
Communications and Network, 2013, 5, 485-492
http://dx.doi.org/10.4236/cn.2013.53B2089 Published Online September 2013 (http://www.scirp.org/journal/cn)

Copyright © 2013 SciRes. CN

Efficient Implementations of NTRU in Wireless Network

Xin Zhan, Rui Zhang, Zhilong Xiong, Zhaoxia Zheng, Zhenglin Liu
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China

Email: liuzhenglin@hust.edu.cn

Received April 2013

ABSTRACT
NTRU is a lattice-based public key cryptosystem featuring reasonably short, easily created keys, high speed, and low
memory requirements, seems viable for wireless network. This paper presents two optimized designs based on the en-
hanced NTRU algorithm. One is a light-weight and fast NTRU core, it performs encryption only. This work has a
gate-count of 1175 gates and a power consumption of 1.51 μW. It can finish the whole encryption process in 1498 μs at
500 kHz. As such, it is perfect for wireless sensor network. Another high-speed NTRU core is capable of both encryp-
tion and decryption, with delays of 16,064 μs and 128,010 μs in encryption and decryption respectively. Moreover, it
consists of 25,758 equivalent gates and has a total power consumption of 59.2 μW (it will be reduced greatly if low
power methods were adopted). This core is recommended to be used in base stations or servers in wireless network.

Keywords: Wireless Network; Public key Cryptosystem; NTRU; Efficient Implementations

1. Introduction
The wireless network is being expected to be widely used
in various fields. Although wireless network offers low-
cost deployment and convenience, security implementa-
tion is considered essential because of its inherent vulne-
rability. The public key cryptosystem using two different
keys, such as RSA and ECC, has profound consequences
in the areas of confidentiality, key distribution and au-
thentication, but its common conception is complex, slow
and power hungry [1]. The relatively new lattice-based
public key cryptosystem—NTRU that features reasona-
bly short, easily created keys, high speed, and low mem-
ory requirements [2], seems viable for wireless network.

O’Rourke first implemented the NTRU core with a
gate count of minimum 1483 gates (N = 503) [3]; but it
performs star multiplication only. Another design is rea-
lized in Kaps’s paper (N = 167) [4]; it performs only en-
cryption with an area of 2850 gates and power consump-
tion of 15.1 μW at 500 kHz. The most detailed low-cost
implementation of NTRU is realized by AC Atici’s [5].
The author presented two compact NTRU architectures
(N = 167), one is for encryption only with an area of
2800 gates and a dynamic power consumption of 1.72
μW at 500 kHz. Another is capable of both encryption
and decryption, and it consists of 10,500 gates and con-
sumes 6 μW dynamic power. Several other papers focus
on the optimization of area and power consumption, but
only a few works are related to studies on the optimiza-
tion of speed.

In Jeffrey Hoffstein’s paper [6], an alternative of

NTRU is proposed with a new form 1f pF= + to
create private key f that speeds both the key generation
and the decryption. Unfortunately, there is little research
on the implementation of the enhanced NTRU.

The rest of this paper is organized as follows: Section
2 summarizes the basic of enhanced NTRU algorithm;
Section 3 presents the architecture of an encryption-only
enhanced NTRU optimized for small area and fast speed;
in Section 4, an architecture of enhanced NTRU opti-
mized for high speed is presented, it is capable of both
encryption and decryption; in Section 5 we give synthe-
sis results on an ASIC technology library; Section 6 con-
cludes this paper.

