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ABSTRACT 

This paper proposes some additional moment conditions for the linear feedback model with explanatory variables being 
predetermined, which is proposed by [1] for the purpose of dealing with count panel data. The newly proposed moment 
conditions include those associated with the equidispersion, the Negbin I-type model and the stationarity. The GMM 
estimators are constructed incorporating the additional moment conditions. Some Monte Carlo experiments indicate that 
the GMM estimators incorporating the additional moment conditions perform well, compared to that using only the 
conventional moment conditions proposed by [2,3]. 
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1. Introduction 

Since the pioneering works conducted by [4,5], which 
aim at estimating the knowledge production function re- 
presented as the production of patents and innovations, va- 
rious models and estimators have been proposed for the 
purpose of dealing with count panel data. The count pa- 
nel data models are often discussed under the assumption 
that the time dimension is small but the cross-sectional 
size is large, which implies that the asymptotics of the es- 
timators relies on the cross-sectional size. In this case, 
some problems need to be solved for the consistent esti- 
mation of the parameters of interest, when assuming the 
multiplicative fixed effects. Although [4] proposes the 
conditional maximum likelihood estimators (CMLEs) 
which rule out the fixed effects by using the reproductive 
property of Poisson and negative binomial distributions, 
these estimators are consistent only for the case with ex- 
planatory variables being strictly exogenous and dynam- 
ics being excluded. 

In count panel data models, it is usual to regard the ex- 
planatory variables as being predetermined instead of be- 
ing strictly exogenous. An example is the patent produc- 
tion function of a firm where the number of patents as a 
flow variable is a function of R&D expenditures. In this 
case, it is conceivable that the current number of patents  

affects the future R&D expenditures as well as the cur- 
rent and past R&D expenditures affect the current num- 
ber of patents. For the case with explanatory variables 
being predetermined, [2,3] propose the quasi-differenc- 
ing transformation, which eliminates the fixed effects to 
construct the valid moment conditions prepared for the 
Generalized Method of Moments (GMM) estimator pro- 
posed by [6]1, while [10] and [1] propose the Pre-Sam- 
ple Mean (PSM) estimator, which uses the averages of 
the pre-sample histories of the count dependent variables 
as the proxies of the fixed effects2. 

In addition, it is conceivable that incorporating dyna- 
mics into the model is also preferable for count panel 
data. The Linear Feedback Model (LFM) is proposed by 
[1], where the lagged dependent variables are included as 
additive regressors and therefore the problems associated 
with the explosive count dependent variables or the treat- 
ment of the zero-valued count dependent variables can be 
circumvented3. The LFM grows out of the integer-valued 
autoregressive model for the time series Poisson count 
model developed by [12-15]. The GMM and PSM esti- 

1Some trailblazing estimations of the knowledge production function 
using the quasi-differencing transformation are conducted by [7-9], etc.
2The origin of the PSM estimator can be traced to [11]. 
3The alternative models incorporating dynamics are proposed by 
[7,10]. 
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mators mentioned above are also applicable to the LFM4. 
However, the GMM estimator based on the quasi-dif- 

ferencing transformation is afflicted with the undesirable 
small sample biases. Presumably this is due to the weak 
instruments problem when the cross-sectional size is 
small and/or the variables are persistent. In addition, the 
PSM estimator necessitates not only some strict assump- 
tions for its consistency but also long pre-sample histo- 
ries of the count dependent variables (whose availability 
would be ordinarily said to be low) for the improvement 
of its small sample performance5. These are indicated by 
Monte Carlo experiments previously conducted by [1]. 

In this paper, some valid additional moment conditions 
other than the conventional moment conditions based on 
the quasi-differencing transformation are proposed for 
the LFM with explanatory variables being predetermined, 
with the intension of improving the small sample per- 
formance of the GMM estimator. The additional moment 
conditions (and the conventional moment conditions) are 
derived on the basis of the variance-covariance structures 
originating from the conditional expectations for the dis- 
turbances in the LFM. The derivation method is analo- 
gous to that proposed by [23,24] in the framework of the 
ordinary dynamic panel data model, with the exception 
that the conditional expectation instead of the uncondi- 
tional expectation is used in the variance-covariance re- 
strictions. 

The covariance restrictions among the disturbances 
give the conventional moment conditions and one type of 
the additional moment conditions related to predeter- 
mined regressors for the LFM. The former correspond to 
the first-differenced moment conditions proposed by [25, 
26] in the framework of the ordinary dynamic panel data 
model, while the latter correspond to the additional non- 
linear moment conditions proposed by [23,24]. 

For the LFM with explanatory variables being prede- 
termined, the relationships between variance and covari- 
ance for the disturbances can also give other types of the 
additional moment conditions. This paper proposes the 
moment conditions associated with the equidispersion re- 
miniscent of Poisson distributed count dependent vari- 
ables and those associated with the Negbin I-type model 
which is the negative binomial model introduced by [4] 
and characterizes one type of the overdispersion6. Al- 
though as shown by [1], the Poisson CMLE proposed by 
[4] requires no distributional assumption and accordingly 

is also consistent for the Negbin I-type model, each of 
both GMM estimators using the moment conditions as- 
sociated with the equidispersion and using those associ- 
ated with the Negbin I-type model can discern each oth- 
er’s model. 

If the stationary count dependent variables are assum- 
ed, the stationarity moment conditions are obtained as the 
additional moment conditions for the LFM with expla- 
natory variables being predetermined: those based on the 
covariance restrictions, those associated with the equidis- 
persion, and those associated with the Negbin I-type mo- 
del. The first correspond to the stationarity moment con- 
ditions proposed by [28] and discussed by [24,29] in the 
framework of the ordinary dynamic panel data model. 

Some Monte Carlo experiments are conducted for both 
configurations of the equidispersion and of the Negbin 
I-type model. It is shown that the joint usages of the con- 
ventional moment conditions with the additional moment 
conditions ameliorate the small sample performance of 
the GMM estimators, compared to their single usage. In 
addition, it is ascertained that both moment conditions 
associated with the equidispersion and associated with 
the Negbin I-type model can distinguish each other’s mo- 
del for large cross-sectional size. 

The rest of the paper is organized as follows. In Sec- 
tion 2, the conventional and additional moment condi- 
tions are constructed on the basis of the variance-cova- 
riance restrictions on the disturbances for the LFM. In 
Section 3, some Monte Carlo experiments are carried out. 
Section 4 concludes. 

2. Model, Moment Conditions, and GMM 
Estimators 

In this section, some moment conditions are derived for 
the LFM with explanatory variables being predetermined: 
the moment conditions based on the covariance restric- 
tions on the disturbances, the moment conditions associ- 
ated with the equidispersion and the Negbin I-type model, 
and the stationarity moment conditions. The derivation 
method can be interpreted as an extension of the method 
proposed by [23,24] in the framework of the ordinary dy- 
namic panel data model to the count panel data model. 

2.1. Linear Feedback Model 

With  expi i   and expit it x  , the simple 
LFM is written as follows: 4Some empirical works with respect to the knowledge production func-

tion applying these estimators to the LFM are conducted by [16-22], 
etc. 
5Even if the long pre-sample histories of the dependent variables are 
available, the PSM estimator is not consistent unless the fixed effects 
composing the explanatory variables are proportional to the fixed ef-
fects in the regression and the (finite) moment generating functions of 
the disturbance terms composing the explanatory variables are equal 
over time and for all individuals. 
6The terminology “Negbin I-type model” is used in [27]. 

, 1 ,  for  2, ,it i t ity y u t T     ,     (2.1.1) 

,  for  2, ,it i it itu v t T     ,      (2.1.2) 

where the subscript  denotes the individual unit with i
1, ,i N 

y
, the subscript  denotes the time period, 

it  is the (observable) count dependent variable, it

t
x  is 

the (observable) continuous predetermined explanatory 
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variable, i  is the (unobservable) individual specific 
fixed effect, it  is the (unobservable) disturbance, and 
the parameters of interest are 

v
  and  . The discussion 

is conducted for the case where  but T  is fix- 
ed. 

N 

Allowing for the uncorrelated structures between the 
initial dependent variable and the disturbances and be- 
tween the fixed effect and the disturbances, the serially 
uncorrelated disturbances, and the predetermined ex- 
planatory variables, the assumptions for the disturbances 
are written as follows: 

1
1E , , ,  

1
t

0,

i i

for 2, , ,

it i i iv y v

t T

 


 

1 

t t
ix 

         (2.1.3) 

where  and  1 ,, , i tv 1t i iv v  , , itx x  x . The  

assumptions (2.1.3) are referred to as the original as- 
sumptions in this paper. 

