I focus on finding the precise explicit discrete approximate solutions to these models 
for some values of 0    with 0 1  , 1 2   while the Cauchy case as 1   and the classical case as 

2   with 1   are studied separately. I compare the numerical results of these models for different values of   

and   and for some other related changes. The approximate solutions of these models are also discussed as a random 

walk with or without a memory depending on the value of  . Then I prove that the discrete solution in the Fourier- 

laplace space of theses models converges in distribution to the Fourier-Laplace transform of the corresponding 
fractional differential equations for all the fractional values of   and  . 

 
Keywords: Advection-Dispersion Processes; Grünwald-Letnikov Scheme; Explicit Difference Schemes; Caputo 

Time-Fractional Derivative; Inverse Riesz Potential; Random Walk with and without a Memory;  
Convergence in Distributions; Fourier-Laplace Domain 

1. Introduction 

The development which has happened on the last twenty- 
five years on the fractional calculus opened many new 
applications on many fields such as physics, hydrody-
namics, chemistry, financial mathematics, and some other 
fields. Actually a growing number of articles and books 
which are interesting on this field and its applications 
have appeared in these last 25 years (see for example: 
[1-5] and see also my thesis [6]. Fractional in time means 
that the first-order time derivative is replaced by the 
Caputo derivative of order  0,1 

0 2

, see [4]. Fractional 
in space means replacing the second order space-deriva- 
tive is replaced by the Feller operator [7] in the symmet-
ric case with order   . 

The behaviour of particles in transport under the earth 
surface is an important problem. For examples, the trans-
port of solute and contaminant particles in surface and  

subsurface water flows, the behaviour of soil particles 
and associated soil particles, and the transport of sedi-
ment particles and sediment-borne substances in turbu-
lent flow. There are many other examples in this field. 
The classical advection dispersion equation, ade, has 
been used to formulate such problems. The generalized 
fractional advection-dispersion equation, fade, has re-
cently gotten an increasing interest from many scientists 
because it has many applications specially on studying 
the transport of passive tracers carried by fluid flow in a 
porous medium, see Benson, Meerschaert et al. [8-12]. In 
their work they gave applications and experimental re- 
sults for the space-fade. 

There is no unique solution for the space-time frac-
tional diffusion processes but there are some attempts 
using different forms of the hyper geometric functions, as 
for example: in [13] the authors attempted to find an  
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analytical solution for other special form of the fractional, 
see also [14,15]. Therefore authors who study modelling 
of fractional processes use some developed methods to 
descritize the fractional operators. For examples, in [16], 
the authors used their own method of descretization to 
find the approximate solution of the space-fade and gave 
some numerical results. In [17], the authors studied the 
approximate solution of the space-fade, for 1 2   
and 1  , only using the backward Grünwald-Letnikov 
Scheme. The backward Grünwald-Letnikov Scheme has 
been successfully adopting by Gorenflo, Mainrdi, and 
etal, see [4,18,19] for modelling space-fractional diffu- 
sion processes. Also has been used by Gorenflo and E. A. 
Abdel-Rehim, see [20-24] for modelling time-fractional 
Fokker-Planck equations and their convergence in the 
Fourier Laplace domain. 

I am interested in this paper to find the approximate 
solutions of the space-time fractional advection equation, 
space-time fade, by adopting the backward Grünwald- 
Letnikov Scheme joined with the common finite differ-
ence methods. The space-time fade is considered as a 
diffusion process under the action of a constant force in a 
fractal medium with a memory. I study and numerically 
investigate the effect of the time fractional on the path of 
the particle motion as well as the effect of the space- 
fractional order for the three cases as: 0 < α < 1, 1 < α < 
2, and 1  . I compare between all these cases nu-
merically. My numerical results are consistent with the 
results of [17] for the studied case 1 2   and 1  . 
The approximate solutions according to the values 1 < α 
< 2, and 1   joined with 0 1   are firstly studied 
on this paper. The proof of the convergence in distribu-
tion for each case is also considered. Therefore this paper 
is organized as follows: Section 1 is denoted to the in-
troduction; Section 2 is devoted to the definitions of the 
used fractional operators and their Laplace-Fourier trans- 
formations; and Section 3 introduces the classical case 

2, 1  
1


0

. Section 4, the fractional in time α = 2, 
 

0 1,0
, is studied. Section 5.1 is denoted to the case 

1    , and 1 2,0 1     is studied at 
Section 5.2. Section 6 is devoted to the caseα = 1, 
0 1  . Finally, the numerical results will be dis-
played and explained in Section 7 and one compares 
these results with the results of the given references. 

