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ABSTRACT 

Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large 
scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain. But such a kind of 
task is not easy to achieve only based on the analysis of partial differential equations, especially for those complex neu- 
ral models, e.g. Rose-Hindmarsh (RH) model. So in this paper, we develop a novel approach by combining fuzzy logi-
cal designing with Proximal Support Vector Machine Classifiers (PSVM) learning in the designing of large scale neural 
networks. Particularly, our approach can effectively simplify the designing process, which is crucial for both cognition 
science and neural science. At last, we conduct our approach on an artificial neural system with more than 108 neurons 
for haze-free task, and the experimental results show that texture features extracted by fuzzy logic can effectively in- 
crease the texture information entropy and improve the effect of haze-removing in some degree. 
 
Keywords: Artificial Brain Research; Brain-Like Computer; Fuzzy Logic; Neural Network; Machine Learning;  
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1. Introduction 

Driven by rapid ongoing advances in computer hardware, 
neuroscience and computer science, artificial brain re- 
search and development are blossoming [1]. The repre- 
sentative work is the Blue Brain Project, which has 
simulated about 1 million neurons in cortical columns 
and included considerable biological detail to reflect spa- 
tial structure, connectivity statistics and other neural 
properties [2]. The more recent work of a large-scale 
model for the functioning brain is reported in the famous 
journal Science, which is done by the group of Chris Eli- 
asmith’s group [3]. In order to bridge the gap between 
neural activity and biological function, Chris Eliasmith’s 
group presented a 2.5-million-neuron model of the brain 
(called “Spaun”) to exhibit many different behaviors. 
Among these large scale visual cortex simulations, the 
visual cortex simulations are most concerned. The two 
simulations aforementioned are all about the visual cor- 
tex. The number of neurons in cortex is enormous. Ac- 
cording to [4], the total number in area 17 of the visual 
cortex of one hemisphere is close to 160,000,000. For the 
total cortical thickness the numerical density of synapses 
is 276,000,000 per mm3 of tissue. It is almost impossible  

to design or analyze a neural network with more than 108 
neurons only based on partial differential equations. The 
nonlinear complexity of our brain prevents our progress 
from simulating useful and versatile functions of our 
cortex system. Many studies only deal with simple neural 
networks with simple functions, and the connection ma- 
trices should be simplified. The visual functions simu- 
lated by “Blue Brain Project” and “Spaun” are so simple 
that they are nothing in the traditional pattern recogni- 
tion. 

On the other hand, logic inference plays a very impor- 
tant role in our cognition. With the help of logical design, 
the things become simple, and this is the reason why 
computer science has made great progress. There are 
more than 108 transistors in a CPU today. Why don’t we 
use similar techniques to build complex neural networks? 
The answer is yes. As our brains work in the non Turing 
computable way, fuzzy logic rather than Boolean logic 
should be used. For this purpose, we introduce a new 
concept-fuzzy logical framework of a neural network. 
Fuzzy logic is not a new topic in science, but it is really 
very fundamental and useful. If the function of a dy- 
namical neural network can be described by fuzzy logical 
formulas, it can greatly help us to understand behavior of 
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this neural network and design it easily. 
For neural systems, the basic logic processing module 

to be used as a building module in the logic architectures 
of the neural network comes from OR/AND neuron [3,5], 
also referred by [6]. The ideal of hybrid design neural 
networks and fuzzy logical system is firstly proposed by 
[7]. While neural networks and fuzzy logic have added a 
new dimension to many engineering fields of study, their 
weaknesses have not been overlooked, in many applica- 
tions the training of a neural network requires a large 
amount of iterative calculations. Sometimes the network 
cannot adequately learn the desired function. Fuzzy sys- 
tems, on the other hand, are easy to understand because 
they mimic human thinking and acquire their knowledge 
from an expert who encodes his knowledge in a series of 
if/then rules [7]. 

Neural networks can work either in dynamical way or 
static way. The former can be described by partial dif- 
ferential equations and denoted as “dynamical neural 
networks”. Static points or stable states are very impor- 
tant for dynamical analysis of a neural network. Many 
artificial neural networks are just abstract of static points 
or stable states of dynamical neural networks, e.g. per- 
ception neural networks, such a kind of artificial neural 
networks work in a static way and are denoted as “static 
neural networks”. There is a natural relation between a 
static neural network and a fuzzy logical system, but for 
dynamical neural networks, we should extend the static 
fuzzy logic to dynamic fuzzy logic. A novel concept de- 
noted as “fuzzy logical framework” is defined for this 
purpose. 

At last, we give out an application of our hybrid de- 
signing approach for the visual task about image mat- 
ting-haze removing from a single input image. Image 
matting refers to the problem of softly extracting the 
foreground object from a single image. The system de- 
signed by our novel hybrid approach has a comparable 
ability with ordinary approach proposed by [8]. Texture 
information entropy (TIE) is introduced for roughly 
evaluating the effect of haze removing. Experiments 
show texture features extracted by fuzzy logic can effec- 
tively increase TIE. 

The main contributions of this paper include: 1) we 
develop a novel hybrid designing approach of neural 
networks based on fuzzy Logic and Proximal Support 
Vector Machine Classifiers (PSVM) learning in the arti- 
ficial brain designing, which greatly simplifies the de- 
signing of large scale artificial brain; 2) a novel concept 
about fuzzy logical framework of neural network is 
firstly proposed; 3) instead of the linear mapping in [8], a 
novel nonlinear neural fuzzy logical texture feature ex- 
tracting, which can effectively increase TIE, is intro- 
duced in the task of haze free application. The experi- 
ments show that our approach is effective. 

2. Hopfield Model 

There are many neuron models, e.g. Fitz Hugh (1961), 
Morris, Lecar (1981), Chay (1985) and Hindmarsh, Rose 
(1984) [9-11]. Whether the fuzzy logical approach can be 
used in all kinds of neural networks for different neuron 
models? In order to answer this question, we consider a 
simple neuron model- Hopfield model [12] (see Equation 
(1.1)) as a standard neuron model, which has a good 
character of fuzzy logic. We have proved that Hopfield 
model has universal meaning, such that almost all neural 
models described by first order differential equations can 
be simulated by them with arbitrary small error in an 
arbitrary finite time interval [13], these neural models 
include all the models summarized by H D I [14].  