2. Algorithm of Enhanced NTRU
NTRU is a parameterized family of lattice-based public
key cryptosystems. Its basic operations are realized in a
truncated polynomial ring [] / (1)NR Z X X= − . Polyno-
mials in the ring have a degree of N-1 and all the coeffi-
cients are integers. Polynomial a R∈ can be presented
as:

2 2 1
0 1 2 2 1

1

0

N N
N N

N
i

i
i

a a a X a X a X a X

a X

− −
− −

−

=

= + + + ⋅⋅⋅ + +

= ∑
. (1)

The addition in the ring R is just as the same as general
polynomial addition. But the multiplication in R is re-
ferred to star multiplication (see [2] for details) and de-
noted as a∗ symbol.

http://dx.doi.org/10.4236/cn.2013.53B2089�

X. ZHAN ET AL.

Copyright © 2013 SciRes. CN

486

The NTRU cryptosystem depends on three parameters,
where a large prime N limits the degree of polynomials
in the ring and (,)p q satisfies gcd(,) 1p q = . It is also
possible to consider p as a polynomial, for example

2p X= + .
In order to speed up both the key generation and the

decryption process, a new form of enhanced NTRU is
suggested [6]. In enhanced NTRU, users choose f to have
the form 1f pF= + . Notice that this form has the
property of 1(mod) 1pf f p−= = , so it is not necessary to
compute the inverse modulo p, and the second multipli-
cation in the decryption process disappears. Some other
optimizations presented in the rest of this paper are all
based on enhanced NTRU.

Before we give an outline of enhanced NTRU algo-
rithm, four sets of binary polynomials , , ,F g r m need to
be specified first. Some notations are used to specify the
sets of polynomials:

R The set of binary polynomials in
[] / (1)NR Z X X= − .

()R d The set of binary polynomials in R with d ones
and N-d zeros.

Then the polynomials , , ,F g r m are selected in the
specified set: ()FF R d∈ , (),gg R d∈ (),rr R d∈ m∈

()mR d .
 Key Generation: the user must first choose two ran-

dom polynomials ()FF R d∈ and (),gg R d∈ pri-
vate key is computed as:

1f pF= + . (2)

Besides, 1(mod)qf f q−= must exist. Then the fol-
lowing computation is performed:

(mod).qh pf g q≡ ∗ (3)

Now h is the public key and f is the private key.
 Encryption: To encrypt a plaintext ()mm R d∈ , the

user should select a random polynomial ()rr R d∈ at
first. Then the cipher e is formed:

(mod).e h r m q≡ ∗ + (4)

 Decryption: In order to decrypt the cipher e using
private key f, the user first calculates:

(mod).a f e q≡ ∗ (5)

Then the user chooses a R∈ to satisfy this congru-
ence and to lie in a pre-specified subset of R. Finally,
a binary polynomial m should be found out to satisfy

(2) (2)(mod 2 1).Nm a− = − + (6)

It can be proved that m equals the plaintext.

3. Light-Weight and Fast NTRU
(Encryption-Only)

In order to meet the requirements in ultra-low cost envi-

ronments like wireless sensor network, we proposed a
light-weight NTRU structure based on the enhanced NTRU
algorithm. It performs encryption only and is optimized
for both fast speed and small area. The parameter set we
have chosen is (,) (107,64),N q = and 5rd = , which
was the lowest security recommended in [2].

Figure 1 shows the architecture of light-weight NTRU
engine. It consists of a control engine, a 6 bits result buf-
fer, a multiplication module, a look up table (LUT) and a
non-zero coefficients sequence generator (NCSG).

The control engine manages the process of encryption.
The result buffer is used to store final result and current
sum in star multiplication process. The multiplication
module performs star multiplication operation. Public
key h is pre-computed and stored in the LUT. NCSG is
designed to generate and rotate the degrees of non-zero
terms of random polynomial r.

Due to NCSG, one operand in multiplication operation
is bounded to 1’b1 (see Section 3.1 below), the multiplier
is needless and multiplication module only consists of a
6bits adder and a router.

3.1. Non-Zero Coefficients Sequence Generator
(NCSG)

In NTRU encryption process, the computation of h r∗
is not time-efficient. In fact, r is a quite sparse binary
polynomial that has only rd non-zero coefficients. As a
result, most of the multiplications in a star multiplication
process are unnecessary.