2. Important Definitions and the Outline of 
the Proof of Convergence in Distribution 

The generalized fade reads  

     

   
   

0
, ,

0 1,0 2, 1
,0

, , 0 0

t x
D u x t a D u x t b u x t

x

u x x R x R

u R t u R t t T

 

  




        
    
     

Here a, and b are positive constants representing the 
dispersion coefficient, and the average fluid velocity and 
it acts as the drift term to the right respectively. My aim 
is to give the approximation solutions of the space-time 
fad equations for all values of   and  . I study also 
the convergence of the approximation solutions to the 
solutions of the corresponding analytical solutions of the 
space-time fad equations in the Fourier-Laplace domain.  

The used time-fractional derivative operator  ,
t
D u x t


  

is called Caputo fractional operator, see [4] to know the 
relation between Caputo fractional derivative and the fa-
mous Riemann-Liouville fractional derivative operators. 
Caputo fractional derivative in the Laplace domain reads 

      1

*
; 0D f t s s f s s f s    0.    

This equation is important for solving the fractional 
differential equations because it show the dependence on  

the initial conditions. Here 
  

0

,
,

x

u x t
D u x t

x










  is  

called the Riesz space-fractional differentiation operator. 
I adopt here the notation introduced by [25]. It is 
formally a power of the positive definitive operator  

2
2

20

d

dx
D

x
   and must not be confused with a power of 

the first order differential operator  (see [4] for a  1

0x
D

detailed theory of this operator and related operators). I 
need to adopt the Fourier transform of a (generalized) 
function  f x , x , which is defined as 

      ˆ; ei x d .f x f f x 




   x  

For the proof of convergence in distribution I need to 
use the Fourier transform of 

0x
D  which reads  

    
0

ˆ; , 0 2, ,D x
             (2.2) 

while 

     d ˆ; ,
d

n
n

n
x i n

x
    

 
, .     

 
    (2.3) 

This means, in the Zaslavski’ s notations, 

 
0

d
, 0 2.

d
D x

x




               (2.4) 

From (2.2) - (2.4), one easily sees that in the case 1    

    1

0

d
; ;

d

x
D x

x


.  

    
  

   ,

     (2.1) 

Since   22     , we can set 
22

20

d

dx
D

x


  
  

 
,  
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which proves that the Riesz derivative is a symmetric 
fractional generalization of the second derivative. For 
more information about the Fourier transform and the 
pseudo-differential operators as semi groups of linear 
operators, see e.g. [26,27]. In my paper, I discuss the 
approximate solution of the Equation (2.1) for all values 
of   and  , to do so, I descretize x  and t  by the  

grid   , , 0 jj nx t M j M n     with x jh ,  

nt n . Here , and 0h  0   are the steps in space 
and in time, respectively, and  is the num-
ber of steps at the x direction. Treating  as a 
density of an extensive quantity (like mass, charge, sol-
ute concentration, or probability), the approximation of  

2N M 1
 ,u x t

the collected quantity  2

2

, d
j

j

h
x

nh
x

u x t x


  presents in a 

spatial cell 
2 2j

h
x x x   j

h
 at the instant nt t  by  

a clump  n
jy , 

   2

2

, d
j

j

h
xn

j h
x

y u x t



  .n x           (2.5) 

For M j M   , I introduce the column vector  

          T

1 1, , ,0, , ,n n n n n
M M M My y y y y       ,  

where . To proceed on the proof of conver-
gence in distribution, one needs to use the method of 
generating functions, see [22] for more information about 
the procedures used to prove the convergence. Therefore, 
for 

   n
ny y t

 0, n , define 

    ,j
n j n

j

q z y t z              (2.6) 

for the sequence of clumps  
        1 1, , ,0, , ,n n n n

M M M My y y y     . Using the initial condi- 

tions, I introduce the function 

    , 0j j n
j

x x y t n   ,

,

,n

 

and applying the Fourier-transform, we obtain  

       ; e e

.

ji x i h
j j n j n n

j j

x x y t y t q
  



 
   

 


 




 

(2.7) 

Now, introduce the bivariate (two-fold) generating 
function 

     , n j
n j n

n n j

Q z q z y t z  
 

  
 

      (2.8) 

as a function of  , where 1  , for the sequence  

        1 1, , ,0, , ,M M M Mq z q z q z q z     .