 

;i i i ij j ik
j k

i i i

U a U w V w I

V S U T

    

 

k 
    (1.1) 

where sigmoid function  S  can be a piecewise linear 
function or logistic function. Hopfield neuron model has 
a notable biological characteristic and has been widely 
used in visual cortex simulation. One example of them is 
described in [7,10,15-17]), (see Equation (1.2)). Such 
cellos membrane potential is transferred to output by a 
sigmoid-like function. Only the amplitude of output pluses 
carries meaningful information. The rising or dropping 
time  t  of output pluses conveys no useful informa- 
tion and is always neglected. According to [15], the neu-
ral networks described by Equation (1.2) are based on 
biological data [18-23].  

In such kind neural networks, cells are arranged on a 
regular 2-dimensional array with image coordinates 

 ,i ii n m
i

 and divided into two categories: excitatory 
cells x   and inhibitory cells iy  . At every position 

 ,i ii n m , there are M  cells with subscript t  that 
are sensitive to a bar of the angle  . Equation (1.2) is 
the dynamical equation of these cells. Only excitatory 
cells receive inputs from the outputs of edge or bar 
detectors. The direction information of edges or bars is 
used for segmentation of the optical image.  
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(1.2) 

where  xg x  and  yg x  are sigmoid-like activation 
functions, and   is the local inhibition connection in 
the location , and ,i ji J     and ,i jW    are the synaptic 
connections between the excitatory cells and from the 
excitatory cells to inhibition cells, respectively. If we 
represent the excitatory cells and inhibitory cells with 
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same symbol i  and summarize all connections (local U
 , global exciting ,i jW    and global inhibiting ,i jJ    ) 
as ij , the Equation (1.2) can be simplified as Hopfield 
model Equation (1.1).  

w

1S

3. Fuzzy Logical Framework of Neural 
Network 

Same fuzzy logical function can have several equivalent 
formats; these formats can be viewed as the structure of a 
fuzzy function. When we discuss the relationship be- 
tween the fuzzy logic and neural network, we should not 
only probe the input-output relationship but also their 
corresponding structure. Section 3.1 discusses this prob- 
lem. Section 3.2 discusses the problem about what is the 
suitable fuzzy operator, and in Section 3.3, we prove 
three theorems about the relationship between the fuzzy 
logic and neural network. 

3.1. The Structure of a Fuzzy Logical Function 
and Neural Network Framework 

In order to easily map a fuzzy formula to a dynamical 
neural network, we should define the concept about the 
structure of a fuzzy logical function.  

Definition 1. [The structure of a fuzzy logical function] 
If  is a set of fuzzy logical functions(FLF), and a 
FLF  1 2, , , nf x x x  can be represented by the 
combination of all FLFs in  with fuzzy operators 
“ ” and “ ”, but with no parentheses, then the FLFs in 

 is denoted as the 1

1S

1S st  layer sub fuzzy logical 

functions (1st  FLF) of  1 2, , , nf x x x ; similarly, if a 
variable  in a FLF in  is not just a variable, i.e. 
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 1 2, , , nf x x x  has a recurrent structure, then it 
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for output is
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 t

tion (1.3), and the
 and 1

t   2, , , nf x x x  
changed to 

 is linearly
 1 2, , ,t t

nf x x x   then  1 2, , , nf x x x  
can create a time serial output and can be written in 
pa fferential fortial di rm as Equation (1.4). 
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The definition 2 is the measure ab he diout t fference 
between a fuzzy logical function and a neural network.  

Definition 2. [Difference error between a fuzzy logical 
function and a neural network] If  X t


 is input, and the 

region of input  X t


 is D . T difference error 

network 

he 

between a fuzzy logical function  and a neural G
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

F  
l

is the fixed point of F. 
a n  approximately Usual eural model can onl

simulat zzy operator, so it is ne
y, y

e a fu cessary to find the 
most similar fuzzy function for a neural network, which 
is denoted as the fuzzy logical framework of a neural 
network, the definition 3 gives out the concept of the 
fuzzy logical framework. 

Definition 3. [The fuzzy logical framework] Suppose  
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Figure 1.  nf x x x1 2, , ,  may have several equivalent 

formats, so the structure of  nf x x x1 2, , ,  is not unique. 
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in
m ng

F  to th  layer cal functions 
in a G ’s structure, such kind fuzzy logical framework is 
denoted as structure keeping fuzzy logical framework.  

3.2. The Suitable Fuzzy Operator 

e all s sub  logifuzzy

After the theory of fuzzy logic was co
many fuzzy logical systems have bee

nceived by [24], 
n presented, for 

example, the Zadeh system, the probability system, the 
algebraic system, and Bounded operator system, etc. 
According to universal approximation theorem [25], it is 
not difficult to prove that q-value weighted fuzzy logical 
functions (5) can precisely simulate Hopfield neural 
networks with arbitrary small error, or vice versa, i.e. 
every layered Hopfield neural network has a fuzzy logi- 
cal framework of the q-value weighted bounded operator 
with arbitrary small error. This means that if the sigmoid 
function used by Hopfield neurons is a piecewise linear 
function, such kind fuzzy logical framework is structure 
keeping. Unfortunately, if the sigmoid function is logistic 
function, such kind fuzzy logical framework is usually 
not structure keeping. Only in an approximate case(see 
Appendix A), a layered Hopfield neural network may 
have a structure keeping fuzzy logical framework.  
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ator. The fuzzy formulas defined by q-value weighted 
bounded operators is denoted as q-value weighted fuzzy 
logical functions. 
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But for the q-value weighted bounded operator 
 ,f fF  

ho
, the distribution condition is usually not 

equal to 1, f
ld, and the boundary condition is hold only all weights 

or  
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Three Important Theorems about the 
Relationship between the Fuzzy Logic and 

H D n 
mod include [9,11,26-35] and inte- 

3.3. 

Neural Network 

 I [14] studied the synchronization of 13 neuro
els. These models 

grate-and-fire model [36] [see Equation (1.14), the rest 
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11 neuron models are all the special cases of the 
generalized model described by the ordinary differential 
Equation (1.16). 

   2 2 2 .i ai i ai

ai i ji j
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, the 
Van-der-Pol generator [28] model can be d to 
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(1.16); for the integrate-and-fire model, if we use logistic  

function 
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form of the Equation (1.16). So the Equation (1.16) can 

2

n

be viewed as a general representation of almost all 
neuron models, if we can prove the Equation (1.16) can 
be simulated by a neural network based on the Hopfield 
neuron model [see Equation (1.1)], then almost all 
neuron models can be simulated in the same way.  