2.2. Covariance Restrictions and Moment 
Conditions 

Different from the covariance restrictions considered by 
[23,24] in the context of the ordinary dynamic panel data 
model, those for the LFM, which originate from the ori- 
ginal assumptions (2.1.3), are conditional on the informa- 
tion set  as follows:  , ,i iy v 1,t t

i ix
1

1, ,t t
i it i i iy v v x 1 1E ,iy  0

 ,                (2.2.1) 

1
1, ,iE , 0, 1t t

is it i i iv v y v x t      fo r 2  s  ,   (2.2.2) 

1
1E , ,i , 0,t t

is it i i i   for 1x v y v x t s   ,      (2.2.3) 

1
1E , , , 0

y

t t
i it i i iv y v x i   ,                 (2.2.4) 

where (2.2.4) is displayed for convenience, playing no 
role in constructing the valid moment conditions. 

By replacing the unobservable variable it  by the ob- 
servable variable , 1it it i t

v
u y    (which is written by 

using the dependent variables and the parameter of inter- 
est) in (2.2.1) - (2.2.3), the following Equations are ob- 
tained: 

 

1
1 1E ,iy 1 i it, ,t t

i it i i iy u v x iy     ,           (2.2.5) 

1 2
1E ,

1

i

s t 

, ,   

for 2 ,

t t
is it i i i iu u y v x    
 

,is it it  is iv
    (2.2.6) 

1
1E ,

.

iy

s t
 , ,

for 1

t t
is it i i ix u v x   

 

, 



  it



is ix
          (2.2.7) 

Utilizing the relationships holding among (2.2.5) - 
(2.2.7), the following  2 1T T  2 , 3T  , and 
 1 2 1T T  moment conditions are obtained: 

  , 1 , 1E 0

for  1, , 2;  3, , ,

is i t it it i ty u u ,

s t t T

  
  

   
        (2.2.8) 

   , 2 , 1 , 1 , 2E 1

for  4, , ,

i t i t i t i t it itu u u

t T

     
  0,  

 
  (2.2.9) 

  , 1 , 1E 0

for  1, , 1;  3, , .

is i t it it i tx u u ,

s t t T

  
  

   
        (2.2.10) 

The moment conditions (2.2.8) are based on the rela-
tionships holding between 1 ,  and  and 
holding between , 1is i t

1i i ty u  1i ity u
u u   and is it  for u u 2s t  , 

while the moment conditions (2.2.9) are based on the re- 
lationships holding between , 2i t itu  and , 1i t it . The 
moment conditions (2.2.10) are based on the relation- 
ships between , 1is i t

u u u

x u   and is itx u  for 1s t  . The de- 
rivation of the moment conditions (2.2.8) - (2.2.10) is de- 
scribed in Appendix A. 

The moment conditions (2.2.8) and (2.2.10) are the 
conventional moment conditions, which are linear with 
respect to   and based on the quasi-differencing trans- 
formation proposed by [2,3], while the moment condi- 
tions (2.2.9) are the additional moment conditions non- 
linear with respect to   on the basis of the covariance 
restrictions on the disturbances7. 

In this paper, the moment conditions (2.2.8) and 
(2.2.10) are referred to as the quasi-differenced moment 
conditions by convention, while the moment conditions 
(2.2.9) are referred to as the additional nonlinear moment 
conditions. 

It can be said that the quasi-differenced moment con- 
ditions and the additional nonlinear moment conditions 
correspond to the first-differenced moment conditions 
(otherwise known as the standard moment conditions) 
proposed by [25,26] and the additional nonlinear mo- 
ment conditions proposed by [23,24] in the framework of 
the ordinary dynamic panel data model, respectively. 

The moment conditions (2.2.8) and (2.2.9) are the con- 
densed full set of the relationships holding among (2.2.5) 
and (2.2.6) in the sense that the other relationships are 
indirectly traced based on these relationships, while the 
moment conditions (2.2.10) are the condensed full set of 
the relationships found among (2.2.7). 

2.3. Equidispersion and Moment Conditions 

If the assumptions of the equidispersion are imposed on 
the LFM, the variance-covariance restrictions are pro- 
duced by the addition of the following restrictions to the 
7For the model without dynamics, variants of the moment conditions 
analogous to (2.2.9) are proposed by [30] for the case of endogenous
regressors and by [7] for the case of strictly exogenous regressors, re-
spectively. The former is valid for the case of predetermined regressors, 
while the latter is not. 
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covariance restrictions (2.2.1) - (2.2.4): 

 2 1
1E , , ,t t

it it i i i iv y y v x    0 .       (2.3.1) 

By replacing the unobservable variable it  by the 
observable variable  in (2.3.1), the following Equa- 
tions are obtained: 

v

itu

 2 1
1E , , ,t t

it it i i i i i itu y y v x 2 2      .    (2.3.2) 

Utilizing the relationships holding among (2.2.6) and 
(2.3.2), the following two sets of  moment condi- 
tions are obtained: 

2T 

    , 1 , 1 , 1E 1   

for 3, , ,

i t i t it it i ty u u

t T

   
    

 

0,
   (2.3.3) 

    
  

, 1 , 1

, 1

E 1

0,  for 3, , .

it i t it it i t it

i t it it

u u u

y t

  

 

 



 
    T

        (2.3.4) 

The moment conditions (2.3.3) are based on the rela- 
tionships holding between 2

, 1i tu   and , 1i t it , while the 
moment conditions (2.3.4) are based on the relationships 
holding between  and . 

u u

, 1i t it

The moment conditions (2.3.3) are the additional mo- 
ment conditions linear with respect to 

u u
2
itu

  for the case of 
the equidispersion, while the moment conditions (2.3.4) 
are the additional moment conditions nonlinear with re- 
spect to  . 

In this paper, the moment conditions (2.3.3) and (2.3.4) 
are referred to as the additional linear equidispersion mo- 
ment conditions and the additional nonlinear equidisper- 
sion moment conditions, respectively. 

The moment conditions (2.2.8), (2.3.3) and (2.3.4) are 
the condensed full set of the relationships holding among 
(2.2.5), (2.2.6) and (2.3.2) (i.e. the condensed full set 
when the equidispersion is assumed). The derivation of 
the moment conditions (2.3.3) and (2.3.4) is described in 
Appendix B. 

2.4. Negbin I-Type Model and Moment 
Conditions 

If the assumptions of the Negbin I-type model are im- 
posed on the LFM, the variance-covariance restrictions 
are produced by the addition of the following restrictions 
to the covariance restrictions (2.2.1) - (2.2.4): 

  2 1
1E 1 , , ,t t

it i it i i i iv y y v x       0 .    (2.4.1) 

By replacing the unobservable variable it  by the 
observable variable  and the unobservable variable  

v

itu

i ity  by the observable variable   1
it it it

it

y u u


 
 

 

(2.4.1), the following Equations are obtained: 

     
 

2 2
1

2

E 1 , ,

1 .

t t
it it it it it it i i i i

i it it

u y u y u y v x 

  

1,     
 

8(2.4.2) 

Utilizing the relationships holding among (2.2.6) and 
(2.4.2), the following two sets of  moment condi- 
tions are obtained: 

2T 

     , 1 , 1 , 1E 1 1   

for 3, , ,

i t i t it it i ty u u

t T

   
     

 

0,
  (2.4.3) 

    
     

, 1 , 1

, 1 , 1

E 1

1 1 0

for 3, , .

it i t it it i t it it

i t it it it i t it it

u u u y

u y u

t T

  

   

 

 

  
 ,   

 

 (2.4.4) 

The moment conditions (2.4.3) are based on the rela- 
tionships holding between  and , 1i t it , while the 
moment conditions (2.4.4) are based on the relationships 
holding between  and . 

2
, 1i tu 

2
itu

u u

, 1i t it

The moment conditions (2.4.3) are the additional mo- 
ment conditions linear with respect to 

u u

  for the case of 
the Negbin I-type model, while the moment conditions 
(2.4.4) are the additional moment conditions nonlinear 
with respect to  . 

In this paper, the moment conditions (2.4.3) and (2.4.4) 
are referred to as the additional linear Negbin I-type mo- 
ment conditions and the additional nonlinear Negbin I- 
type moment conditions, respectively. 