0.

 (2.9) 

Introduce the function  and apply     
0

n n
n

t t q z





the Laplace-transform, one gets  

     ; e ,nst
n n n

n n

t t q z s q z s     
 
    (2.10) 

From Equations (2.7) and (2.10), we deduce that if we 
replace z  by ei h  and   by e s , in Equation (2.8), 
we get the Fourier-Laplace transform of the bivariate 
sequence   0,j ny t j  n   which is obtained by 
collecting all the sequences in (2.9). This means 

   
0

e ,e e e , , 0.i h s i jh ns
j n

n j

Q y t    


 



 
s   

 
     

(2.11) 

Our aim now is to prove that  is related 
asymptotically to the Fourier-Laplace transform of 

e ,ei h sQ   
 ,u x t  

which represents the analytical solution of Equation (2.1) 
for any values of   and  , and for a fixed    
and , as . So far, I will prove  0s  n 

   
, 0

ˆlim e ,e , ,i h s

h
Q u 


 


  s          (2.12) 

for each case. 

3. The Classical ade 

I describe in this section the classical partial differential 
ade and its proof of convergence in distribution. It is well 
known that the classical ade is a partial differential equa-
tion describing the solute transport in aquifers and it 
reads 

     2

2

, ,
,

u x t u x t u x t
a b

t xx

  
 

 

,
       (3.1) 

here  ,u x t  is the solute concentration. The conditions 
imposed on the solution  ,u x t



 are 

   , 0 and , 1u x t u x t


  .



 

With the initial condition . The 
classical ade is also interpreted as a deterministic equa-
tion with the probability function  which describes 
the particle spreading away from the plume center of 
mass. The stochastic process  described by 
Equation (3.1) is a Brownian motion with a constant drift 
[11]. 

   0,0u x x x 

 ,u x t

  : 0X t t 

If 0b  , then one has the diffusion of a free particle, 
that is, a particle in which no forces other than those due 
to the molecules of the surrounding medium are acting,  

which reads 
   2

2

, ,v v
a

   
 

 


 
. It has the solution 
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   2 41
, e

2

av
a

  





. Consequently by using the  

Galilei transformation of the independent variables 
 ,    to  , x bt t , then the solution of (3.1), as 0b  ,  

is      2 41
, e

2

x bt tu x t
at

 




. In the Fourier domain  

  ˆ ˆ, e ,ib tu t v t   and hence fourth in the Fourier- 
Laplace domain, see [28] 

    2

1ˆ ˆ, ,u s v s ib s .
s a ib

 
 

  
 

     (3.2) 

Now descretizing (3.1) by the central symmetric 
difference in space and forward in time, one gets  

         
    

1
1 1

1 12

2
.

2

n n n n n
j j j j j n n

j j

y y y y y b
a y

hh


 

 

  
  y (3.3) 

Introduce the scaling relation  

2
,

h

                      (3.4) 

and for the positivity of all the coefficients of  n
jy , one 

must put 0 1 2  . Now let 2N  h , one can write 
 as  1n

jy 

         1
1 11 2 .n n n n

j j j j

b b
y y a y a y a

N N
  

 
         
  





(3.5) 

The discrete solution at Equation (3.5) describes also a 
random walk with sojourn probability  n

jy  of a particle 
at the point jx  at the instant n  and it may jump either 
to the points 1

t

jx  , jx , or 1jx   at the time instant 1nt  , 
see [29]. Utilizing this concept, Equation (3.5) can be 
rewritten as  

       1
1 1 1 1,n n n

j jj j jj j jj jy p y p y p y
      n     (3.6) 

The transition probabilities 1jj , p  jj  and p 1jjp   in 
Equation (3.6) satisfy the essential condition 

1 1 1, , 2 1.jj jj jjp p p M j M N M          

Now one can use these transition probabilities to con-
stitute a tridiagonal, P matrix, in which  

0, 2ijp i j    . Therefore, Equation (3.5) is written 
in the following matrix form 

   1 T ,ny P y   n

.