 1 1 1 1 1 1 2 1, , , n

 

 

2 2 2 2 2 1 2

1 2

, , ,

, , ,

n

n n n n n n

x a x w f x x x u

x a x w f x x x u

x a x w f x x x u

   


    

 


 

 

    

 

  (1.16) 

where every  1 2, , , ,1i nf x x x i n 
rtial differential  in the fin

, has the 
continuous pa ite hypercubic 
domain      1 1 2 2, , nb a b a  

   , , , : 0nx t x t t T . 
 (1.17) is the fixed point 

,b

 t
of

nD a  of its 
trajectory space 

  1 2TR x
The Equation

th i

 
 a Hopfield 

neural circuit which only has one cell wi nput kI .  

  , 1 exp 1i ik k i i i i
k

U w I a V U T       (1.17)  

At the fixed point, every neuron works just lik
ron in a perception neural network. Theorem 1 tries to 

sh

e a neu- 

ow the condition of Equation (1.17) to simulate dis-
junctive normal form (DNF) formula. The fixed point of 
Equation (1.17) can easily simulate binary logical opera-
tors; on the other hand, a layered neural network can be 
simulated by a q-value weighted fuzzy logical function. 

Theorem 1 Suppose in Equation (1.17), 1ia  , and 
every , 0, 0,1ik k i k iw T T k K      , for more,  

 1, ,iS i L    is a class of index sets, every 
index ,
C

set iS  is a s
 and 

ubset of  1,2,3, K , then we

1. If 

 
have: 

 1 2
1, ,

, , ,
i

l l

jk
l L j S

xf x x x
 

 
    
 

  is a d

no form (DNF)  fo rmula ,  

isjunctive  

rma l  and  the  c l as s 
 1, ,iC S i L    is the class which has the following 

two characters: (1). for every ,i jS S C , i j kS S S C   
jfor all  and k i   (this condition assures that 

 1 2, , , kf x x x  has a simple  
the character 

l

j
S

st form); (2). every iS  has  
1 

j
 , where iS C , and any index 

sets S C  have character 1j  , or if 1j 
j S  j S 

 ,  

there must be an index set  such that 

i

iS C
iS SS    (this condition a  is the larg , ssures est)

xed point of the neural  described by 
 formu

 C
 cellthen the fi

Equation (1.17) can simulate the DNF la 

 1 2
1, ,

, , ,
i

l

jk
l L i S

xf x x x
 

 
    
 

  

i ix zwith arbitrary small error, where , if the corres- 
ponding input i iI z , or i ix z  if 1i iI z 

on (1
.  

2. If a ne  described by .17) can ural cell  Equati
simulate the Boolean formula 2 , , k 1,f x x x  with  

arbitrary small error, and 
l

i
i S

x

 
 

 is an item in the 
 

disjunctive normal form of  1 2, , , kf x x x , i.e. 

 , , , 1f x x x1 2 k   at x r all j S1j   fo l  and 

0jx   for all lj S , then i
i S





dex  and 
2l

S  ound 

1.  
l



3. If a couple of in sets can be f

in the formula 

1l
S

 1 2, , , k t
S1, , ,l k lt

f x x x  x 
  

  , such that  

1
1 21l l

t
t S t S

x x
 
   

  
xed point 

2
2

et iz
   

  


falsiz , th he fi  

of the neural cell described by Equation (1.17) can’t 
simulate the formula 

en t

 1 2, , , kf x x x . 
Proof 
1. If 1tI  , for all lt S , and 0tI  , for all lt S , 

because 1i 
li S

 , th  see ind   ex t lS  is a subseten for th
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of  1,2,3, , K , we have 

  

1

1 exp 1iU T    

1 1

1 exp 1 1 ,
l

i i

ik k i
k K

i i
i S

V

w I T

T 

 



 
     

   
   

           





 

so 

exp 
 
  

 1 2lim 1 , , ,i kV f x x x


   . If 1,tI t S    ; 
0,tI t S   

condition of th
 and , then acc e 
is th

S C
eorem: if  

ording to th

1i
i S




 ,  1 2, , kx x




if 1i  , then there is an i

lim 0 ,iV f x


  ;  

ndex set  such that  

, then
i S 

iS C

i iS S S    1 2lim 1 , , ,iV f x x x


   k . S hen o w
   static error defined by Equat 6) trends to 
0 .  

, the ion (1.

2. If the point of the neural cell de
Eqauti

 fixed scribed by 
on (1.17) can simulate the Boolean formula 

 1 2, , , kf x which is not a constant with arbitrary x x  
small error, and for a definite binary input 1 2, , , kx x x , 
then the arbitrary small error is achieved when   trends  

to infinite and   0
l

i i ik k i
k S

U T w I T


     where lS  is  

the set of the labels and 1iI  , for all li S , and 
0iI  , for all ition supp ses 

that every w T K
li S

ik

. The ’s cond otheorem
, 0, i 0,1k i k T k      , and 

1 2, , , kx x x  are binary n r 0 or so if 
2 , , k

umbe 1, 
 1,f x x x s not a constant, when 
 1 2, , , kf x x x



 i
0 , ther  lime must be 0iV  ; and 

when 2 , , 1kx x  , it is necessary for lim 1iV


 1f x ,  . 

at 
l

i i i
i S

T T 


 
  

 
  trends to minus 

 

lim 0iV




infinite and

 needs th

 lim 1iV


  
l

i i i
i S

T T
 
  

trends to plus infinite. So , , kx

needs that 

if 1,f x

  


 2 1x   at 

1jx   for all lj S  and 0jx   for all lj S  , in 

order to guarantee 


e hol

  is the static error 
ween the neural cell 

 

, k k ix

1 must b d, here  

  1 2 ,1 ,2 ,, ,lim , , , , 0,i i if x xerr w w w T


  

l

i
i S






  1 2 ,1 ,2 ,, , , , , , ,
k i i i k if x x xerr w w w T 

defined by Equation (1.6) bet
described d by Equation (1.17) an  1 2, , , kf x x x

 is based on the si
.  

mple 
fact that for a single neuron 

3. The third part of the theorem

i is monotone on every 
input i

V  
I  which can be iz  or 1 iz . 