In this paper, we introduce a structure of non-zero coef-
ficients sequence generator (NCSG), which could record
the degrees of non-zero terms in polynomial r when the
coefficients of r loaded one by one. Then the non-zero
coefficients sequence is rotated during the computation
of star multiplication. According to this, the control en-
gine generates the corresponding address of h for LUT.
As Figure 2 shows, NCSG consist of a 7 rd bits circu-
lar register, a 7 bits counter, a 7 bits adder, a 2-input rou-
ter, an AND gate and an OR gate.

Input of the right hand 7-bit register is composed of 2
paths and determined by a ctrl signal. Path1 is from the
most significant 7 bits during the computation of star
multiplication, the register performs as a general shift
register and the degree of current non-zero term is output
to control engine by left-hand 7 bits register. During load-
ing polynomial r, the output of the 7 bits counter is as
one source of path2, it is added to the least significant 7
bits (where the degree of current term is stored). The
counter counts the zero from _r in and resets if a one is
input. Then the degree of next term is computed by the
adder and loaded to the circular register. After N clocks,
non-zero coefficients sequence is generated in the circu-
lar register.

X. ZHAN ET AL.

Copyright © 2013 SciRes. CN

487

Figure1. light-weight NTRU architecture.

Figure 2. The NCSG architecture.

X. ZHAN ET AL.

Copyright © 2013 SciRes. CN

488

The clock of circular register is a gated clock based on

ADD gate. During a star multiplication process ctrl equals
0 and _r in remains high voltage, the clock is always
enabled. During the loading stage where ctrl equals 1, the
clock of circular register is enabled only when a one
from _r in is detected.

Due to NCSG, the consumption of time to compute
h r∗ is reduced to rd N× clock cycles. In addition,
one operand to multiplication module is 1 constantly. As
a result, the hardware cost for storing polynomial r is
saved.

3.2. Control Engine
Control engine is the controller of the NTRU engine and
designed with a 4-state finite state machine (FSM), which
initialed with an idle state.

When a valid enc signal is detected, the encryption
process starts and the FSM enters a load state, during
which the coefficients of polynomial r are loaded one by
one to NCSG. N clock cycles later the degrees of non-
zero terms are generated in NCSG. Then FSM transits to
multiplication state and begins to calculate the first coef-

ficient of h r∗ , this process spends rd clock cycles.
Multiplication is followed by an add state, where plain-
text m is added to the current sum. At this time, e’s first
coefficient is calculated and the control engine outputs a
done signal. After the addition of the message, the FSM
again transmits to multiplication to compute the second
coefficients of e. When the last coefficient of e is calcu-
lated, the FSM returns to idle state and then the encryp-
tion process is finished.

4. High-Speed NTRU
The performance gain of enhanced NTRU comes from
elimination of an inversion modulo p in key generation
and a star multiplication in decryption. On this basis, a
high-speed NTRU engine is presented to further speed up
the encryption process through improving the efficiency
of star multiplication. The high-speed NTRU can be used
in wireless networks that structured around base stations
and centralized servers, which do not have the limitations
associated with small portable devices.

Figure 3 shows the architecture of the high-speed
NTRU. For decryption, a 7N bits e buffer is used to store

Figure 3. High-speed NTRU architecture.

enc

dec

...
LUT

result buffer(7N bits)

control engine

mapping
module

done result

r_in e_in m_in

1'b1

NCSG

mux

e buffer(7N bits)

multiplication
 module

...

mux

polynomial multiplier(PM)

optional parallel PM

X. ZHAN ET AL.

Copyright © 2013 SciRes. CN

489

cipher e and another 7N bits result buffer is for the final
result. Multiplication module and mapping module per-
form the main arithmetic function, the former is for star
multiplication (parallel polynomial multiplier is optional
to further speed up the process) and the latter is used to
recover plaintext m from the intermediate variable a.
Moreover, LUT stores both f and h.