The moment conditions (2.2.8), (2.4.3) and (2.4.4) are 
the condensed full set of the relationships holding among 
(2.2.5), (2.2.6) and (2.4.2) (i.e. the condensed full set 
when the Negbin I-type model is assumed). The deriva- 
tion of the moment conditions (2.4.3) and (2.4.4) is de- 
scribed in Appendix C. 

2.5. Stationarity and Moment Conditions 

The moment conditions concerning the stationarity are 
proposed and discussed in the ordinary dynamic panel 
data model (e.g. [24,28,29,31]). Likewise, they can be 
proposed in the LFM for count panel data. 

If the explanatory variables itx  are stationary in terms 
of the moment generating functions as follows: 

   E exp E ,   

for 1, ,

it i i ikx k

t T

        
 

   (2.5.1) 

(with  being any real number) and the initial condi- 
tion of the count dependent variable is written as follows: 

k

8Note that  

   1 1

1 1E , , , E 1 , , ,t t t t

i it i i i i it it it it i i i i i ity y v x y u u y v x 2              ,  

taking notice of (2.1.1) and (2.1.2) with (2.1.3). 
  in  
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  1 1 1 ,i i iy v    1 1i        (2.5.2) 

with 

1 1E ,i i iv x   0,               (2.5.3) 

the following  and 2T  1T   moment conditions are 
obtained by utilizing the relationships holding among 
(2.2.5) - (2.2.7): 

 , 1E 1 0,   for 3, ,i t it ity u t      T ,   (2.5.4) 

 E 1 0,   for 2, , .it it itx u t      T      (2.5.5) 

The moment conditions (2.5.4) are based on the rela- 
tionships holding between  and 2 3i i  and hold- 
ing between , 2i t it  and , 1i t it , while the moment 
conditions (2.5.5) are based on the relationships holding 
between i t

1 3i iy u
u 

u u
u u

, 1 it

u

x u  and it itx u
T

9. The moment conditions 
(2.5.4) for  are the replacement of the mo- 
ment conditions (2.2.9). 

4, ,t  

If the assumptions of the equidispersion are imposed 
in addition to those concerning the stationarity, the fol- 
lowing  moment conditions are obtained by utiliz- 
ing the relationships holding among (2.2.5), (2.2.6), and 
(2.3.2): 

1T 

  E 1 0,   for 2, , .it it it ity u y t T         (2.5.6) 

Similarly, if the assumptions of the Negbin I-type 
model are imposed in addition to those concerning the 
stationarity, the following 1T   moment conditions are 
obtained by utilizing the relationships holding among 
(2.2.5), (2.2.6), and (2.4.2): 

     , 1E 1 1 1 1

for  2, , .

it it it i t it ity u y u

t T

      0,

 

T

  (2.5.7) 

The moment conditions (2.5.6) and (2.5.7) for 
 are the replacement of the moment condi- 

tions (2.3.4) and (2.4.4), respectively. 
3, ,t  

The moment conditions (2.5.4) and (2.5.5) are the mo- 
ment conditions concerning the stationarity on the basis 
of the covariance restrictions among the disturbances and 
between the regressors and the disturbances, respectively, 
while the moment conditions (2.5.6) and (2.5.7) are the 
moment conditions concerning the stationarity for the 
cases of the equidispersion and the Negbin I-type model, 
respectively. These moment conditions are linear with re- 
spect to  . 

In this paper, the moment conditions (2.5.4) and (2.5.5) 
are referred to as the stationarity moment conditions, 

while the moment conditions (2.5.6) and (2.5.7) are re- 
ferred to as the stationarity & equidispersion moment 
conditions and the stationarity & Negbin I-type moment 
conditions, respectively. 

It can be said that the stationarity moment conditions 
correspond to the stationarity moment conditions propos- 
ed by [28] and discussed by [24,29] in the framework of 
the ordinary dynamic panel data model. 

When the stationarity is assumed, the moment condi- 
tions (2.2.8) and (2.5.4) are the condensed full set of the 
relationships holding among (2.2.5) and (2.2.6), while 
the moment conditions (2.2.10) and (2.5.5) are the con- 
densed full set of the relationships holding among (2.2.7). 
The moment conditions (2.2.8), (2.3.3) and (2.5.6) are 
the condensed full set of the relationships holding among 
(2.2.5), (2.2.6) and (2.3.2) when the stationarity is as- 
sumed (i.e. the condensed full set when the stationarity 
and the equidispersion are assumed), while the moment 
conditions (2.2.8), (2.4.3) and (2.5.7) are the condensed 
full set of the relationships holding among (2.2.5), (2.2.6) 
and (2.4.2) when the stationarity is assumed (i.e. the con- 
densed full set when the stationarity and the Negbin I- 
type model are assumed). The derivation of the moment 
conditions (2.5.4) - (2.5.7) is described in Appendix D. 

2.6. GMM Estimator 

Any set of the moment conditions for the LFM can be 
collectively written in the following  vector form: 1m

 E ig     0 ,             (2.6.1) 

where  is number of the moment conditions, m
     ,  ig   (which is the function of  ) is 

composed of the observable variables and   for the 
individual . i

Using the following empirical counterpart for (2.6.1): 

    1
1

N

ii
g N g  


  ,        (2.6.2) 

the GMM estimator ̂  is constructed by minimizing the 
following criterion function with respect to  : 

     1̂Ng W g   ,            (2.6.3) 

where the m m  optimal weighting matrix is given as 
follows by using an initial consistent estimator of   (i.e. 

1̂ ): 

       1

1

1 1 1
ˆ ˆ ˆ1 N

N ii
W g gN  





 
 
 

 i .    (2.6.4) 

The efficient asymptotic variance for   is estimated 
by using 

9Although author proposes the moment conditions (2.5.4) and (2.5.5) in 
the discussion paper of Kyushu Sangyo University in December, 2007, 
[32] also proposes the same moment conditions in the framework of a 
specification of the LFM slightly different from that in this paper. It 
can be said that [32] also makes some other contribution to the estima-
tion of the LFM. 

         1

1

ˆ ˆ ˆ ˆˆ 1 NV N D W D  


   
 

 ,   (2.6.5) 
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where     ˆ
ˆD g

 
  


   . The GMM estimations  

for the LFM are explained in detail in [33,34]. 
Some GMM estimators are constructed for the LFM. 

The GMM estimators are classified into the three types. 
First, the GMM estimators using the moment condi- 

tions linear with respect to   (without taking account of 
the stationarity) are presented: the GMM(QD) estimator 
using only the quasi-differenced moment conditions (i.e. 
(2.2.8) and (2.2.10)), the GMM(QDP) estimator using 
the quasi-differenced moment conditions and the additio- 
nal linear equidispersion moment conditions (i.e. (2.3.3)), 
and the GMM(QDN) estimator using the quasi-differenc- 
ed moment conditions and the additional linear Negbin I- 
type moment conditions (i.e. (2.4.3)). 

Second, the GMM estimators using the condensed full 
sets of the moment conditions under the provided as- 
sumptions (without taking account of the stationarity) are 
presented: the GMM(PR) estimator using the quasi-dif- 
ferenced moment conditions and the additional nonlinear 
moment conditions (i.e. (2.2.9)), the GMM(PRP) estima- 
tor using the quasi-differenced moment conditions, the 
additional linear equidispersion moment conditions and 
the additional nonlinear equidispersion moment condi- 
tions (i.e. (2.3.4)), and the GMM(PRN) estimator using 
the quasi-differenced moment conditions and the additio- 
nal linear Negbin I-type moment conditions and the addi- 
tional nonlinear Negbin I-type moment conditions (i.e. 
(2.4.4)). 

Third, the GMM estimators incorporating the moment 
conditions concering the stationarity are presented: the 
GMM(SA) estimator using the quasi-differenced moment 
conditions and the stationarity moment conditions (i.e. 
(2.5.4) and (2.5.5)), the GMM(SAP) estimator using the 
quasi-differenced moment conditions, the additional lin- 
ear equidispersion moment conditions, the stationarity & 
equidispersion moment conditions (i.e. (2.5.6)) and the 
stationarity moment conditions with respect to itx  (i.e. 
(2.5.5)), and the GMM(SAN) estimator using the quasi- 
differenced moment conditions and the additional linear 
Negbin I-type moment conditions and the stationarity & 
Negbin I-type moment conditions (i.e. (2.5.7)) and the 
stationarity moment conditions with respect to itx . 