An example of above theorem e  is that th xor  
fu

e e d by quation (1.1) has a 
la he

nction can’t be simulated by the neuron described by 

Equation (1.17). 
If th neural network d scribe  E

yered structure, the fixed point of a neuron at t  
non-input layer l  is 

 
, , , 1,

, ,

l i l i k l i i
k

l i l i

U w V a

V S U T



 


        (1.18) 

Equation (1.18) is just a perception neural network, so 
a perception neural network can be view
of static points or stable states of a real
described by Equation (1.18). 

red neural network can be 
si

ed as an abstract 
 neural network 

Theorem 2 shows the fact that a continuous function 
can be simulated by a layered Hopfield neural network 
just like a multi layered perception neural network with 
arbitrary small error, and a laye

mulated by a q-value weighted fuzzy logical function. 
Theorem 2 is directly from the universal approximation 
theorem [25,37]’s proof. 

Theorem 2 If  1, , mf x x  is a continuous mapping 
from  0,1

m
 to  0,1

p
, for any 0 , we can build a 

layered neural network   defined by Equation (1.18), 
and its fixed point can be viewed ontinuous map  as a c
      1 1, , , , ,m q m1 1, , ,mF x x F F x x   from  

 0,1
m

1
x x 

 to 0,  p
, such that  

   1 1, , , ,m mF x x f x x    , here 1 2, , , mx x x  are 
k  inputs of the neural network. For more, for an 

ned by
on ( which has 

arbitr
Equa

ary layer
ti 1

ed neur
) 

al netwo
a

rk 
 fixe

  defi
d point func

 
tion .17

 , , m1F x x , we can find a q-value fuzzy ction  logical fun
      1 1 1 1, , , , , , , ,m m q mF x x F x x m F x x      of  

weighted Bounded operator , such that  

   1 1, , , , .m mx x F x xF     

nt neu
networks described by the Equation (1.1

Theorem 3 tries to prove that all kind recurre ral 
6) can be simu-

lated by Hopfield neural networks described by Equation 
(1.1). The ordinary differential Equation (1.16) has a 
strong ability to describe neural phenomena. The neural 
network described by Equation (1.16) can have feedback. 
For the sake of the existence of feedback of a recurrent 
neural network, chaos will occur in such a neural net-
work. As we known, the important characteristics of 
chaotic dynamics, i.e., aperiodic dynamics in determinis-
tic systems are the apparent irregularity of time traces 
and the divergence of the trajectories over time (starting 
from two nearby initial conditions). Any small error in 
the calculation of a chaotic deterministic system will 
cause unpredictable divergence of the trajectories over 
time, i.e. such kind neural networks may behave very 
differently under different precise calculations. So any 
small difference between two approximations of a tra-
jectory of a chaotic recurrent neural network may create 
two totally different approximate results of this trajectory. 
Fortunately, all animals have only limited life and the 
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domain of trajectories of their neural network are also 
finite, so for most neuron models, the Lipschitz condition 
is hold in a real neural system, and in this case, the simu-
lation is possible. 

Theorem 3 If  0, , 0T T   , is an arbitrary finite 
time interval, and the partial differential  for all 
 1 2, , ,i nf x x x  and jx  in Equation (1.16),  

, 1, 2, ,i j n   are continuous in th
pace then every 

rk 

e finite domain

 (1

 D  
of

Hopfield neural 
the time interv

 its trajectory s neural network NC  
described by Equation (1.16) can be simulated by a 

netwo described by Equation
al ][0,T  and the finite domain D  w  

an arbitrary small error 0

.1) in 
ith

  .  
Proof The detail is showed in [13].  
Neural networks described by Equation (1.16) can in-

clude almost all l models found nowada . [13] 
uses 1251 neurons Hopf eura

neura ys
ield n l network to simulate

R g to Theorem 3. 
R

e of pages, in this paper only layered neural 
 

,
nu g fuzzy logical frameworks

log

al 
ts w

eters are time coefficients 
w

to the logical relation 
ab

ons; (2) 
A

 a 
ose-Hindmarsh (RH) neuron accordin
ose-Hindmarsh (RH) neuron is much more complicate 

than Hopfield neurons. To simulate a complicate neuron 
by simple neurons is not a difficult task, but the reverse 
task is almost impossible to complete, i.e., it is almost 
impossible to simulate a Hopfield neuron by a set of RH 
neurons.  

4. Hybrid Designing Based on the Fuzzy 
Logic and PSVM 

For the sak
networks are discussed. For a layered neural network
if the number of neurons at every layer is fixed

mber of structure keepin

N , 
 the 

 of 
N  is fixed, so the number of the fuzzy logical frame- 
works of a neural network is also fixed. When the coeffi- 
cients of N  are continuously changed, the neural net- 
work N  is shifted from one structure keeping fuzzy 

ical framework to another. 
There are two different parameters in a dynamical lay- 

ered neur network. The first kind parameters are 
weigh hich represent the connection topology of neu- 
ral network. The second param

hich control the time of spikes. 
Time coefficients should be decided according to the 

dynamical behavior of the whole neural network. 
There are two ways to design weights of a layered 

neural network: (1) according 
out this neural network, we can design the weights 

based on the q-value weighted fuzzy logical functi
ccording to the input and output relation function 
 1 2 3, , , ,i nf x x x x , we use machine learning  

approaches ,e.g. Back Propagation method, to learn 
weights for  1 2 3, , , ,i nf x x x x . In order to speed up the 
learning process, for a layered neural network, we 

esigning with PSVM [15], 
called as “Logical support vector machine (LPSVM)”. 

LPSVM a

 Step 1: Except for the last output layer’s weights, 
designing the layers’ weights according to the logical 
relations;  
Step 2: If X  is the input train set, computing the last 

combine logical d which is 

lgorithm: 

 
inner layers’ output  F X  based on X ;  

 Step 3: Using PSVM to compute the output layer’s 
weights according to the target set ;  

e input 

e output 

zation 

is ic, we 
ca  similar to design binary digit 

boundary detection by 
co

reground object 
 image matting 

Y
 Step 4: Back propagate the error to the inner layers by 

the gradient-based learning and modify th
layers’ weights. 

 Step 5: Repeat the step 2 to step 4, until th
error is small enough. 

5. Hybrid Design of Columnar Organi
of a Neural Network Based on Fuzzy 
Logic and PSVM 

In the neural science, the design of nonlinear dynamic 
neural networks to model bioneural experimental results 

an intricate task. But with the help of fuzzy log
n design neural models

networks. In our Hybrid designing approach(LPSVM), 
we firstly design neural networks with the help of fuzzy 
logic, and then we use PSVM to accomplish the learning 
for some concrete visual tasks. 