P

             (3.7) 

Introduce the row vector , defined as   nz

      

        

T

1 1

, 0,

, , ,0, , ,

n n n

n n n n
M M M M

y z n z

z z z z   

  

  
 

In order to find the explicit discrete solution of Equa-
tion (3.1), I have to take the transpose of each sides of 

the matrix Equation (3.7) and rewrite it as  

   1 ,n nz z                 (3.8) 

and for the numerical calculations, it is convenient to 
write the stochastic matrix  in the form  P

  ,P I H                (3.9) 

here I is the unit matrix and H  is a  matrix 
whose rows are summed to zero. In Section 7, I give the 
evolution of  for different values of . 
Now I am going to prove that the discrete solution at 
Equation (3.5) converges to the Fourier-Laplace trans-
form of Equation (3.1). Rewrite Equation (3.5) as  

N N

   n
ny t y t

         1
1 12 .n n n n n

j j j j j

b b
y y y a a y y a

N N
  

 
         
  





(3.10) 

Then multiplying both sides by jz  and summing 
over all , to get  j

     1

1
2n n n

b b
q z q z q z a z a a

z N N


             
    

(3.11) 

Multiplying both sides by n  and summing over all 

0n , one gets 

   

 

1 0
0

1
, 2

n
n n

n

q q q z

b b
Q z a z a a

z N N



 




 

.
            

    


 

The choice of the initial condition of the column  

vector  satisfying that , guarantees that   0y  0 1j
j

y 
 0 1q z   

 

 

1
, 1 1

1
, 2

Q z

b b
Q z a z a a

z N N




 

 
  

 

.
            

    

   (3.12) 

Now, replace z  by  and ei h   by e s , in 
Equation (3.12), to get  

 

 

1
1 e ,e 1

e

e ,e e e 2

i h s
s

i h s i h i h

Q

b b
Q a a

N N

 


   




 

   
 

a
            

    

 

Now after using Taylor expansion and taking the lim-
its as  and 0h  0 , one gets  

  2

1
e ,e .i h sQ

s ib a

 
 

 
 

 

Compare this equation with Equation (3.2), then Equa-

Copyright © 2013 SciRes.                                                                                  AM 



E. A. ABDEL-REHIM 1431

tion (2.12), is satisfied for the classical ade. 

4. The Time-Fractional ade 

In this section, I replace the first-order time derivative 
in Equation (3.1) by the Caputo fractional derivative,  

    
*

,
, ,

t

u x t
D u x t u x t

t










 , with  0,1  . Then this  

generalized time-fractional advection-dispersion equation, 
fade, reads  

     

   

2

2

, ,
, ,

0 1, ,0 .

u x t u x t
a b u x

xt x
u x x





 

  
 

 
  

t
   (4.1) 

For more information about the Caputo fractional de-
rivative and its relations to the Riemann-Liouville, see [6] 
and the list of references therein. Now, Taking the Fou-
rier-Laplace transform, see Section 2, one gets 

 
1

2
ˆ , .

s
u s

s a ib






 




 

         (4.2) 

To descretize 
*t

, I utilize the backward Grün- 
wald-Letnikov scheme which has been successfully util-
izing at [19-24] for modelling and simulating the time- 
fractional diffusion processes and the time-fractional Fok- 
ker-Planck equations. 

 ,D u x t

   
   1 01

1

* 0

1 ,
n mn

m j jn
j

m

y y
D y

m









 




 
    

 
 0 1.  (4.3) 

Join this discretization with the common symmetric  

finite difference for 
 2

2

,u x t

x




 and  ,u x t

x




, then one  

has  

      
           

1
1 0

0

1 1 12

1

2
2

n
m n m

j j
m

n n n n n
j j j j j

y y
m

a b
y y y y y

hh

 



 



  

 
  

 

    



1 .