It should be noted that there can be a case where a ma- 
nipulation is needed, when using the additional nonlinear 
moment conditions, the additional nonlinear equidisper- 
sion moment conditions, the additional nonlinear Negbin 
I-type moment conditions, the stationarity moment condi- 
tions, the stationarity & equidispersion moment conditions, 
and the stationarity & Negbin I-type moment conditions 
for the GMM estimations. If all values in itx  are posi- 
tive (which are commonplace in the empirical analysis), 
the GMM estimates of   using these moment conditions 
seem to be in danger of going to infinity (see [3]). In this 

case, itx  needs to be transformed in deviation from an ap- 
propriate value , in order that itb x  contains both posi- 
tive and negative values evenly. The selection of  by 
[30] is the overall mean of 

b

itx (i.e.   1b NT  

1

N T

i t 1 itx
   ). The GMM estimators subject to this trans-  

formation are the GMM(PR), GMM(PRP), GMM(PRN), 
GMM(SA), GMM(SAP), and GMM(SAN) estimators. 

3. Monte Carlo 

In this section, some small sample performances of the 
GMM estimators exhibited in previous section are inves- 
tigated with Monte Carlo experiments. The experiments 
are implemented using the econometric software TSP 
version 4.5 (see [35]). 

3.1. Data Generating Process 

Two types of Data Generating Process (DGP) are con- 
figured: in one type, the dependent variables are gener- 
ated from the Poisson distribution, while in another type, 
they are generated from the negative binomial distribu- 
tion with the functional form being of the Negbin I-type.  

The Poisson-type DGP is as follows: 

  , 1Po expi t iy y xissonit it     ,     (3.1.1) 

 , 1i TG


 

, 1

exp

1
i

G

x 
 

 
 
 
 

 Poissoni Ty

it

,    (3.1.2) 

, 1i t i itx x     ,                   (3.1.3) 

, 1
, 1 21 1

i TGi
i Tx G

 




   


,                (3.1.4) 

 2~ N 0,i   ;  2~ N 0,it   , 

where 1, , 1,0,1, ,Gt T T      with G  being the 
number of pre-sample periods to be generated. In the 
DGP, values are set to the parameters 

T

 ,  ,  ,  , 
2
  and 2

 . The experiments are carried out with 
50GT  , the cross-sectional sizes ,  and 
, the numbers of periods used for the estimations 

100N  500
1000
T 4 and 8 , and the number of replications R 1000N  . 
This DGP setting is the same as that of [1], except for the 
initial condition of it . That is, the initial condition 
(3.1.2) denotes that the initial conditions of dependent 
variables are stationary and accordingly the dependent 
variables are in the stationary state if the absolute value 
of 

y

  is less than one. The DGP is configured with the 
explanatory variables itx  being strictly exogenous10. 

In the Negbin I-type DGP, (3.1.1) and (3.1.2) are re- 

10[32] also conducts some Monte Carlo experiments in the similar 
setting. 
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tively. placed by the following expressions respectively: 

     , 1Negbin exp ,  exp
exp

i t
it it i

i

y
y x


 












, (3.1.5) 
3.2. Estimators for Comparison 

   , 1
, 1

exp
Negbin ,  exp

1
i TG

i TG i

x
y





 

 



 









,  (3.1.6) 

The following three estimators are used for comparison: 
the Level estimator, the Within Group (WG) mean scal- 
ing estimator, and the PSM estimator. The Level and WG 
estimators are inconsistent in the DGP settings above. On 
the contrary, the PSM estimator is consistent if the long 
history is used in constructing the pre-sample means of 
the dependent variables. The details on these estimators 
are described in [1,10]. 

where the denotation Negbin ,X    implies that 
the count variable X  is distributed as the negative bi- 
nomial distribution whose probability function is 

3.3. Results 
   

   
1

1 1 1

XX
p X

X

 
  

                    
 

For 4T  , Monte Carlo results for the Poisson-type 
DGP and the Negbin I-type DGP are shown in Tables 1 
and 2 respectively, while for , they are shown in 
Tables 3 and 4 respectively. 

8T with  being the gamma function and      and   
being the parameters with 0   and 0   respec-  
 

Table 1. Monte Carlo results for LFM, T = 4 (Poisson-type DGP). 

  N = 100   N = 500   N = 1000  
  bias rmse  bias rmse  bias rmse 
  Sargan df  Sargan df  Sargan df 
          

Level γ 0.256 0.264  0.273 0.275  0.278 0.279 
 β 0.545 0.656  0.549 0.571  0.557 0.573 

WG γ −0.452 0.463  −0.446 0.449  −0.446 0.447 
 β −0.260 0.272  −0.261 0.263  −0.263 0.264 

GMM(QD) γ −0.274 0.398  −0.104 0.161  −0.061 0.112 
 β −0.259 0.371  −0.124 0.219  −0.078 0.172 
  4.42 4  4.58 4  4.58 4 

GMM(QDP) γ −0.054 0.155  −0.006 0.066  −0.001 0.045 
 β −0.134 0.288  −0.028 0.148  −0.013 0.104 
  8.72 6  7.91 6  7.56 6 

GMM(QDN) γ 0.262 0.273  0.234 0.237  0.227 0.228 
 β 0.082 0.379  0.420 0.474  0.542 0.568 
  8.36 6  11.30 6  12.34 6 

GMM(PR) γ −0.090 0.214  −0.037 0.092  −0.016 0.067 
 β −0.159 0.282  −0.059 0.157  −0.026 0.134 
  5.62 5  5.66 5  5.66 5 

GMM(PRP) γ −0.024 0.158  −0.007 0.062  −0.002 0.043 
 β −0.166 0.281  −0.056 0.147  −0.029 0.107 
  10.26 8  9.38 8  9.15 8 

GMM(PRN) γ 0.272 0.283  0.237 0.241  0.223 0.226 
 β −0.110 0.375  0.167 0.335  0.296 0.381 
  11.43 8  21.82 8  29.86 8 

GMM(SA) γ −0.023 0.139  −0.019 0.079  −0.010 0.059 
 β −0.053 0.212  −0.023 0.137  −0.012 0.104 
  9.70 9  9.46 9  9.46 9 

GMM(SAP) γ 0.038 0.115  0.016 0.060  0.011 0.043 
 β −0.022 0.215  0.016 0.133  0.012 0.099 
  14.06 12  12.87 12  12.91 12 

GMM(SAN) γ 0.277 0.283  0.249 0.250  0.242 0.242 
 β 0.036 0.263  0.350 0.391  0.471 0.490 
  18.21 12  30.10 12  38.17 12 

PSM γ(4) 0.132 0.156  0.157 0.162  0.163 0.167 
 β(4) 0.191 0.296  0.205 0.225  0.211 0.229 
 γ(8) 0.104 0.132  0.125 0.131  0.130 0.135 
 β(8) 0.141 0.228  0.148 0.165  0.152 0.165 
 γ(25) 0.046 0.091  0.061 0.072  0.066 0.073 
 β(25) 0.058 0.139  0.062 0.083  0.065 0.078 
 γ(50) 0.020 0.081  0.033 0.050  0.038 0.048 
 β(50) 0.031 0.119  0.032 0.059  0.035 0.052 

See Notes of Tables. 
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Table 2. Monte Carlo results for LFM, T = 4 (Negbin I-type DGP). 