In our design, we have chosen (,) (251,128)N q = ,
2p X= + , 72F g rd d d= = = and 125.md = This para-

meter set of NTRU is considered with high level of secu-
rity and extremely low decryption failure probability [8].

4.1. Mapping Module

After we calculated (mod)a f e q= ∗ in the decryption
process, we need to recover binary plaintext m from a.
The Binary polynomial m satisfies Equation [6].

According to [6], the transformation in the mapping
algorithm can be summarized as：

1 2 1 2(, ,) (, 2 ,),i i i i ia a a u a v w a v w+ + + +→ + − + − (7)

where u, v and w are obtained as:

[]1 2

[0];

{1' 0, [6 :1]};

min{ () / 2 , }.

i

i

i i

u a

v b a

w a v a v+ +

 =
 =

= + +

 (8)

We denote this transformation as below:

1 2 1 2(, ,) Algorithm(, ,).i i i i i ia a a a a a+ + + +→ (9)

The mapping module can be implemented in a com-
pletely combinational way, it performs the following
function:

(, ,), & {0,1};
(, ,)

Algorithm(, ,), ,
i i i i

o o o
i i i

x y z i N x
x y z

x y z otherwise

≥ ∉=

 (10)

where i is the value of a 7 bits counter increasing every
clock cycle till i equals 2N.

The connection of the mapping module and the result
buffer is shown in Figure 4. When the control signal sel
SASA equals zero, a mapping operation is executed and

ox is connected to the input of the right-hand 7 bits reg-
ister; when sel equals 1, the result of star multiplication is
loaded to the result buffer and data is as the input to the
circular register.

According to the above description, the entire mapping
process takes 2N clock cycles totally.

4.2. Small Hamming Weight Product
To further decrease the consumption of time in computa-
tion of the product h r∗ , an alternative form is suggested
that takes advantage of sparse polynomials [6,7]. The sug-
gested form is: 1 2 3r r r r= ∗ + , where the three sparse
binary polynomials 1r , 2r and 3r have 1rd , 2rd
and 3rd non-zero coefficients (one in this case) respec-
tively. When it satisfies 1 2 3r r r rd d d d+ = , the constructed
polynomial r has approximately rd ones (occasional
non-binary coefficients are mixed in with the ones and
zeros, but don’t affect matters very much). Then the com-
putation of h r∗ is divided to three steps by 1h r∗ ,
(1) 2h r r∗ ∗ and 3h r∗ . When combined with NCSG
mentioned previously, the operation times of computing
h r∗ are reduced to 1 2 3()r r rd d d N+ + clock cycles.

For the case 72rd = , we have chosen 1 2 3r r rd d d= =
= 8. As the result, the efficiency of star multiplication in
NTRU encryption tripled without changing the level of
security.

4.3. Control Engine
Control engine in this design has 6 states and begins with
an idle state.

Figure 4. The mapping unit.

X. ZHAN ET AL.

Copyright © 2013 SciRes. CN

490

On detection of a high signal of enc, the encryption

process starts and the FSM enters a load state. We divide
the whole encryption process into three steps, as shown
in Figure 5.
 Step1: computing 1h rα = ∗ . During load state, the

coefficients of 1r are loaded one by one to NCSG.
After N clock cycles the degrees of non-zero terms
are generated in NCSG. FSM transits to multiplica-
tion state to calculate the first coefficient of α , this
process takes 1rd clock cycles, it should be noted
that one multiplier is constant “1” during this state.
The following state is result, during which the first
coefficient of α is loaded to the e buffer. Then FSM
returns to multiplication state to compute α ’s second
coefficient and stores it in result state. After repeats
this process N times, all coefficients of intermediate
variable α are calculated and stored in e buffer,
then Step1 is finished and FSM enters Step2. Step1
costs 1(1)rd N N+ + clock cycles totally.