  (4.4) 

Now introduce the scaling parameter  

2
,

h

                     (4.5) 

and solve for , one gets   1n
jy 

         

   

1 0 1

2

1 1

2

,

n
n n m n

j n j m j j
m

n n
j j

y b y c y a y

b b
a y a y

N N

 

 

  



 

   

         
   


  (4.6) 

where for ease of writing, I use n  and  which has 
been originally introduced in [19] as 

b mc

 
1

1 ,
m

n
m n

b
m



 

 
   

 
  

  1
1 , 1, 2

m

mc m
m

  
   

 
,  

with 0 1b c  
mc

, and all , . Finally,  
and  satisfy the relation 

0kc  0nb  nb

1

1,
n

n m
m

b c


              (4.7) 

where 0 1c  , see [19]. For all the coefficients of  n
jy   

to be positive, it is required that 0
2

  . Rewrite  

Equation (4.6) in the following form  

 

     

       

1

0 1 2 1
1 2

1

1 1

1

2 .

n
j

n
n

m j n j n j j
m

n n
j j

y

c y c y c y c y

b b
c a y a y a y

N N
  








 

       
 

           
   

 

1
n

j

  

(4.8) 

This equation can be interpreted as a random walk 
with a memory, see [30]. In this case, the particle is sit-
ting at the position jx  at the time instant n  and can 
move to either 1

t

jx  , jx , or 1jx   at the time instant 

1nt  . It has also the possibility to return back to jx  at 
any of the time instants  , t

   

1 2, ,n nt t  0 . By using the 
identity (4.7), it is easily to prove that the summation of 
the transition probabilities at the right hand side of 
Equation (4.8) equals to one. These transitions constitute 
a symmetric random walk. Now, constitute the column 
vector      n y1 1 1 ,0  1 , M

 1n
1 1M M M    , then 

Equation (4.6) is written in the matrix form  
, , , ,ny yn ny y 

       1 0 1 T

2

,
n

n n m
n m j

m

y b y c y Q y  



    n    (4.9) 

where  is Q NN   matrix and is not a stochastic ma-
trix as its rows are summed to  , where 0 1  . A 
useful numerical method to ease the computation is to 
write the matrix  as Q

,Q I H    

where H  is the same matrix defined in the last section, 
i.e. it does not depend on the value of   then it does 
not depend on the time. In Section , I compare the 
evolution of  for different values of 

7
 ny t  and  . 

Now, I want to prove that the discrete solution (4.6), in 
the Fourier-Laplace domain as  and 0h 0 , con-
verges to the Fourier-Laplace transform of Equation (4.1). 
To do so, I have to adopt the initial condition which  

satisfies that  0 1j
j

y  , then . Then     0
ˆ 1q z   
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multiply each sides of Equation (4.4) by jz  and sum 
over all , to get  j

    

   

1

1
0

1 1

1
2

2

n
m

n m
m

n n

q z
m

b
a q z z q z z

z h z









 




 
  

 

       
  



1
.
 


 (4.10) 

Now proceed further, multiply each sides by m  and 
sum over all , to get  m

    

 

1

1
0 0

1 1

1 1
, 2

2

n
m m

n m
n m

q z
m

b
a Q z z z

z h z






 

 

 
 



 
  

 
       
   



.
 


  (4.11) 

For manipulating the R.H.S., one needs to use the rule  

of multiplication of two sequences  
0

n
n

n

z  




   and 

 
0

k
k

k

   




  , see Feller [29], in which  

   
0 0

,
r

r
r r n r

r n

c c      



 

    .n  

After using this rule, and put , then apply 
Taylor expansion, and take the limit as , one gets  

e i hz 
h 0

   

  2 2

1
1 e ,

1

e , 2
2

i h

i h

Q

Q a h ib h
h

 




 


  






 
   


  







 

Now, substitute e s  , then again apply Taylor 
expansion, and take the limit as 0 , you get  

 
1 1

2
e ,ei h s s

Q
s a ib

 
  ,  


   

 
  

 
 

then multiply each sides by  , one gets  

   ˆe ,e ,i h sQ u      .s  

Then I have proved the required aim for the time- 
fractional ade. 