  N = 100   N = 500   N = 1000  

  bias rmse  bias rmse  bias rmse 

  Sargan df  Sargan df  Sargan df 

Level γ 0.133 0.165  0.154 0.162  0.158 0.163 

 β 0.302 0.419  0.300 0.357  0.303 0.325 

WG γ −0.513 0.533  −0.500 0.506  −0.500 0.503 

 β −0.264 0.294  −0.275 0.280  −0.276 0.279 

GMM(QD) γ −0.350 0.521  −0.156 0.249  −0.098 0.165 

 β −0.327 0.496  −0.205 0.295  −0.132 0.242 

  4.27 4  4.45 4  4.36 4 

GMM(QDP) γ −0.448 0.485  −0.449 0.460  −0.444 0.450 

 β −0.389 0.503  −0.437 0.468  −0.443 0.459 

  7.13 6  11.09 6  15.57 6 

GMM(QDN) γ 0.008 0.113  0.007 0.052  0.005 0.037 

 β −0.133 0.399  −0.054 0.193  −0.017 0.134 

  6.68 6  6.96 6  6.59 6 

GMM(PR) γ −0.124 0.269  −0.068 0.154  −0.043 0.120 

 β −0.219 0.408  −0.129 0.244  −0.082 0.202 

  5.31 5  5.48 5  5.26 5 

GMM(PRP) γ −0.488 0.531  −0.547 0.565  −0.554 0.564 

 β −0.296 0.366  −0.337 0.351  −0.346 0.353 

  13.04 8  36.36 8  59.54 8 

GMM(PRN) γ 0.019 0.101  0.010 0.050  0.006 0.034 

 β −0.176 0.403  −0.080 0.202  −0.041 0.138 

  8.73 8  9.02 8  8.89 8 

GMM(SA) γ −0.089 0.195  −0.050 0.111  −0.037 0.085 

 β −0.125 0.287  −0.078 0.173  −0.046 0.139 

  9.59 9  9.83 9  9.19 9 

GMM(SAP) γ −0.469 0.525  −0.594 0.612  −0.623 0.636 

 β −0.029 0.331  −0.203 0.260  −0.264 0.292 

  17.06 12  43.04 12  71.02 12 

GMM(SAN) γ 0.013 0.082  0.008 0.039  0.005 0.028 

 β −0.108 0.345  −0.039 0.159  −0.012 0.106 

  13.37 12  13.67 12  13.02 12 

PSM γ(4) 0.057 0.121  0.085 0.103  0.092 0.104 

 β(4) 0.144 0.276  0.153 0.337  0.156 0.206 

 γ(8) 0.041 0.113  0.068 0.090  0.076 0.089 

 β(8) 0.109 0.236  0.113 0.177  0.120 0.156 

 γ(25) 0.005 0.106  0.032 0.067  0.040 0.061 

 β(25) 0.053 0.197  0.053 0.111  0.059 0.090 

 γ(50) −0.012 0.108  0.014 0.061  0.022 0.051 

 β(50) 0.031 0.184  0.028 0.094  0.034 0.071 

See Notes of Tables. 
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Table 3. Monte Carlo results for LFM, T = 8 (Poisson-type DGP). 

  N = 100   N = 500   N = 1000  

  bias rmse  bias rmse  bias rmse 

  Sargan df  Sargan df  Sargan df 

Level γ 0.262 0.267  0.275 0.277  0.278 0.279 

 β 0.537 0.586  0.550 0.565  0.559 0.568 

WG γ −0.189 0.198  −0.184 0.186  −0.185 0.186 

 β −0.126 0.139  −0.127 0.130  −0.127 0.129 

GMM(QD) γ −0.229 0.261  −0.076 0.096  −0.046 0.062 

 β −0.232 0.265  −0.105 0.131  −0.066 0.091 

  18.11 16  18.21 16  17.94 16 

GMM(QDP) γ −0.147 0.185  −0.019 0.044  −0.007 0.027 

 β −0.217 0.257  −0.057 0.093  −0.024 0.057 

  29.39 22  28.97 22  27.80 22 

GMM(QDN) γ 0.235 0.241  0.225 0.226  0.221 0.221 

 β 0.058 0.224  0.372 0.391  0.504 0.513 

  29.20 22  43.53 22  47.94 22 

GMM(PR) γ −0.006 0.128  −0.029 0.054  −0.023 0.040 

 β −0.117 0.190  −0.064 0.096  −0.043 0.069 

  22.06 21  21.58 21  21.61 21 

GMM(PRP) γ −0.007 0.103  −0.006 0.038  −0.003 0.026 

 β −0.154 0.213  −0.066 0.097  −0.031 0.060 

  33.09 28  33.60 28  32.31 28 

GMM(PRN) γ 0.253 0.257  0.228 0.229  0.211 0.212 

 β −0.154 0.268  0.061 0.203  0.206 0.246 

  38.40 28  80.77 28  113.36 28 

GMM(SA) γ −0.012 0.079  −0.012 0.043  −0.009 0.031 

 β −0.070 0.134  −0.027 0.073  −0.017 0.053 

  30.40 29  30.36 29  29.90 29 

GMM(SAP) γ 0.029 0.077  0.010 0.037  0.007 0.027 

 β −0.012 0.142  −0.003 0.074  0.004 0.058 

  39.58 36  38.85 36  37.69 36 

GMM(SAN) γ 0.263 0.266  0.248 0.248  0.237 0.237 

 β −0.026 0.191  0.244 0.274  0.398 0.410 

  45.69 36  80.79 36  102.29 36 

PSM γ(4) 0.145 0.155  0.162 0.165  0.165 0.167 

 β(4) 0.197 0.231  0.210 0.222  0.216 0.221 

 γ(8) 0.115 0.127  0.131 0.135  0.134 0.136 

 β(8) 0.145 0.178  0.155 0.164  0.160 0.165 

 γ(25) 0.054 0.075  0.068 0.073  0.070 0.073 

 β(25) 0.063 0.100  0.068 0.078  0.071 0.076 

 γ(50) 0.027 0.059  0.039 0.047  0.040 0.044 

 β(50) 0.033 0.078  0.036 0.049  0.039 0.045 

See Notes of Tables. 
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Table 4. Monte Carlo results for LFM, T = 8 (Negbin I-type DGP). 

  N = 100   N = 500   N = 1000  

  bias rmse  bias rmse  bias rmse 

  Sargan df  Sargan df  Sargan df 

Level γ 0.143 0.157  0.159 0.163  0.159 0.161 

 β 0.289 0.348  0.300 0.315  0.295 0.302 

WG γ −0.221 0.237  −0.215 0.220  −0.216 0.219 

 β −0.136 0.170  −0.140 0.148  −0.144 0.147 

GMM(QD) γ −0.280 0.333  −0.106 0.133  −0.070 0.092 

 β −0.298 0.360  −0.153 0.186  −0.106 0.135 

  18.67 16  18.88 16  18.00 16 

GMM(QDP) γ −0.494 0.515  −0.434 0.441  −0.423 0.427 

 β −0.333 0.422  −0.287 0.331  −0.298 0.322 

  28.57 22  58.02 22  90.16 22 

GMM(QDN) γ −0.016 0.077  −0.001 0.031  0.000 0.021 

 β −0.197 0.302  −0.071 0.123  −0.038 0.081 

  24.79 22  25.79 22  25.67 22 

GMM(PR) γ −0.006 0.171  −0.034 0.084  −0.035 0.062 

 β −0.180 0.310  −0.107 0.157  −0.083 0.119 

  22.66 21  23.27 21  23.23 21 

GMM(PRP) γ −0.422 0.465  −0.505 0.514  −0.532 0.536 

 β −0.305 0.351  −0.336 0.343  −0.347 0.350 

  36.33 28  81.18 28  128.67 28 

GMM(PRN) γ 0.005 0.070  0.004 0.032  0.001 0.021 

 β −0.197 0.326  −0.107 0.171  −0.067 0.110 

  30.96 28  34.41 28  35.01 28 

GMM(SA) γ −0.068 0.133  −0.041 0.071  −0.032 0.052 

 β −0.174 0.242  −0.087 0.127  −0.059 0.092 

  31.11 29  31.68 29  31.23 29 

GMM(SAP) γ −0.444 0.476  −0.593 0.603  −0.638 0.644 

 β 0.059 0.273  −0.069 0.164  −0.149 0.182 

  44.30 36  114.44 36  188.60 36 

GMM(SAN) γ 0.005 0.058  0.004 0.027  0.002 0.018 

 β −0.153 0.311  −0.073 0.142  −0.038 0.086 

  39.12 36  41.62 36  41.75 36 

PSM γ(4) 0.078 0.106  0.098 0.106  0.099 0.103 

 β(4) 0.153 0.265  0.156 0.173  0.154 0.164 

 γ(8) 0.061 0.094  0.080 0.090  0.082 0.087 

 β(8) 0.115 0.189  0.121 0.138  0.120 0.130 

 γ(25) 0.025 0.076  0.042 0.059  0.044 0.053 

 β(25) 0.054 0.134  0.059 0.083  0.059 0.072 

 γ(50) 0.006 0.073  0.023 0.047  0.025 0.038 

 β(50) 0.027 0.118  0.033 0.064  0.032 0.051 

ee Notes of Tables. S  
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The performances of the GMM estimators incorporate- 

ing the moment conditions concerning the stationarity 
(i.e. GMM(SA), GMM(SAP), GMM(SAN) estimators) 
are fairly favorable (especially in terms of bias), compar- 
ed to that of the conventional GMM(QD) estimator, as 
long as the moment conditions used are valid. These re- 
sults are similar to that for the ordinary dynamic panel 
data model, in which the additional usage of the sationar- 
ity moment conditions improves the small sample per- 
formance of the GMM estimator (see [29], etc.). 