Although there are already many neural model to 
simulate the functions of the primary visual cortex, they 
only focus on very limited function. Early works only try 
to address the problem of 

mbining ideas and approaches from biological and 
computational vision [39-41], and the most recent works 
[1,3] are only for very simple pattern recognition tasks. 
In this experiment, we try to hybrid design a model of a 
columnar organization in the primary visual cortex which 
can separate haze from its background.  

5.1. The Theory of Image Matting 

According to Levin A et al. (2008), image matting refers 
to the problem of softly extracting the fo
from a single input image. Formally,
methods take I  as an input, which is assumed to be a 
composite of a foreground image F  and a background 
B  in a linear form and can be written as  

 1I F B    . Closed form solution assumes that 
  is a linear nction of the input image fu I  in a small 
window w : ,i iaI b i w     . T n to solve a spare 

ear system to get the alpha matte. Our
gets rid of the linear assumption 

ween 

he
lin

bet

 neural fuzzy 
logical appro  ach

  and I . Instead, we try to introduce 
nonlinear la re  btion etween   and I :  

 wi IF W             (1.19) 

here 
wIW  is the image block included in the small win- 

dow w . We take color or t ture in ocal ex l window as our 
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input feature, and the trimap image 
map” means three kinds of regions, white denotes defi- 

fore
d 

e primary visual cortex are still un- 
tood. 
rma- 

tion  primary visual cortex 

nt areas of

 

as the target. “Trip- 

nite ground region, black denotes definite back- 
groun region and gray denotes undefined region. After 
training, the neural fuzzy logical network will generate 
the result of alpha matte. In the application of alpha mat- 
ting, our method can remove the haze using dark channel 
prior as the trimap.  

5.2. Neural System for Haze-Free Task with 
Columnar Organization 

Many functions of th
known, but the columnar organization is well unders
The lateral geniculate nucleus (LGN) transfers info

from eyes to brain stem and
(V1) [42]. Columnar organization of V1 plays an impor- 
tant role in the processing of visual information. V1 is 
composed of a grid  21 1 mm  of hypercolumns (hc). 
Every hypercolumn contains a set of minicolumns (mc). 
Each hypercolumn analyzes information from one small 
region of the retina. Adjacent hypercolumns analyze in- 
formation from adjace  the retina. The recogni- 
tion of our hypercolumns’ system (see Figure 2) is 
started with the recognition orientation or simple struc- 
ture of local patterns, then the trimap image is computed 
based on these local patterns. The hypercolumns is de- 
signed by LPSVM, the weights of 1st and 2nd layers are 
designed by fuzzy logic, and the weights of the 3rd layer 
are designed by PSVM to learn the trimap image. 

5.2.1. The 1st Layer 
Every minicolumn (Figure 3) in the 1st layer tries to 
change a 3 3  pixels’ image block into a binary 3 3  

alized. 
cus a 

The

pixels’ tex attern. The input image is norm
Hopfield neurons to fo

ture p

there

This process needs 3 3  
3 3  small window, every neuron focuses only one 
pixel, and  are two kinds of fuzzy processing.  
1st  processing directly transforms every pixel’s value to 
a fuzzy logical one b sigmoid function, and the 2nd 

ssing is also completed by a sigmoid function, the 
difference is that every boundary pixel’s value subtracts 

h the center pixel’s value before sending it to a sig-
moid function. Such processing emphasizes the contrast 
of texture, and our experiments support this fact. These 
two processing scan be viewed as some kind preprocess-
ing of input image. Every neuron in a 1st layer’s mini-
column has only one input weight ijw  in Figure 3, 
which equals 1; when 

y a 
proce

wit

   , the coefficient   in 
Equation (1.17) changes the outputs from fuzzy values to 
binary numbers(see Figure 4). 

5.2.2. The 2nd Layer 
Every minicolumn in the 2nd layer works in the way 

described by Hopfield neuron equation as Equation (1.18) 
or Equation (1.17) and can be viewed as a hypercolumn 

columns, which focuses on same of the 1st layer mini
small 3 3  window, and has some ability to recognize a 
definite shape (see Figure 5). If there are total q  local 
small patterns, a hypercolumn in the 2nd layer contains 
q  (in our system 256q   or 512) minicolumns of the 
2nd lay hich have same receptive field, and try to 
recognize q  local small patterns from q  minic lumns 
of the 1st layer. For a m n

er, w
o

  image, if adjacent windows 
e overlapped, thenar     2n2m     hypercolumns are 

needed. In the plane of    2 2m n    hypercolumns, 
similar 2nd inicolumns’ outputs create  small images 
sized 

m q
   2 2m n    defined as “minicolumn- 

images”; if an image 6 , then 254 254
 and

size is 256 25   
hypercolumns are used fo  or G or B. 

The input of every 2nd-layer minicolu n comes from 
the ou yer’s minicolumn and has three 
different ways:   

1. In a local image pattern recognition way(LIPW):

r every color R
m

tput of a la

 
ev

m a 1st–layer’s minicolumn which 
fo

st1 -

ery 2nd layer hypercolumn contains 512 2nd–layer’s 
minicolumns, and inputs of these 2nd–layer’s mini- 
columns come fro

cuses on a 3 3  small window and applies the first 
kind processing. Every 2nd–layer’s minicolumn tries to 
classify the image block in this window into 512 binary 
texture patterns(BTP), e.g. eight important BTPs are 
shown in Figu . The pixel value is “1” for white and 
“0” for black. In this mode, 3 3  Hopfield neurons of 
the st1  layer output a 3 3

re 6

  vector, i.e., a 3 3  fuzzy 
logical pattern of a BTP, which is computed by a 
Sigmoid function. When the coefficient   in Equation 
(1.17) is large enough, after en h cycles, the output of 
the n ral model in Figu  changes a gray pattern to a 
binary pattern of LIPW. 

