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ABSTRACT 

In this work we apply the differential transformation method (Zhou’s method) or DTM for solving white-dwarfs equa- 
tion which Chandrasekhar [1] introduced in his study of the gravitational potential of these degenerate (white-dwarf) 
stars. DTM may be considered as alternative and efficient for finding the approximate solutions of the initial values 
problems. We prove superiority of this method by applying them on the some Lane-Emden type equation, in this case 

 3 222
0y y y C

x
     . The power series solution of the reduced equation transforms into an approximate implicit 

solution of the original equation. 
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1. Introduction 

Other classical nonlinear equation which has been the 
object of much study is called the white-dwarf equation. 
This equation has the form: 

 
3

2 2
2

0y y y C
x

                 (1) 

with  and subject to initial conditions: 0x 

   0 1, 0 0y y 



               (2) 

The Equation (1) is one of Lane-Emden types, where  

  
3

2 2f y y C  . In fact, it reduces to Lane-Emden  

equation with index  when . 3n  0C 
Let us consider a spherical cloud of gas (see Figure 1) 

and denote its hydrostatic pressure at a distance 1  from 
the centre by P. Let 

r
 1M r  be the mass of the spheres 

of radius 1,r   the gravitational potential of the gas, and 
g the acceleration of gravity. 

Then, we have the following equations: 

   1
12

1

GM r
g r

r
                 (3) 

where G is the gravitational constant. 
Thus, three conditions are assumed for the determina- 

tion of   and P: 

1d dP g r d                  (4) 

where ρ is the density of the gas. 

   2
1 1

1

2 4r r
r

G               (5) 

and 

P K                     (6) 

where γ and K are arbitrary constants. 
 

r1 R 

 
*Corresponding author. Figure 1. Spherical cloud of gas. 
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Solving (4) and (6) with 0   when 0   we have: 
1 1

1 1K                      (7) 

or 
nL                       (8) 

where 
1

1
n





 and nL K  . If this value of ρ is re-

placed into Equation (5), we obtain: 
2 2 n                        (9) 

where, . 2 4 LG  
This is the Lane-Emden equation. This is a second or- 

der ordinary differential equation for the density profile ϕ 
as a function of the radius 1 . We also have to determine 
initial conditions at 1 . Obviously, at the center the 
density has to be the central density, and hence 

r
0r 

1   at 

1 . Also, the derivative of the density has to vanish at 
the center, and therefore  at . 

0r 
0  1

Our goal is to find a function ϕ that satisfies the 
Lane-Emden Equation (9). In general, this has to be done 
numerically using the differential transformation method. 

0r 

The Zhou’s Method is a semi-numerical-analytic me- 
thod for solving ordinary and partial differential equa- 
tions. The concept of the DTM was first introduced by 
Zhou in 1986 [2]. Its main application therein is to solve 
both linear and non-linear initial value problems in elec- 
tric circuit analysis. This technique constructs an ana- 
lytical solution in the form of a polynomial. The Taylor 
series method is computationally expensive for large 
orders. The differential transformation method is an al- 
ternative procedure for obtaining analytic Taylor series 
solution of the differential equations. The series often 
coincides with the Taylor expansion of the true solution 
at point 0 , in the initial value case, although the 
series can be rapidly converged in a very small region. 

0x 

Many numerical methods were developed for this type 
of nonlinear ordinary differential equations, specifically 
on Lane-Emden type equations such as the Adomian 
Decomposition Method (ADM) [3,4], the Homotopy 
Perturbation Method (HPM) [5,6], the Homotopy Analy- 
sis Method (HAM) [7] and Bernstein Operational Matrix 
of Integration [8], in [9] Hojjati and Parand propose a 
class of second derivative multistep methods (SDMM) 
for solving some well-known classes of Lane-Emden 
type equations. Finally in [10] Batiha propose the varia- 
tional iteration method (VIM) for a class of Lane-Emden 
type equation, powerful method for the solution of linear 
and nonlinear equations. In this paper, we show superior- 
ity of the DTM by applying them on the some type Lane- 
Emden type equations (white-dwarfs). 