In all tables, the endemic upward and downward bi- 
ases are found for the Level and WG estimators respec- 
tively, while the PSM estimator behaves better as the 
longer pre-sample history is used. These results are al- 
most the same as those obtained by [1]. 

It can be seen that the GMM estimators incorporating 
the additional moment conditions behave better than the 
GMM(QD) estimator using only the conventional mo- 
ment conditions based on the quasi-differencing trans- 
formation, as long as the additional moment conditions 
are valid. 

4. Conclusion It is considered that the GMM(QD) estimator suffers 
from the weak instruments problem pointed out by [36,37], 
due to exclusively using the quasi-differenced moment 
conditions applying the lagged levels of dependent and 
explanatory variables (which are regarded as the weak 
instruments) to the quasi-differencing transformations 
(see, e.g., [1]). The weak instruments problem also oc- 
curs in the ordinary dynamic panel data model (see, e.g., 
[29]). 

In this paper, some additional moment conditions other 
than the conventional quasi-differenced moment condi- 
tions were newly proposed for the LFM with explanatory 
variables being predetermined: the additional nonlinear 
moment conditions, the additional linear equidispersion 
moment conditions, the additional nonlinear equidisper- 
sion moment conditions, the additional linear Negbin I- 
type moment conditions, the additional nonlinear Negbin 
I-type moment conditions, the stationarity moment con- 
ditions, the stationarity & equidispersion moment condi- 
tions, and the stationarity & Negbin I-type moment con- 
ditions. In the limited Monte Carlo experiments, it was 
shown that the GMM estimators perform better when in- 
corporating the additional moment conditions than when 
using the conventional moment conditions only, as long 
as the additional moment conditions are valid. 

The small sample property of the distribution-free 
GMM estimator incorporating the additional nonlinear 
moment conditions (i.e. GMM(PR) estimator) is more 
preferable than that of the conventional GMM(QD) esti- 
mator. It can be said that the joint usage of the quasi- 
differenced moment conditions and the additional non- 
linear moment conditions improves the small sample pro- 
perty of the GMM estimator, compared to the single us- 
age of the quasi-differenced moment conditions. This re- 
sult is similar to that for the ordinary dynamic panel data 
model (see, e.g., [38]). 
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For the Poisson-type DGP (see Table 1 and 3), the 
small sample properties of the GMM estimators incorpo- 
rating the moment conditions associated with equidisper- 
sion (i.e. GMM(QDP), GMM(PRP), and GMM(SAP) es- 
timators) improve as the cross-sectional size N increases 
from 100, 500 to 1000, while those of the GMM estima- 
tors incorporating the moment conditions associated with 
Negbin I-type model (i.e. GMM(QDN), GMM(PRN), 
and GMM(SAN) estimators) deteriorate, where the aug- 
mentations of the Monte Carlo means of Sargan test sta- 
tistics (which are the reflection of the inconsistency) are 
recognizable for larger N. For the Negbin I-type DGP 
(see Tables 2 and 4), the countertrend is found. It is shown 
that each of both GMM estimators incorporating the mo- 
ment conditions associated with equidispersion and incor- 
porating those associated with the Negbin I-type model 
can discern each other’s underlying specification11. 

11Although [39] proposes the moment condition based on the variance-
covariance restrictions under the assumption with the explanatory va-
riables being strictly exogenous and dynamics being excluded, it cannot 
distinguish between the equidispersion and the Negbin I-type model. 
However, it is shown that the moment conditions based on the vari-
ance-covariance restrictions proposed in this paper can distinguish be-
tween them, under the assumption weaker than [39]. 

REFERENCES 
[1] R. Blundell, R. Griffith and F. Windmeijer, “Individual 

Effects and Dynamics in Count Data Models,” Journal of 
Econometrics, Vol. 108, No. 1, 2002, pp. 113-131.  



Y. KITAZAWA 330 

http://dx.doi.org/10.1016/S0304-4076(01)00108-7 

[2] G. Chamberlain, “Comment: Sequential Moment Restric- 
tions in Panel Data,” Journal of Business and Economic 
Statistics, Vol. 10, No. 1, 1992, pp. 20-26.  
http://dx.doi.org/10.1080/07350015.1992.10509881 

[3] J. M. Wooldridge, “Multiplicative Panel Data Models with- 
out the Strict Exogeneity Assumption,” Econometric The- 
ory, Vol. 13, No. 5, 1997, pp. 667-678.  
http://dx.doi.org/10.1017/S0266466600006125 

[4] J. A. Hausman, B. H. Hall and Z. Griliches, “Econometric 
Models for Count Data with an Application to the Patent- 
R&D Relationship,” Econometrica, Vol. 52, No. 4, 1984, 
pp. 909-938. http://dx.doi.org/10.2307/1911191 

[5] B. H. Hall, Z. Griliches and J. A. Hausman, “Patents and 
R and D: Is There a Lag?” International Economic Re- 
view, Vol. 27, No. 2, 1986, pp. 265-283.  
http://dx.doi.org/10.2307/2526504 

[6] L. P. Hansen, “Large Sample Properties of Generalized 
Method of Moments Estimators,” Econometrica, Vol. 50, 
No. 4, 1982, pp. 1029-1054.  
http://dx.doi.org/10.2307/1912775 

[7] B. Crépon and E. Duguet, “Estimating the Innovation Func- 
tion from Patent Numbers: GMM on Count Panel Data,” 
Journal of Applied Econometrics, Vol. 12, No. 3, 1997, 
pp. 243-263.  
http://dx.doi.org/10.1002/(SICI)1099-1255(199705)12:3<
243::AID-JAE444>3.0.CO;2-4 

[8] J. G. Montalvo, “GMM Estimation of Count-Panel-Data 
Models with Fixed Effects and Predetermined Instru- 
ments,” Journal of Business and Economic Statistics, Vol. 
15, No. 1, 1997, pp. 82-89.  
http://dx.doi.org/10.1080/07350015.1997.10524690 

[9] J. Kim and G. Marschke, “Labor Mobility of Scientists, 
Technological Diffusion and the Firm’s Patenting Deci- 
sion,” The RAND Journal of Economics, Vol. 36, No. 2, 
2005, pp. 298-317. 

[10] R. Blundell, R. Griffith and J. Van Reenen, “Market Share, 
Market Value and Innovation in a Panel of British Manu- 
facturing Firms,” Review of Economic Studies, Vol. 66, 
No. 3, 1999, pp. 529-554.  
http://dx.doi.org/10.1111/1467-937X.00097 

[11] R. Blundell, R. Griffith and J. Van Reenen, “Dynamic 
Count Data Models of Technological Innovation,” Eco- 
nomic Journal, Vol. 105, No. 429, 1995, pp. 333-344.  
http://dx.doi.org/10.2307/2235494 

[12] M. A. Al-Osh and A. A. Alzaid, “First-Order Integer-Va- 
lued Autoregressive (INAR(1)) Process,” Journal of Time 
Series Analysis, Vol. 8, No. 3, 1987, pp. 261-275.  
http://dx.doi.org/10.1111/j.1467-9892.1987.tb00438.x 

[13] E. McKenzie, “Some ARMA Models for Dependent Se- 
quences of Poisson Counts,” Advances in Applied Prob- 
ability, Vol. 20, No. 4, 1988, pp. 822-835.  
http://dx.doi.org/10.2307/1427362 

[14] A. A. Alzaid and M. A. Al-Osh, “An Integer-Valued pth- 
Order Autoregressive Structure (INAR(p)) Process,” Jour- 
nal of Applied Probability, Vol. 27, No. 2, 1990, pp. 314- 
324. http://dx.doi.org/10.2307/3214650 

[15] D. Jin-Guan and L. Yuan, “The Integer-Valued Autoregres- 

sive (INAR(p)) Model,” Journal of Time Series Analysis, 
Vol. 12, No. 2, 1991, pp. 129-142.  
http://dx.doi.org/10.1111/j.1467-9892.1991.tb00073.x 

[16] M. Cincera, “Patents, R&D, and Technological Spillovers 
at the Firm Level: Some Evidence from Econometric 
Count Models for Panel Data,” Journal of Applied Eco- 
nometrics, Vol. 12, No. 3, 1997, pp. 265-280.  
http://dx.doi.org/10.1002/(SICI)1099-1255(199705)12:3<
265::AID-JAE439>3.0.CO;2-J 

[17] R. M. Salomon and J. M. Shaver, “Learning by Exporting: 
New Insights from Examining Firm Innovation,” Journal 
of Economics and Management Strategy, Vol. 14, No. 2, 
2005, pp. 431-460.  
http://dx.doi.org/10.1111/j.1530-9134.2005.00047.x 

[18] Y. Uchida and P. Cook, “Innovation and Market Structure 
in the Manufacturing Sector: An Application of Linear 
Feedback Models,” Oxford Bulletin of Economics and 
Statistics, Vol. 69, No. 4, 2007, pp. 557-580.  
http://dx.doi.org/10.1111/j.1468-0084.2007.00450.x 

[19] M. Abdelmoula and G. Bresson, “Spatial and Technolo- 
gical Spillovers in European Patenting Activities: A Dy- 
namic Count Panel Data Model,” Annales d’Économie et 
de Statistique, No. 87/88, 2008, pp. 167-194. 