2. In a local Binary Pattern operator simulating way 
(LBPW). Every 2nd–layer’s hypercolumn in LBPW is 
similar to a 2nd–layer’s hypercolumn in above LIPW, 
except that its focused 1st

oug
eu re 3

–layer’s minicolumns apply the 
second kind processing. A 2nd–layer’s hypercolumn 
contains 256 2nd–layer’s minicolumns which can be 
labeled by  ,C CLBP x y  in Equation (1.20). [43] 
introduced the Local Binary Pattern operator in 1996 as a 
mean of summarizing local gray-level structure. The 
operator takes a local neighborhood around each pixel, 
thresholds the neighborhood at the value of 
the central pixel and uses the resulting binary-valued 
image patch as a local image descriptor. It was originally 
defined for neighborhoods, giving 8 bit codes based on 
the 8 pixels around the central one. Formally, the LBP 
operator takes the form:  

   
7

, 2n
C C n CLBP x y S i i      (1.20) 

 pixels of the 

0n
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Figure 2. A 4 layers’ structure of a columnar organization of V1 for haze-background separation. 
 
where in this case runs over the 8 neighbors of the 

xe
ngle color ed 

n  

e R
central pi
si

l c , ,c ki  and ,n ki  in Equation (1.20) are 
valu  1k   or Gree  2k   or 

Blue  3k   at  and , and  is a sigm id 
 0 otherwise. 

In th st mn outputs a  

c

, a 1

n

 layer’s min

 S u

icolu

o
function or step function, i.e. 1 if 0u   and

is mode
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Figure 3. Every 1st layer minicolumn tries to change local 
images into binary texture patterns, for a 3 3  small 
window, a minicolumn in the 1st layer co eld 
neurons, and every neuron focuses only one pixel. 
 

ntains 9 Hopfi

 

Figure 4. When the coefficient λ in Equation (1.17) is large 
enough, after enough cycles, the output of the neural model 
in Figure 3 changes a gray pattern to a binary pattern of 
LIPW. 
 

 

Figure 5. A hypercolumn in the 2nd layer contains  mini- 
columns which have same receptive field and try to 
recognize 

 q

q  definite small shapes. A “and” ne on is 
needed for ry 2nd layer minicolumn. 
 

ur
eve

 

Figure 6. Every the 2nd layer’s minicolumn contains 256 or 
512 minicolumn which corresponds to 256 or 512 modules 
in above picture. 
 
24-dimensional vector  , ,R G BO V V V , here  

 ,     1, , 2, , 8, ,, , ,k k C k k C k k C kV S i i S i i S i i     

, ,k R G B  

and  , , , 1, ,8l k C kS i i l    
layer’s minicolumns.  

are the outputs from the 1st 

he center pixel’s value is also sent 
 layer’s minicol ery 2nd 

ntains 512 2 ini- 
columns,  

In our system, a hypercolumn in he 2nd -layer contains 
512 2nd layer’s minicolumns for L PW and LBIPW way, 

6 2nd layer’s minicolu
percolumn in the 2nd layer has a 

3. Hybrid LIPW and LBPW (LBIPW). In this 
approach, the boundary pixels’ value are substracted by 
the center pixel’s value in a 3 3  small window similar 

 LBPW, except that tto
to the input of every 2nd umn. So ev
layer hypercolumn also co nd–layer’s m

 t
I

or 25 mns for LBPW way for every 
color R,G or B. So a hy
512 3  dimensions output or 256 3  dimensions 
output. To recognize above two patterns is simple, a 
Hopfield neuron defined by E ion (1.17) is enough to 
recognize a 3 3

quat
  image. For example, the “ ” shape in 

Figure 5 can be described by a fuzzy logical formula 
(Equation (1.21)). The “and” operator for 9 inputs in 
Equation (1.21) can be created by c (see .  a neuron m
Figure 5). In Equation (1.21), every pixel ijP  has two 
states7 ijm  and ijm . Suppose the unified gray value of 

ijP  is ijg , and an image module needs a high value ijg  
at the place of ijm  and a low value at ijm . So the input 

neuron mc at ijm  is ij ijI  d at for the g , an ijm  is 
 = 1.0ij ijI g  . A not gate mc  is needed for 
 = 1.0ij ijI g   . 

11 12 13 21 23 31 33 22 32P m m m m m m m m m          

(1.21) 
In order to recognize a binary pattern, an “and” neuron 

with index i  is needed (see Figure 5) for every 2nd- 
layer mi column, and the weights of this “and” neuron 
to the 1 -layer minicolumns are set as Equation (1.22), 
the corresponding threshold 5.1T  , the parameter 

0.9

ni
st

i

   and th  coefficient of a  quation (1.17) is e
set to 1. 

in E

1, if the th bit of a binary pattern 1

1, if the th bit of a binary pattern 0ij

j
w

j


  

 (1.2  

where for LIPW and LBIPW, 
LB

2)

1,2,3, ,9j   ; for 
PW,the center 1st-layer minicolumn is useless, so 
1,2,3, ,j 8  . 

5.2.3. The 3rd Layer 
The output of a hypercolumn in  layer, which has  the 2nd

3 256  or 3 512  dimensions is transformed to the 
3rd-layer 

, 
m ns to compute the inicolum i  in Equation 
 ps arget is provided so calle

channel prior which is computed by the a
mentioned in [8]. As the small windows focused by 

rlapped, the fo

(1.19) by vm, the t  by d dark 
pproach 

hypercolumns in the 2nd-layer are ove cuses 
of 3rd–layer’s minicolumns are also overlapped. 
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5.2.4. The 4th  
There are two kinds minicolumns in this layer. At first, 

yer minicolumn, which is just a 

matte im from t
co

  (1.23) 

Layer

every 1st kind 4th-la
Hopfield neuron, computes a pixel value of the alpha 

age he overlapped output of minicolumns 
in the 3rd layer, then the 2nd kind mini lumn tries to 
remove the haze from original image. A 2nd kind 
minicolumn in the 4th layer computes a pixel of a haze 
free image according to the Equation (1.23)  

   i i f iI x J x A 

  iF J     , , , 1x A x x 

       min , 1

f i i i

i i i iq x J x x A    

where q  is max gray or RGB value of a pixel, and 
where iJ  is the haze free image, iI  is the original 
image, iA  is the global atmospheric light which can be 
estimated from dark channel prior, i  is the alpha matte 
generated by 3rd layer. We can use back propagation 
approach to compute pixels’ value  iJ x  given the 
haze image pixel value  iI x

uation (1
. Fo of simplicity, 

we di  use the Eq .2 b
compute the haze free image. 

r th
4) m

e sak
ent

e 
ioned rectly y [8] to 

   
  0max ,i i

i

i iI x A
J x A


   b   (1.24) 

x 

where iJ  is the haze free image, iI  is the original 
image, iA  is the global atmospheric light which can be 
estimated from dark channel prior, i  is the alpha matte 
generated by 3rd layer, and 0  is a threshold, a typical 
value is 1. In order to compute Equation (1.24). 