2. Differential Transformation Method 

Differential transformation method of function  y x  is 
defined as follows: 

   

0

d1

! d

k

k
x x

y x
Y k

k x


 
  

  
           (10) 

In (10),  y x  is the original function and  Y k  is 
the transformed function and the inverse differential 
transformation is defined as: 

   
0

k

k
y x Y k x





                (11) 

In real applications, function  y x  is expressed by a 
finite series and Equation (11) can be written as: 

   
0

n
k

k
y x Y k



  x              (12) 

Equation (12) implies that 

 
1

k

k n
Y k x



 
  

is negligibly small. Here, n is decided by the conver- 
gence of natural frequency in this study. 

The following theorems that can be deduced from 
Equations (10) and (11). 

Theorem 1.1. If 

      ,y x f x g x 
 

then      .Y k F k G k   

Theorem 1.2. If  

   1 ,y x f x  then     1 ,Y k F k

1  is a constant. 
Theorem 1.3. If 

   d
,

d

n

n

g x
y x

x
  then      

!
.

!

k n
Y k G k n

k


   

Theorem 1.4. If 

     y x g x h x , then       
1

1 1
0

.
k

k
Y k G k H k k



 

Theorem 1.5. If 

  ,ny x x  then ,    Y k k n 

where 

 
1,

0, .

k n
k n

k n



   

 

Theorem 1.6. (Cárdenas A). If    my x x f x  with 
,m  then: 

   
0,

, .

k m
Y k

F k m k m


   
 

Proof. We proof this theorem by induction method. 
We assume that is true for m, then we will prove that is 
true also for 1m  . Using DTM to a product we have: 

    1m my x x f x x x f x       
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then, 

     
1

1 1 2 1
0

k

k
Y k Y k Y k k



   

where  1y x x  and  Therefore,    2 .y x x f x m

     
1

1 2
0

1
k

k
Y k k Y k k



   1  

whenever the expression reduces to: 0,k 

   21 0 0Y   .

.

 

Now, if  then all terms of the sum are zero ex- 
cept $  obtaining: 

0,k 
11k 

   

     

1

0, 1
1

1 , 1

m

m

Y x f x k

k m
Y x f x k

F k m k

  
 

          m

 

Rearranging the expression we have: 

      
1

0, 1

1 , 1.
m k m

Y x f x k
F k m k m


         

 

  
The proofs of Theorems 1-5 are available in [1]. 

3. Numerical Solution for C = 0.3 

To illustrate the ability of the Zhou’s method for the 
Lane-Emden type equation (white-dwarf), the next prob- 
lem is provided for . The results reveal that this 
method is very effective. 

0.2C 

Problem. To solve  
3

2 22 0y y y C
x

      subject  

to  and . First, multiplying both 
sides by x we have: 

 0y 1  0 0y 

 
3

2 22xy y x y C     0            (13) 

Here, is easy to verify that the function 

   
3

2 2f y y C   

has a series expansion: 

     

 

2
23

2
3

3

3 3
3 1 1

2

9 3
1

3!

qf y q q y y
q

q y
q


    


  

       (14) 

where  Therefore, (13) takes the form: 2 1q   .C

   

 

2
23

2
3

3

3 3
2 3 1

2

9 3
1 0

3!

qxy y x q q y y
q

q y
q

       



   




Using in (15) the Theorems 3, 4 and 6 we have: 

         

 

1

3 4
2 1 2

1 1 2 1 1

1
2! 3!

k kY k k Y k k

Y k S S

 
 



1      

    
  (16) 

or 

    

    3 4
1 2 1 2

1
1

2 1

1 1
2! 3!