[20] S. Gurmu and F. Pérez-Sebastián, “Patents, R&D and Lag 
Effects: Evidence from Flexible Methods for Count Panel 
Data on Manufacturing Firms,” Empirical Economics, 
Vol. 35, No. 3, 2008, pp. 507-526.  
http://dx.doi.org/10.1007/s00181-007-0176-8 

[21] A. Lucena, “The Organizational Designs of R&D Activi- 
ties and Their Performance Implications: Empirical Evi- 
dence for Spain,” Industry and Innovation, Vol. 18, No. 2, 
2011, pp. 151-176.  
http://dx.doi.org/10.1080/13662716.2011.541103 

[22] E. P. Gallié and D. Legros, “Firms’ Human Capital, R&D 
and Innovation: A Study on French Firms,” Empirical Eco- 
nomics, Vol. 43, No. 2, 2012, pp. 581-596.  
http://dx.doi.org/10.1007/s00181-011-0506-8 

[23] S. C. Ahn, “Three Essays on Share Contracts, Labor Sup- 
ply, and the Estimation of Models for Dynamic Panel Da- 
ta,” Unpublished Ph.D. Dissertation, Michigan State Uni- 
versity, East Lansing, 1990. 

[24] S. C. Ahn and P. Schmidt, “Efficient Estimation of Models 
for Dynamic Panel Data,” Journal of Econometrics, Vol. 
68, No. 1, 1995, pp. 5-27.  
http://dx.doi.org/10.1016/0304-4076(94)01641-C 

[25] D. Holtz-Eakin, W. Newey and H. S. Rosen, “Estimating 
Vector Autoregressions with Panel Data,” Econometrica, 
Vol. 56, No. 6, 1988, pp. 1371-1395.  
http://dx.doi.org/10.2307/1913103 

[26] M. Arellano and S. Bond, “Some Tests of Specification 
for Panel Data: Monte Carlo Evidence and an Application 
to Employment Equations,” Review of Economic Studies, 
Vol. 58, No. 2, 1991, pp. 277-297.  
http://dx.doi.org/10.2307/2297968 

[27] R. Winkelmann, “Econometric Analysis of Count Data, 
5th Edition,” Springer, Berlin, Heidelberg, 2008. 

[28] M. Arellano and O. Bover, “Another Look at the Instru- 
mental Variables Estimation of Error-Components Mod- 

Copyright © 2013 SciRes.                                                                                  OJS 

http://dx.doi.org/10.1080/07350015.1992.10509881
http://dx.doi.org/10.1017/S0266466600006125
http://dx.doi.org/10.2307/1911191
http://dx.doi.org/10.2307/2526504
http://dx.doi.org/10.2307/1912775
http://dx.doi.org/10.1002/(SICI)1099-1255(199705)12:3%3C243::AID-JAE444%3E3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1099-1255(199705)12:3%3C243::AID-JAE444%3E3.0.CO;2-4
http://dx.doi.org/10.1080/07350015.1997.10524690
http://dx.doi.org/10.1111/1467-937X.00097
http://dx.doi.org/10.2307/2235494
http://dx.doi.org/10.1111/j.1467-9892.1987.tb00438.x
http://dx.doi.org/10.2307/1427362
http://dx.doi.org/10.2307/3214650
http://dx.doi.org/10.1111/j.1467-9892.1991.tb00073.x
http://dx.doi.org/10.1002/(SICI)1099-1255(199705)12:3%3C265::AID-JAE439%3E3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1099-1255(199705)12:3%3C265::AID-JAE439%3E3.0.CO;2-J
http://dx.doi.org/10.1111/j.1530-9134.2005.00047.x
http://dx.doi.org/10.1111/j.1468-0084.2007.00450.x
http://dx.doi.org/10.1007/s00181-007-0176-8
http://dx.doi.org/10.1080/13662716.2011.541103
http://dx.doi.org/10.1007/s00181-011-0506-8
http://dx.doi.org/10.1016/0304-4076(94)01641-C
http://dx.doi.org/10.2307/1913103
http://dx.doi.org/10.2307/2297968


Y. KITAZAWA 

Copyright © 2013 SciRes.                                                                                  OJS 

331

els,” Journal of Econometrics, Vol. 68, No. 1, 1995, pp. 
29-51. http://dx.doi.org/10.1016/0304-4076(94)01642-D 

[29] R. Blundell and S. Bond, “Initial Conditions and Moment 
Restrictions in Dynamic Panel Data Models,” Journal of 
Econometrics, Vol. 87, No. 1, 1998, pp. 115-143.  
http://dx.doi.org/10.1016/S0304-4076(98)00009-8 

[30] F. Windmeijer, “Moment Conditions for Fixed Effects 
Count Data Models with Endogenous Regressors,” Eco- 
nomics Letters, Vol. 68, No. 1, 2000, pp. 21-24.  
http://dx.doi.org/10.1016/S0165-1765(00)00228-7 

[31] S. C. Ahn and P. Schmidt, “Efficient Estimation of Dy- 
namic Panel Data Models: Alternative Assumptions and 
Simplified Estimation,” Journal of Econometrics, Vol. 76, 
No. 1-2, 1997, pp. 309-321.  
http://dx.doi.org/10.1016/0304-4076(95)01793-3 

[32] V. Verdier, “Fixed Effects Estimation of Panel Data Mo- 
dels with Sequential Exogeneity,” Michigan State Univer- 
sity, Mimeo, 2013 (Paper Presented at the 2013 Econo- 
metric Society Australasian Meeting, University of Syd- 
ney, Australia).  
As of September 2013,  
http://econ.msu.edu/seminars/docs/FE_SequentialExogen
eity.pdf 

[33] F. Windmeijer, “ExpEnd, A Gauss Programme for Non- 
Linear GMM Estimation of Exponential Models with En- 
dogenous Regressors for Cross Section and Panel Data,” 
The Institute for Fiscal Studies, Department of Econom- 
ics, UCL, Cemmap Working Paper, 2002, CWP 14/02.  
As of September 2013,  

http://www.cemmap.ac.uk/wps/cwp0214.pdf 

[34] F. Windmeijer, “GMM for Panel Count Data Models,” In: 
L. Mátyás and P. Sevestre, Eds., The Econometrics of Pa- 
nel Data. Fundamentals and Recent Developments in 
Theory and Practice, 3rd Edition, Springer, Berlin, Hei- 
delberg, 2008, pp. 603-624.  
http://dx.doi.org/10.1007/978-3-540-75892-1_18 

[35] B. H. Hall and C. Cummins, “TSP 5.0 User’s Guide,” TSP 
International, 2006. 