5.3. Experiments Result 

1. Experiment about the ability of a 2nd–layer’s 
minicolumn  

This experiment is about the ability of a 2 -layer’s 
m
e

nd

minicolu n to recognize a local pattern in the way of 
LIPW. H re the input color image is transformed to gray 
image by Equation (1.25). 

 gray 1.0 256wr r w g wb b        (1.25) 

The minicolumn is running in the iterative mo

g 

de. 
 in Equation (1.1) is to 
 cell from logical “or” to 

 in Figure 6 2  
icolu tries to ize a ve
se tw columns  recogniz

The effect of threshold 
control the function of a neu

iT
ral

“and”. L  in Figure 7(a) is a horizontal line with a one 
pixel width. 

Figures 7(b) and (c) show the outputs of 2 mini- 
columns after repeating 3 steps. The models 0m  and 

1m  have 3 3  pixels. The 1st minicolumn  0m  tries to 
recognize a horizontal bar nd

0wm
 recogn
 try to

, and the 

 
min
The
di

mn 1m
o min
   

i
rtical b

e L
ar 1wm . 
at three 

fferent positions 0P , 1P  and 2P . At 0P , the

 
(a) 

 
(b) 

 
(c) 

Figure 7. The threshold can control the function of a Hop-
field neural cell from logical “or” to ”and”. b) using a hori-
zontal model m0 to recognize a horizontal line L; c) using a 
vertical model m1 to recognize a horizontal line L 
 
focus of these 2 minicolumns is just upon the line ;  
at 

L
1P , these 2 minicolumns focus the nearby of L ; at 

2P , the line is out of the focus of these 2 - 
columns. 

L   mini
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These two minicolumns are constructed by a fuzzy 
formula similar to Eqaution (1.21). In the experiment, the 
threshold  changes from 0.0 to 1.26. The threshold 
can co  function of a neural cell from logical “or” 
to “and”, when is too small, the neuron works in the 
way of lo o o two minicolumns both output high 
value at 

Same as Equation (1.21), the minicolumn of  has 
a inhibit region when the weights of  have ive 
values. At position 

The  p i  denote the rate of each pattern in histo- 
gram. In general  p i  define in Eqaution (1.28). Here 
paiT

ntrol the

gic “
0P

iT  
r”, s

. 

tterns we use are the LBPs in Equaiton (1.20), where 
  1n CS i i  , if 10n Ci i   else   0n CS i i  .  

    , 0,1, , 1p i h i NM i G       (1.28) 

In Figures 8 (a)-(e) are the results of LBPW, LBIPW, 
LI

 becomes vaguer from 
LBPW, LBIPW, LIPW to LMKH. For the sake nd

kind processing in the 1st-layer’s minicolumns p
m ttenti

he h

n of them, a similar a s the linear 
proposed by 

According to the results showed in the Tab
ar

 0m
 negat 0m

1P

PW, the linear mode by [8], and the original image 
respectively. From Figure 8, we can see that the texture 
structure in the waist of a mountain, L is droppe to th hibit 

region of model has a l  mat e 
at p1 wher  than  and . As 
“vertical” has  meaning  
curve of m0 at ifferen with th e of 

 at 
n ized can 

zontal bar and a vertical b n be viewed as a couple of 

Equation 

d in
owest

0p
of “

t 

be selected. 

e in
ching rat

2p
horizontal”, the

e curv

As a hori

0m
e L is

 a re
0p  

 thre

, so 
 ne
verse
is to

shol

0m  
arby

tally d

d T  
1m
A

0p . 
 optim

 of the 2  
ays much 

ore a on to the contrast, LBPW has the highest 
ability to remove t aze, LBPW and LIPW are com- 
plementary approaches, LBIPW, which is the coopera- 
tio  has bility a approach 

[8]. 

- i

 caar
opposite shapes, the output of the minicolumn 0m  is 
opposite to m1’s output in the task of recognize a hori- 
zontal bar or a vertical bar, so the most suitable threshold 
for logical operator “and” can be selected by 

le 1, which 
e about texture information entropy of the image, we 

can see that the texture information entropy is increased 
after haze-free processing, so our approaches have higher 
ability to increase the texture information entropy than 
the linear approach proposed by [8]. Theoretically speak- 
ing, LBPW is a pure texture processing, so LBPW has a 
highest value, LIPW is much more weaker than LBPW, 
LBIPW is the hybrid of LBPW and LIPW, so it has a 
average ability. The texture information entropy of the 
Area1 correctly reflects this fact. But for the Area2, as it 
already has a clearest texture structure in the original 
im

(1.26). 

    0 1 0.6arg maxiT fr m fr m


      ( .26) 

Here 

1

ifr m  is the fitting rate (output) at the place 
P1 of the minicolumn im . 

2. The Haze-Free Experiment Result 
(a) The Haze-Free and texture information entropy 
Texture information can give out a rough measure 

about the effect of haze-freeing, we use the entropy of 
the texture histogram to measure the effect of deleting 
haze from images. The entropy of the histogram is de- 
sc

age, the deleting of haze may cause overdone. The 
texture information is over emphasized by LBPW in the 
Aera2, so it has a lowest texture information entropy and 
almost becomes a dark area. This fact means that over- 
treatment is more easier to appear in a non linear proc- 
essing than a linear one in the haze-free task. 

(b) The effect about the degree of fuzzyness (Figure 9) 
Just as the theorem 1 mentioned above, the parameter 

  in Eqaution (1.17) can control the fuzzyness of a Hopfield 

ribed in Equation (1.27). 
Haze makes the texture of an image unclear, so 

theoretically speaking, haze removing will increase the 
entropy of the texture histogram.  

   
1

2
0

Entropy : log
G

i

H p i p i




        (1.27) 

 

 
(a)                   (b)                    (c)                   (d)                  (e) 

Figure 8. The processing result of neural system for visual haze-free task. a) LBPW; b) LBIPW; c) LIPW; d) LMKH; e) 
Original. 
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Fig 1.6. 

ea1: the waist of a mountain; Area2: Right bot- 
tom corner) in the Figure 8. 