 Step2: computing 2 .r mβ α= ∗ + Step2 starts with
load state, during which the coefficients of 2r are
loaded one by one. Then FSM transits to multiplica-
tion state and begins to calculate the first coefficient
of 2rα ∗ , this process spends 2rd clock cycles.
Multiplication is followed by add state, where plain-
text m is added to current sum. At this time, β ’s first
coefficient is calculated, it is loaded to the result buf-
fer in result state. After this, FSM begins to compute
and store the second coefficients of β . When the last
coefficient of β is stored in the result buffer, Step3
is followed. Step2 takes 2(2)rd N N+ + clock cycles.

 Step3: computing 3e h r β= ∗ + . Like in Step1 and
Step2, polynomial 3r is loaded in load state first.

The following state is multiplication and the compu-
tation of 3h r∗ ’s first coefficient starts. After this
FSM transmits to add state, β is added to calculate
the first coefficient of cipher e. In result state, the re-
sult is loaded to the result buffer. After repeats N
times, the whole coefficients of e are stored in the re-
sult buffer. Finally control engine outputs a done sig-
nal and the FSM back to idle state. Step3 takes

3(2)rd N N+ + clock cycles.
So the whole process of encryption requires a total of

1 2 3(8)r r rN d d d+ + + clock cycles.
When dec signal is valid, NTRU engine performs de-

cryption operation. Firstly, the FSM transmits to load
state, coefficients of cipher e are loaded to the e buffer
one by one. During the following multiplication state, the
first coefficient of a is calculated; this state takes N
clock cycles. Then FSM transmits to result state and a ’s
first coefficient is loaded into result buffer. After this
FSM begins to compute and store the second coefficients
of a . When the last coefficient of a is computed, FSM
enters map state, the plaintext binary polynomial m is
recovered from a in 2N clock cycles. Finally, control
engine outputs a done signal indicating the end of de-
cryption. The decryption process takes a total of N(N + 4)
clock cycles.

5. Implementation Results
In this paper, our designs were implemented with Verilog
language and synthesized by Synopsys Design Compiler
with a clock frequency of 500 kHz. The targeted ASIC
technology library we used is the HJTC 0.18 μm standard
cell library. We have also implemented AC Atici’s work
[5] for comparison.

Figure 5. Control sequence in encryption process.

idle

load

multiplication

result

load

multiplication

add

load

multiplication

add

resultresult

idle

Repeat
N times

Repeat
N times

Repeat
N times

Step1 Step2 Step3

X. ZHAN ET AL.

Copyright © 2013 SciRes. CN

491

We have first synthesized two encryption-only NTRUs

with the same parameters set (,) (107,64)N q = and rd
= 5, one is the implementation of AC Atici’s scheme and
another is our light-weight NTRU core.

Table 1 reveals that the proposed implementation of
the low-weight NTRU has a significant decrease in both
encryption delay and area. The encryption delay is found
to be 1498 μs, which is only 6.4% of AC Atici’s design.
This was expected since we took full advantage of sparse
polynomial r in our design. We can also see that the area
is much smaller than the contrast, only with 1175 equiv-
alent gates.

As shown in Table 2, the decrease in area is mainly
due to the needless of the r buffer, which is used to store
and rotate polynomial r with a consumption of 1243
gates, while the addition module—NCSG consumes only
466 gates. We also got a total power consumption of 1.51
μW from the result of Synopsys Design Compiler.

We have also synthesized our high-speed NTRU core,
which can perform both encryption and decryption func-
tion. We chose (,) (251,128)N q = and F gd d= = rd =
72 as the parameters. For comparison, the delay and area
results of AC Atici’s encryption-decryption NTRU are
also listed.

Table 3 shows that the high-speed NTRU can finish
the process of encryption and decryption in 16,064 μs
and 128,010 μs, respectively, which gains much in speed
performance, especially in encryption process. However,
the area is 25,758 gates and the total power consumption
is 59.2 μW. The high-speed NTRU could be used in base
stations and servers of wireless network.

Table 1. Delay and area results of encryption-only NTRUs.