[36] J. Bound, D. A. Jaeger and R. M. Baker, “Problems with 
Instrumental Variables Estimation when the Correlation 
between the Instruments and the Endogenous Explanatory 
Variable is Weak,” Journal of the American Statistical 
Association, Vol. 90, No. 430, 1995, pp. 443-450.  
http://dx.doi.org/10.1080/01621459.1995.10476536 

[37] D. Staiger and J. H. Stock, “Instrumental Variables Re- 
gression with Weak Instruments,” Econometrica, Vol. 65, 
No. 3, 1997, pp. 557-586.  
http://dx.doi.org/10.2307/2171753 

[38] Y. Kitazawa, “Exponential Regression of Dynamic Panel 
Data Models,” Economics Letters, Vol. 73, No. 1, 2001, 
pp. 7-13.  
http://dx.doi.org/10.1016/S0165-1765(01)00467-0 

[39] J. M. Wooldridge, “Distribution-Free Estimation of Some 
Nonlinear Panel Data Models,” Journal of Econometrics, 
Vol. 90, No. 1, 1999, pp. 77-97.  
http://dx.doi.org/10.1016/S0304-4076(98)00033-5 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                

http://dx.doi.org/10.1016/S0304-4076(98)00009-8
http://dx.doi.org/10.1016/S0165-1765(00)00228-7
http://dx.doi.org/10.1016/0304-4076(95)01793-3
http://dx.doi.org/10.1007/978-3-540-75892-1_18
http://dx.doi.org/10.1080/01621459.1995.10476536
http://dx.doi.org/10.2307/2171753
http://dx.doi.org/10.1016/S0165-1765(01)00467-0
http://dx.doi.org/10.1016/S0304-4076(98)00033-5


Y. KITAZAWA 332 

 
Appendix A 

First, Equations (2.2.5) dated  and t  give the fol- 
lowing relationships: 

1t 

1 , 1 1 , 1E Ei i t i i i ty u y         ,            (A.1) 

 1 , 1 1 , 1E Ei i t it it i i i ty u y          ,     (A.2) 

while Equations (2.2.6) dated  and  for 1t  t 1s t   
give the following relationships: 

2
, 1 , 1 , 1E Eis i t i is i t is i i tu u v             ,        (A.3) 

  2
, 1 , 1 , 1E Eis i t it it i is i t is i i tu u v              . (A.4) 

Accordingly, subtracting (A.1) from (A.2), subtracting 
(A.3) from (A.4), and then taking notice of (2.1.1), the 
moment conditions (2.2.8) are obtained. 

Second, Equations (2.2.6) dated  for t 1s t   and 
2s t   give the following relationships: 

    2
, 2 , 1 , 1 , 2E 1 Ei t i t i t it it i i tu u             ,  (A.5) 

  2
, 2 , 2E 1 Ei t it it i i tu u          .             (A.6) 

Accordingly, subtracting (A.6) from (A.5), the mo- 
ment conditions (2.2.9) are obtained. 

Third, Equations (2.2.7) dated  and  for 1t  t
1s t   give the following relationships: 

, 1 , 1E Eis i t is i i tx u x       ,               (A.7) 

 , 1 , 1E Eis i t it it is i i tx u x          .      (A.8) 

Accordingly, subtracting (A.7) from (A.8), the mo- 
ment conditions (2.2.10) are obtained. 

Appendix B 

First, Equation (2.3.2) dated  and Equation (2.2.6) 
dated  for 

1t 
t 1s t   give the following relationships: 

 2
, 1 , 1 , 1E Ei t i t i i tu y    

  2 2      ,         (B.1) 

  2 2
, 1 , 1 , 1E i t i t it it i i tu u          E  .     (B.2) 

Accordingly, subtracting (B.1) from (B.2) and then 
taking notice of (2.1.1) and (2.2.8), the moment condi- 
tions (2.3.3) are obtained. 

Next, Equation (2.3.2) dated  and Equation (2.2.6) 
dated  for 

t
t 1s t   give the following relationships: 

  2 2 2
, 1 , 1E Ei t it it it i i tu y   

        ,     (B.3) 

  2
, 1 , 1E 1 Ei t it it i i tu u          .          (B.4) 

Accordingly, subtracting (B.4) from (B.3), the mo- 
ment conditions (2.3.4) are obtained. 

Appendix C 

First, Equation (2.4.2) dated  and Equation (2.2.6) 
dated  for 

1t 
t 1s t   give the following relationships: 

     
 

2 2
, 1 , 1 , 1 , 1 , 1 , 1

2
, 1 , 1

E 1

E 1 ,

i t i t i t i t i t i t

i i t i t

u y u y u

  

     

 

    
   

 (C.1) 

  
 

, 1 , 1

2
, 1 , 1

E 1

E 1

i t i t it it

i i t i t

u u 

  

 

  .

  
   

                 (C.2) 

Accordingly, subtracting (C.1) from (C.2) and then 
taking notice of (2.1.1), (2.2.8) and the following mo- 
ment conditions based on the transformation proposed by 
[3]: 

    , 1 , 1E 1 1is it it i t i ty u u   
  0   , 

for 1, , 2;  3, , ,s t t T     which are also valid for 
the LFM with explanatory variables being predetermined 
(i.e. (2.1.1) and (2.1.2) with (2.1.3)), the moment condi- 
tions (2.4.3) are obtained. 

Next, equation (2.4.2) dated t and equation (2.2.6) dat- 
ed t for 1s t   give the following relationships: 

   
    

, 1

2 2

2
, 1

E 1

1

E ,

i t it it

it it it it it it

i i t

u y u y u

  



 





 
    

   

         (C.3) 

  2
, 1 , 1E 1 Ei t it it i i tu u         .        (C.4) 

Accordingly, subtracting (C.4) from (C.3), the mo- 
ment conditions (2.4.4) are obtained. 

Appendix D 

First, allowing for the assumptions on the stationarity (i.e. 
(2.5.1) and (2.5.2) with (2.5.3)), Equation (2.2.5) dated 

 and Equations (2.2.6) dated t  for t 2s t   and 
1s t   give the following relationships: 

      2
1E 1 1 1 Ei it it i iy u           ,   (D.1) 

   2
, 2E 1 Ei t it it i iu u           ,          (D.2) 

   2
, 1E 1 Ei t it it i iu u           .          (D.3) 

Accordingly, using (D.1) - (D.3) and (2.1.1), the mo- 
ment conditions (2.5.4) are obtained. 

Second, allowing for the assumptions on the stationar- 
ity and utilizing the property of the moment generating 
function, Equations (2.2.7) dated  for t 1s t   and 
s t  give the following relationships: 

   , 1E 1 E 0i t it it i ix u        ,      (D.4) 
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   E 1 E 0it it it i ix u        ,       (D.5) 

where    
0i i k

. Accordingly, subtracting 
(D.4) from (D.5), the moment conditions (2.5.5) are ob- 
tained. 

0 k k    

Third, allowing for the assumptions on the stationarity, 
Equation (2.3.2) dated  gives the following relation- 
ship: 

t

    2 2E 1 Eit it it i iu y          .      (D.6) 

Accordingly, using (D.1), (D.3), (D.6), (2.1.1) and 
(2.5.4), the moment conditions (2.5.6) are obtained. 

Fourth, allowing for the assumptions on the stationar- 
ity, Equation (2.4.2) dated  gives the following rela- 
tionship: 

t

       
 

2 2

2

E 1 1 1

E .

it it it it it it it

i i

u y u y u 

  

    
   

  (D.7) 

Accordingly, using (D.1), (D.3), (D.7), (2.1.1) and 
(2.5.4), the moment conditions (2.5.7) are obtained. 

Notes of Tables 

1) The setting of values of parameters in the DGP is as 
follows: 0.5;   0.5;   0.5;   0.1;   2

   
   2) The number of replications is 1000. 3) 

The instruments used for the GMM estimators are cur- 
tailed so that the past levels of dependent and explana- 
tory variables dated  and before (i.e. is  and is

0.5; 2 0.5.

3t  y x  
for ) are not used for the quasi-differencing 
transformation dated . The curtailment is conducted 
for the reason of circumventing the exacerbation of the 

small sample performance of the GMM estimator due to 
the excess usage of the weak instruments to be hereinaf- 
ter described. 4) The instruments sets for GMM estima- 
tors include no time dummies. 5) The initial consistent 
estimates used for the GMM estimation are obtained in 
same manner as [33]. 6) The symbols “Sargan” and “df” de- 
note the Monte Carlo mean of values of Sargan statistic 
for each GMM estimator and its degree of freedom, re- 
spectively. 7) As for the PSM estimators, the figures in 
the parentheses next to 

1,t , 3t 
t

  and   imply numbers of the 
pre-sample periods used for the estimations. 8) The rep- 
lications where no convergence is achieved in the esti- 
mations and/or where the estimates whose absolute val- 
ues exceed 10 (the latter of which fairly infrequently 
arise in using the Level and PSM estimators) are elimina- 
ted when calculating the values of the Monte Carlo sta-
tistics. Their rates are fairly small. 9) The values of the 
Monte Carlo bias and rmse exhibited in the tables are 
those obtained using the true values of   and   as 
the starting values in the optimization for each replica- 
tion. The values of these statistics obtained using the true 
values are not much different from those obtained using 
two different types of the starting values in almost all 
cases. 10) The individuals where the pre-sample means 
are zero are eliminated in each replication when estimat-
ing the parameters of interest using the PSM estimators. 
11) The Monte Carlo means of proportions of zeros for 
the count dependent variables are about 22% in Tables 1 
and 3 where the DGP is of the Poisson-type, while about 
32% in Table 2 and 4 where the DGP is of the Negbin 
I-type. 
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