Area LBPW LBIPW LIPW LMKH Original

ure 9. Rmse affected by_in first layer and second layer, we set Threshold in Equation (1.17) = 
 
Table 1. The texture information entropy of the image 
blocks (Ar

Area1 5.4852 5.2906 5.1593 4.8323 1.0893 

Area2 6.1091 10.3280 10.2999 9.1759 8.3718 

 
neuron, when the parameter   

 be
cal fo

g t

in Eqaution (1.17) tends 
to infinite, a Hopfield neuron haves from a fuzzy logi- 
cal formula to a binary logi rmula. This experiment 
is about the relation amon he precision (rmse) of 
PSVM learning and   meters in the first and 
second layer.  texture processing and 

ays much

para
reLBPW is a pu

p
n

 more attention to the contrast of an image’s 
earby pixels, a set of large   is necessary for a low 

rmse , which cor- responds to binary logic; but LBIPW 
and LIPW appear to prefer fuzzy logic for a set of small 
  when rmse is small. A pos

by
a s
 u
nary

sible explanation for this 
hat r jal  ( s 
ot an y 

- st bina te t 
nd  a  ha z r- 

fac
bin
for im

t is t  LBP p oposed  T. O a et al. 1996) i
ary, n  fuzzy, d has ound classification abilit

age u
IPW a

nder
LIPW

anding
re not bi

nder 
, they

ry pat
ve fuz

rn, bu
y infoLB

mation at least for the center pixel of a 3 3  small 
window.  

6. Discussion 

It is very difficult to des n or analyze a large-scale non- 
linear neural network. Fortunately, almost all neural mo- 
dels which are described by the first order differential 
equations can be simulated by Hopfield neural models or 

 logical functions with Weighted Bounded operator. 
We can find fuzzy logical frameworks for almost all neu- 

 networks, so it becomes possible to debug thousands 
of parameters of a huge neural system with the help of 
fuzzy logic, for more fuzzy logic can help us to find use- 
ful feature for visual tasks, e.g. haze-free. 
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Appendix A 

A Hopfield neuron can approximately simulate Bounded 
operator. 

Bounded operator  ,f fF  
maxfp q 

 
Bounded product ,  0, 1p q 

 min 1,p q p q  Bounded sum . f

Based on Eqaution (1.1)), the membrane potential’s 
fixed point under input  is kI i ik k

k

U w I  ia  and the  

output at the fixed point is   1 exp 1i iV U Ti    . 
If there are only two inputs   1 2 1 2, , 0,1I I I I 

2 1.0w 
 and 

we set ,  and , then  1.0ia  1 1.0w 
1 2I iU I



. 
Now we try to prove that the Bounded operator 
 ,f fF    is the best fuzzy operator to simulate neural 

cells described by (3) and the threshold Ti can change the 
neural cell from the bounded operator f  to f  by 
analyzing the output at the fixed point  

  1 exp 1i i i . If  is a constant and V U T    0C 
1 2iU I I C   , then   1 exp 1 1V   i i . 

When 
C T 

1 2iU I I     1iV , so in this case, if  
is large enough, 

C
1iV  . If 1 2I IiC U C    , then  

     1 exp 1 1 exp 1i i iC T V C T       , 

according to equation (a). We can select a , that 
makes  

iT

      
2 2

! 1 exp _
j k

i i i i
j k
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So in this case,  1 2 1 2min 1,i fV I I I I    . 
Similarly, if  21= IIUi  0iV  . So when 
 is large enough and C 1 2 0iU I I C     , then 

0iV  . When 1 2iC U I I C     , if we select a 
suitable  which makes  iT

     
2 2

! 1 exp
j k

i i i i i
j k

T U T j k U T
 

 

          1, 

then  1 2 1 2max 0, 1i fV I I I I     . 

Based on above analysis, the Bounded operator fuzzy 
system is suitable for neural cells described by Equation 
(1.1) when 1.0ia  , 1  and 2 . For 
arbitrary positive i , 1  and 2 , we can use corres- 
ponding q-value weighted universal fuzzy logical func- 
tion based on Bounded operator to simulate such kind 
neural cells. If a weight  is negative , a N-norm 
operator 

1.0w 
w

w

1.0w 
a w

  1 xN x    should be used. 
Experiments done by scanning the whole region of 

 1 2,I I  in   to find the suitable coefficients for 20,1

f  and f  show that above analysis is sound. We 
denote the input in (5b) as       1 2,x t I t I t


. The 

“error” for f  and “errAnd” for f

i

T

 are shown in 
Figure A as the solid line and the dotted line respectively. 
In Figure 10, the threshold  is scanned from 0 to 4.1 
with step size 0.01. The best i  in Equation (4) for 

T

f  
is 2.54 and the best  in Equation (4) for iT f  is 0, 
when 1.0a  , 1 1.0w   and . In this case the 
“errOr” and “errAnd” is less than 0.01. Our experiments 
show that suitable i  can be found. So in most cases, 
the bounded operator 

1.0=2w

T
 ,f fF  

<0 w

 mentioned above is 
the suitable fuzzy logical framework for the neuron 
defined by Equation (3). If the weight 1  and 

20 w , we should use a q-value weighted bounded 
operator  ,f fF    to represent above neuron. 

Appendix B 

It is easily to see f  follows the associative condition 
and 

1 2 3
1

min ,f f f f n i i
i n

x x x x q w x
 

       
 

 . 

For f , we can prove the associative condition is  
 

 

Figure 10. Simulating fuzzy logical and-or by changing 
thresholds of neural cells. The X-axis is the threshold value 
divided by 0.02, the Y-axis is errG. The real line is 

perrAndq between  1I f   and 2I iV , and the dot line is 

the perrorq between  1I f   and 2I iV . 
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hold also. The proof is listed as below: 
If , we have:   1 1 2 2 1 2 1w p w p w w q     0

 
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; 

if  1 1 2 2 1 2 1w p w p w w q     0



, we have  
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; 

So 
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f f f fp p p p p p

w p w p w p w w w q

    

      
. 

By inductive approach, we can prove that f  also 
follows the associative condition and 

1 2 3

1 1

max 0, 1

f f f f n

i i i
i n i n

x x x x

w x w q
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



. 

For more if we define  (usually, a 
negative weight i  corresponds a N-norm), above 
weighted bounded operator 

 N p q p 

 ,
w

f fF    follows the 
Demorgan Law, i.e. 
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