5. The Space-Time-Fractional ade 

In this section I consider the space-time fade, Equation 
(2.1). It is known that the space-fractional ade arises 
when velocity variations are heavy tailed and describe 
particle motion that accounts for variation in the flow 
field over entire system. The time fractional ade arises as 
a result of power law particle residence time distributions 
and describe particle motion with memory in time, see  

[12]. The used space-fractional operator 
0x

D , is the sym- 

metric Feller operator, see [7]. This operator represents 
the negative inverse of the Riesz Potential 0I  whose 
symbol is 

 , i.e. 

0
0

,
x
D I    

where the symmetric Riesz Potential operator is defined 
as 

         0 , 1I x c I x c I x       ,       

where 

    1 2cos .
2

c c
  
  

 

        (5.1) 

The Fourier-Laplace transformation of Equation (2.1) 
reads 

 
1

ˆ , .
s

u s
s a ib






 




 

           (5.2) 

When descretizing the Riesz fractional operator 
0x

D   

one must use a suitable finite difference scheme and ex- 
clude the case 1  . To do so, I use the approximation 
of the inverse operators I 

  by the Grünwald-Letnikov 
scheme, see Oldham & Spanier [31], Ross & Miller [1] 
and see also [6], in which one can find a long list of 
related references. The inverse of the Riemann-Liouville 
integrals can formally be obtained as the limit  

0
lim ,
h h

I I  
  

                (5.3) 

where 
h
I 


 denotes the approximating Grünwald-Let- 

nikov scheme which reads, see [4,18,19] 
a) 0 1   

    
0

1
1 ,

k

j
k

I x x
kh





 







 
   

 
  kh      (5.4) 

b) 1 2   

      
0

1
1 1

k

j
k

.I x x
kh





 







 
   

 
  k h



   (5.5) 

The shift in the index  in Equation (5.5) is required 
to obtain a scheme with all coefficients are non-negative 
in the final formula for 

j

 1j ny t   which gives schemes 
for simulating particle paths which results after replacing 
the second order space-derivative in Equation (4.1) by 
the Feller operator [7]. One can adopt, for simplicity, the 
notation introduced by Zaslavski [25]. 

     
0

1
,

2cos
2

0 2, 1, .

j n j n
h h h
D y t I I y t

j

 



 

 

 


 



   



  (5.6) 

one must distinguish the descretization of 
h
I 


 with 
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respect to the value of  , as follows:  
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   (5.7) 

while  
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1
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    (5.8) 

Now we adjoin the descretization of 
0h

D , with the 

descretization of 
*

D 


, and with the finite sequence  

  j ny t  . In what follows, I give the descretization of 
the space-time fractional ade for each case. 

5.1. Case (a): 0 1 , 0 1   

In order to ensure that all the coefficients of ,    0n
jy  j

I have to descritize 
 2

x





 

 

2

,u x t
 by using the symmetric  

central scheme, so the discretization of Equation (2.1) 
reads  
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  (5.9) 

Adopting the scaling relation  

,
h





 



                (5.10) 

and using Equation (5.1), one can solve Equation (5.9) 
for  to get   1n

jy 
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(5.11) 

To ensure that the coefficients of all , it re-
quires that 

  0n
jy 

0 cos
2a

.
  

   

Let us write Equation (5.11) in the form of a random 
walk, in which the walker is sitting at jx  at  and 
jumps to  at 

nt

kx 1nt  , where  

   1
, ,

, ,

,

and 1,

n n
k j k j j k

j

j k j k
j k

y p y p

p p






 

 

 

 



 

,k jp

n

 

see [32] for more information about the discrete random 
walk of space-fractional diffusion processes. Then by 
using this notations, Equation (5.11) can be written in the 
form of random walk as 
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   (5.12) 

The first two terms at the LHS of this equation repre-
sent the memory part and the other terms represent the 
diffusion under the drift term. I like to write , 0j jp p  
as it represents the transition to the next step at the same 
point, , 1 1j jp p   represents jumping one step to the 
left, 1 , 1j jp p   represents jumping one step to the 
right, and similarly ,k j kp p k  2   jumping  steps 
to the left or right. By using the identity (4.7), and the 
identity  

k

 1 0
k

k k





 
,  

 
  

then it is easily to prove that the summation of all the 
transition probabilities is one. 