Work Enc. delay (μs) Area (eqv.gates)
AC Atici’s design 23,336 1949

Our Low-weight NTRU 1498 1175

Table 2. Area consumption of encryption-only NTRUs.

Block
Area (eqv.gates)

AC Atici’s design Low-weight NTRU
control logic 382 429

lut 236 236
multiplication module 88 44

r buffer 1243 -
NCSG - 466
total 1949 1175

Table 3. Delay and area results of encryption-decryption
NTRUs.

Work Enc. delay (μs) Dec. delay (μs) Area (eqv.gates)
AC Atici’s design 127,508 263,550 14,441
Our High-speed

NTRU 16,064 128,010 25,758

By the way, as power consumption is not the target we
optimized for in this paper, low power methods such as
clock gating and operand isolation are not used in our
designs. If these methods are adopted, the power con-
sumption will be greatly reduced.

6. Conclusions
In this paper we presented two hardware architectures of
NTRU. The first one capable of encryption only is opti-
mized for small area and fast speed, has a gate-count of
1,175 gates and a total power consumption of 1.51 μW.
This NTRU core can finish the encryption process in
1498 μs at 500 kHz. It is very suitable for use in ul-
tra-low cost environment such as wireless portable de-
vices. Another one is designed for high speed with delays
of 16,064 μs and 128,010 μs in encryption and decryp-
tion respectively, obtaining significant gains when com-
pared with the original NTRU that provides the same
level of security. This circuit consists of 25,758 equiva-
lent gates and has a total power consumption of 59.2 μW.
So the high-speed encryption-decryption NTRU core is
recommended to be used in wireless base stations and
servers.

Besides, the designs can be sped up by using parallel
polynomial multiplier units.

7. Acknowledgements
This work was supported in part by National Natural
Science Foundation of China (Grant No. 60973034, No.
61006020 and No. 61176026).

REFERENCES
[1] G. Gaubatz, J. P. Kaps and B. Sunar, “Public Key Cryp-

tography in Sensor Networks—Revisited,” 1st European
Workshop on Security in Ad-Hoc and Sensor Networks,
2005, pp. 2-18

[2] J. Hoffstein, J. Pipher and J. H. Silverman, “NTRU: A
Ring-Base Public Key Cryptosystem,” In: J. P. Buhler,
Ed., Algorithmic Number Theory (ANTS III), Lecture
Notes in Computer Science, Springer-Verlag, Berlin,
1998, pp. 267-288,.

[3] C. M. O’Rourke, “Efficient NTRU Implementations,”
Master Thesis, Worcester Polytechnic Institute, Worce-
ster, 2002.

[4] J. Kaps, “Cryptography for Ultra-Low Power Devices,”
Ph.D. Thesis, Worcester Polytechnic Institute, Worcester,
2006.

[5] A. C. Atici, L. Batina, J. Fan, I. Verbauwhede and S. B. O.
Yalcin, “Low-Cost Implementations of NTRU for Perva-
sive Security,” International Conference on Applica-
tion-Specific Systems, Architectures and Processors, 2008.
pp. 79-84.

[6] J. Hoffstein and J. Silverman, “Optimizations for NTRU,”
Public-Key Cryptography and Computational Number

X. ZHAN ET AL.

Copyright © 2013 SciRes. CN

492

Theory: Proceedings of the International Conference or-
ganized by the Stefan Banach International Mathematical
Center Warsaw, Poland, September 11-15, 2000, p. 77.

[7] J. Hoffstein and J. H. Silverman, “Random Small Ham-
ming Weight Products with Applications to Cryptogra-
phy,” Discrete Applied Mathematics, Vol. 130, No. 1,

2003, pp. 37-49.
[8] J. H. Silverman and W. Whyte, “Estimating Decryption

Failure Probabilities for NTRUencrypt,” Technical Re-
port, NTRU Cryptosystems, 2005, Technical Report No.
18, Version 1.