Y k
k k

k Y k S S   

 
 

         


  (17) 

where, 
2 2

3
1 3

3 3 9 3
3

2 3!

q qq q
q q

  
      

2 2

2 3

3 3 9 3
3 2 3

2 3!

q qq
q q

  
     

2 2

3 3

3 3 9 3
3

2 3!

q q
q q

  
    

and successively. Also, 

   
1

1

1 1
0

1
k

k
S Y k Y k k




  1

2k 

2 1k

1

               (18) 

     
2

2 1

1

2 1 2 1
0 0

) 1
kk

k k
S Y k Y k k Y k



 

      (19) 

   

   

3 2

3 2 1

1

3 1
0 0 0

3 2 31

k kk

k k k
S Y k Y k

Y k k Y k k



  

 

   

  
           (20) 

for all . 1k 
Now, from the initial conditions  0y   and 
 0 0y   we have: 

  0 1 and 1 0Y Y             (21) 

Substituting Equation (21) into Equation (17) and by 
recursive method, the results are listed as follows: 

For 1k   we have: 

  33
1 2

1 1
2

6 2!
.

6
Y q


         

 

For 2k   we have: 

      3
1 2 1

1
3 2 1 1

12 2!
Y Y


   

0S        
  

and then,  3 0Y  . 
1

   (15) 
For 3k   we have: 

      3
1 2 1

1
4 3 1 2

20 2!
Y Y


   S        

  
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and then, 

  41
4

4
.

0
Y q  

For  we have: 4k 

      3
1 2 1

1
5 4 1 3

30 2!
Y Y


         

S 

.

 

and then,   5 0Y 
5For  we have: k

      3
1 2 1

1
6 5 1 4

42 2!
Y Y


       

S 


 

and then, 

  7 55 14
6

5040
.

5040
Y q   q  

Therefore using (12), the closed form of the solution 
can be easily written as: 

   

       
     

   

   

0

0 2

4 5 6

3
42 42

7 5
62 2

0 1 2 3

4 5 6

1 1
1 1 1

6 40

5 14
1 1

5040 5040

n
k

k
y x Y k x

Y x Y x Y x Y x

Y x Y x Y x

C x C x

C C x





   

  

    

     
 









3



 

A series solution obtained by Chandrasekhar [2] using 
series expansion was: 

   

 

3 4 5
2 4 2

6
2 8

1 5
6 40 7!

339 280
3 9!

q q qy x x x q x

q q x

    

  




614
 

Table 1 shows the comparison of  y x  obtained by 
the DTM (method proposed in this work) and those ob- 
tained by Hojjati. The resulting graph of the white- 
dwarfs equation in comparison to the present method and 
those obtained by [5] is shown in Figure 2. 

4. Conclusion 

In this work, we presented the definition and handling of 
one-dimensional differential transformation method. Us- 
ing the differential transformation, differential equations 
can be transformed to algebraic equations and the result- 
ing algebraic equations are called iterative equations. 
This method has applied to solve some class of Lane- 
Emden type equations as a model for the study of the 
gravitational potential of these degenerate stars (white- 
dwarfs), which are nonlinear ordinary differential equa- 
tions on the semi-infinite domain (see [11]). The Figure  

Table 1. Comparison between Zhou’s method and SDMM. 

x DTM SDMM Error 

0.0 1.0000000000 1.0000000000 0.0000000000 

0.5 0.9812035800 0.912034800 0.0000001000 

1.0 0.9270041568 0.9270031568 0.0000010000 

1.5 0.8439248841 0.8439247581 0.0000001260 

2.0 0.7425430743 0.7425430235 0.0000000508 

2.5 0.6365969111 0.6365953025 0.0000016086 

3.0 0.5410635754 0.5410633690 0.0000002064 

3.5 0.4691977489 0.4691238259 0.0000739230 

 

0 0.5 1 1.5 2 2.5 3 3.5
0.4

0.5

0.6

0.7

0.8

0.9

1
Solution by DTM
Solution by SDMM

 

Figure 2. The numerical results  y x  obtained using DTM 

with C = 0.2. 
 
2 and table clearly show the high efficiency of DTM to 
solve nonlinear equations in comparison with other ana-
lytical methods equations (see [12,13]). 
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