Now for the numerical calculations, and since there is 
a symmetric random walk, I adjust  ,j M M   and 
ignore all the transitions outside this interval. So it is 
convenient to write the last equation in the form of a 
matrix form 

     

 

1 0 1

2

T .

n
n n

n m j
m

n

y b y c y

A y

 



 

 

 m

       (5.13) 

Here ijA a  is an elegant  fifth diagonal ma-
trix with its elements are computed as  

NN 
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             (5.14) 

 
where j i k   and  , ,i j M M  . In the special case 
as 2 

2

, one recovers the well-known three point 
jumps of the classical ade because ,  as 

, and hence the matrix 
0j j k kp p  

k A  be the same as matrix 
 defined in Equation (3.7). In Section 7, I will plot the 

path of the particle representing by (5.13). Now, I will 
prove that the discrete solution at (5.9) converges in the 
Fourier-Laplace domain to the Fourier-Laplace transform 
of Equation (2.1) as 

p

0 1  . To do so, multiplying 
both sides of Equation (5.9) by jz  where and sum over 
all , where it is easy to prove  j

then put ei hz   and e s   and use the previous 
results. The only new part on the proof is as , one 
can easily prove by using the fundamentals of complex 
analysis that  

0h
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Finally multiply each side by   and substitute the 
value of  , and compare with (5.2), one gets  then one gets  
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So, I proved the desired aim. 

.q z

(5.15) 

5.2. Case (b): 1 2  , 0 1   

I have to descritize 
 2

2

,u x t

x




 by using the backward  

The second step is to multiply both sides of this equa-
tion by n  and sum over all ,  n
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difference scheme, in order to ensure that all the coeffi-
cients of  n

jy  are positive for M j M   . Then the 
descretization of the space-time fade in this case reads  
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  (5.16) 
1  
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After using the scaling relation (5.10), I am going to 
separate the coefficients related to  from the 
last summation and rearrange Equation (5.16) as  

0,1, 2k 
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(5.17) 

To ensure that all the coefficients of  n
jy  are positive, 

the scaling relation must satisfy 

0 c
2

b

h
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os .




 
   

  
 
 
 

 

It is known as 1 2  , the value of cos 0
2


 ,  

and that ensure that 0  . I can use the same symbols 
of the last subsection to write this equation in the form of 
the random walk as 
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  (5.18) 

Again the summation of all the transition probabilities 
of this equation over all j  is one. As in the previ-
ous, Equation (5.17) can be written in the same matrix 
form (5.13) where the diagonal elements of the matrix 
A  are defined as (see (5.19) below) 

In the numerical calculations, I plot the path of the 
particle for different values of . I choose the values of t
  according to condition of each case. The situation as 

1   is the same as the previous cases. Now, I am 
going to prove the convergence of the discrete solution 
(5.18) in the Fourier-Laplace domain to the solution of 
the space-time fade as 1 2 

1

. To do so, one has to 
shift the indices of j k y  and rewrite Equation (5.18) 
as  
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(5.20) 

Again multiply each side by jz  and sum over all j 
and use all the identities of the last section, to get 
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 (5.21) 

Replace , where, it is clear that ei hz 

    
 

e 1 e e 1 e
2cos

2

cos as 0
2cos

2

i h i h i h i h

h
h h

    


 




    


   


      





0

 

So one gets 
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Now, multiply both sides by n , 1  , and sum 
over all , to get n
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Finally, replace   by e s , solve for  e ,ei h sQ   , 
and multiply both sides by  , you will get the desired 
aim , Equation (5.2). Then the 
discrete solution converges to the solution of its corre-
sponding space-time fade in the Fourier-Laplace domain.  

  e ,ei h sQ    ,û  s

1
6. The Discretization of the Space-Time Fade 

as  , 0 1   

The Cauchy fractional ade needs a special treatment. I 
am going to prove first the convergence of the discrete 
solution. Therefore, the Fourier-Laplace transformation 
of the space-time fade (2.1), as 1  , reads  
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This case is related to the Cauchy distribution and one 

cannot use the Grünwald-Letnikov discretization of   1

0
D

at Equations (5.7) and (5.8) because the denominator is  
zero and  for 0c  1  . Instead of Grünwald- 
Letnikov discretization, one must use the descretization 
used in [33]. The authors of [33] deduced the descretization  

of  from the Cauchy density 1

0
D  1 2

1 1
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p x
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, see  

