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ABSTRACT 
The study of complex networks had developed over the years to include systems such as traffic, predator-prey interac-
tions, financial market, and even the world wide web. Complex network studies encompass biology, chemistry, physics, 
and even engineering and economics [1-6]. However, the dynamics of such complex networks are yet to be understood 
fully [7,8]. In this paper, we will be focusing mostly on the possible learning ability in a complex network. To do this, 
an optimization process is used via Wiener process [9,10]. It is apparent from the sample lattice shown that the final 
position was not a basis of the transition probability, or it was never used to calculate the probability, since the transi-
tion probability only considers the current position. The final point is reached because of the orientation of the edges, 
where each edge is facing the final point, an aspect of the nervous system (afferent and efferent nerves) [11-13]. No 
matter how random the orientation of the neurons is, each directs to the central nervous system for processing and is 
transmitted away for reaction. 
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1. Introduction 
Complex networks had been heavily used to model sys-
tems such as traffic [1-4], bankruptcy [14], social net-
working [15,16], and protein-protein interaction [17,18]. 
While some of these systems are random in nature [19], 
others, such as human interactions (e.g. social networks) 
have learning capabilities. This behavior is similar to the 
brain [20], wherein, signals traveling from one neuron to 
another may opt to travel at the optimal path. 

Finding the optimized path often leads us to the La- 
grange equations of motion for classical dynamics [21]. 
However, quantum mechanics often resolve to take on 
optimization using path integral techniques [10], which, 
in principle, is similar to Lagrangian dynamics. 

Hamilton’s Principle and Lagrange equations of mo-
tion have been widely used to study the extremized, 
usually minimized, behavior and properties of mechani-
cal systems (e.g. brachistochrone problem) [21]. Howev-
er, the extremization of physical systems has been li-
mited to classical systems. Several studies and researches 
have been reported of using the Lagrange and Hamilto-
nian dynamics to chaotic and stochastic systems [22,23]. 
In this paper, the extremized or least action path of 
Brownian is numerically simulated, to model propagation 
of neuronal signals. 

2. Methodology 
Before the numerical computation of the least-action 

trajectory of the Brownian motion, the lattices (or the 
directed graphs) where the Brownian particle moves, are 
defined. To graphically show a regular lattice, each ho-
rizontal and vertical line is plotted within a for loop func-
tion, where the size and spacing of the lattice are con-
cerned. As for the irregular lattice, each line shown is 
manually inputted. These methods show visual guides of 
the trajectory of the Brownian motion and do not affect 
the result. 

Regardless of the type of lattice, each of them follows 
a form which defines each node and direction of the edge 
into the numerical computation. The nodes can be 
represented by DG{a, b} = [x, y], where DG is a matrix 
which contains two-element row matrices, having the 
elements x and y, as its elements. The position of the row 
matrices is defined by a and b as the row and column 
position, respectively. The interpretations of the variables 
of DG are as follows: the variable a is the current node 
position of the Brownian particle, while b is the node the 
Brownian particle can reach if it is in node a. The va-
riables x and y are the Cartesian coordinates of node b. 
This definition of the coordinates of node b will be useful 
numeric-wise and graphic-wise. In summary, if DG{a, b} 
is not nil, then the Brownian particle at node a can go to 
node b. 

In the numerical process, the particle starts at node 1 
for convenience. The program will search through all 
DG{1, b} and pick all the elements having a value. Since 
the values are coordinates, they can be used to calculate *Corresponding author. 
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the transition probability of the particle. 
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The equation shows the transition probability of the 
Brownian particle in two dimensions, where x = (x1, x2) 
and 2 2 2

1 2x x x= + , and D is the diffusion coefficient of 
the fluid. The time it takes for the particle to reach a spe-
cific position (i.e. t ˗ t0) is assumed to be unity. Each DG 
that has a value will have a corresponding transition 
probability. These probabilities are then stored in a sto-
chastic matrix for normalization. The columns of the 
stochastic matrix correspond to the Brownian particle’s 
initial node position, whereas the rows correspond to the 
possible future positions of the particle. From here, the 
comparison of the probabilities will start in a specific 
column and then through the rows of the column. This 
will return the element position having the highest prob-
ability, which in turn can be translated into the next cur- 
rent node. The process repeats until the Brownian par-
ticle reaches the final node and then the whole process is 
redone for Monte Carlo simulation. 

3. Results 
To model a more realistic neural network, an irregular 
design is used (e.g. Figure 1). This is a directed graph of 
a neural network where each node represents the cell 
body and each directed edge defines the orientation of 
axons (the signal can be transmitted in the direction of 
the arrow). 

In the optimized path of the signal (Figure 2), the path 
do not pass through points other than the almost hori-
zontal line connecting the initial and final position. 

It is apparent from both lattices (Figures 2 and 3) that 
 

 
Figure 1. Example of a directed graph for an irregular lat-
tice. 

 
Figure 2. Optimal path for an irregular lattice. 

 

 
Figure 3. Simplified optimal path from the cortex to the 
eyes. 
 
the final position was not a basis of the transition proba-
bility, nor was it used to calculate the probability. This is 
because the transition probability only considers the cur- 
rent position, which means there is no correlation be-
tween “steps” as the signal moves from node to node. 
The final point is reached because of the orientation of 
the edges, where each edge is facing the final point, an 
aspect of the nervous system (afferent and efferent nerves 
[11-13]). No matter how random the orientation of the 
neurons, each directs to the central nervous system for 
processing and is transmitted away for reaction. 

The study by De Marco Garcia, et al., on the identifi-
cation of the muscle nerve trajectory has shown that sig-
nals, differentiated by dyes, do not diffuse onto all net-
works [24]. This model may be able to simulate what is 
going on in the said-system. 

4. Summary and Conclusions 
Using the dependence of the Brownian motion’s action 
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to the transition probability, the trajectory of least action 
for the motion can be described. The optimized path in 
free space does not depend on the frequency of the par-
ticle to pass through a certain point, but depends on the 
most probable point in space in relation to the particle’s 
current position. Even though the transition probability is 
independent of the history of the Brownian motion, the 
path of least action is indirectly affected by the initial 
positions. 

Brownian motion in a neural network still has a clas-
sical characteristic, i.e. the trajectory most likely follows 
a straight line from the starting position to the designated 
point. Whereas, the installation of the condition of a final 
point never appears in the transition probability calcula-
tion. It appears to be that it is inherent to the transition 
probability itself that the Brownian motion is subject to 
follow a horizontal of vertical displacement. The final 
position can then be reached if the Brownian motion ap-
proaches the point, which can be done by orienting the 
edges of the directed graph. 
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