[6] for more information. They replaced the factor  
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, k  , in Equations (5.7) and (5.8) by 
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by using the scaling parameter  
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one gets 
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 y    (6.3) 

As the previous cases,  can be written in the 
form of a random walk with a memory as  
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 (6.4) 

To have all the coefficients of  n
jy  are positive, one  

should restrict the values   as 
2a

 
 . Following  

[33], it can be proved that the summations of the transi-
tion probabilities of Equation (6.4) are summed to one 
and one can easily write it in the form of a random walk 
as the previous cases. The last equation could also be 
written on the same matrix form (5.13). Where A  is a 
fifth diagonal matrix whose diagonal elements are de-
fined as  
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The numerical result of this model is discussed in the 

next section. Noting that the coefficient  and  play 
here a significant role. To prove the convergence, multi-
ply each side of Equation (6.3) by 
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jz  and sum over all 
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Replace, z by , and use the identity  ei h
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1 cos
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Finally replace,   by e s  and take the limit as 
0 , you get , Equation 

(6.1). 
 e ,e sQ     ˆ ,i h u  s 

7. Numerical Results 

In this section, I give the numerical approximate 
solutions for Equation (2.1). I give the evolution of 

 with different values of n  such, different 
values of the space fractional order 

   n
ny y t t

  and different val-
ues of the time fractional order  . I fix the values of 

 while  and 20M  2N M 1 2h  N




, with the 
initial condition  as it must satisfy    0 0, ,y  1, ,0

 0
N

0

1j
j

y


 . Since   , then the 

iteration index 

0 1 2, , , 0,1, 2,t t t 

ntn


  while 

scaling parameter of the specified model and its values 
are varying according to the restriction put on  . Since 
I used the explicit discrete scheme, therefore, sometimes 
I need a huge number of steps for calculating n  
specially for 

 ny   y t
1  . I calculate most of the numerical 

results for 1a   and 1b   but as 0 1   and 1 < α 
< 2 I used 1b   to ensure that all the elements must be 

, because 0ija  A  is probability transition matrices. 
To ease comparing the numerical results, I wrote the 
values of  ,   and their corresponding   with the 
values of t  at the figure. The classical case, i.e. as 

2   and 1  , is plotted at Figures 1 and 2 and one 
can observe how rapidly the paths diffuse as the time 
increases. The time-fractional ade is simulated at 
Figures 3 and 4, i.e. for 2   and 1  . Figures 5, 6 
are corresponding to the space-time fractional ade as 0 < 
α < 1 and 1  . While Figures 7 and 8 are denoted for 
0 < α < 1 and 1  . Figures 9 and 10 are correspond- 
ing to 1 < α < 2 and 1   at Figures 11 and 12 for 1 < 
α < 2 and 1  . Finally, I plot the space-time fractional 
ade as 1   and 11   is plotted at Figures 13 and 
14. The numerical results of this paper as 1 2   and 

1   are consistent with the results at [17]. The nu-
merical solution for the case 2   and 1  , i.e., the 
classical case in this paper is seemed perfect when 
comparing with the other references as it has been  

 

 
  is calculated from the  

Figure 1. The classical case.  
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Figure 2. Classical case. 
 

 

Figure 3. Time-fractional. 
 

 

Figure 4. Space-time-fractional. 
 

 

Figure 5. Space-fractional. 

 

Figure 6. Space-fractional. 
 

 

Figure 7. Space-time-fractional. 
 

 

Figure 8. Space-time fractional. 
 

 

Figure 9. Space-fractional. 
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Figure 10. Space-fractional. 
 

 

Figure 11. Space-time fractional. 
 

 

Figure 12. Space-time fractional. 
 

 

Figure 13. The singular case. 

 

Figure 14. The singular case. 
 

discussed by many authors. The pates as 1 
1

 are dif-
ferent than the paths corresponding to   . The pathes 
for 1   need a huge number of time steps to calculate 
them as I use the explicit difference methods. 
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