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ABSTRACT 

In combinatorics, a Stirling number of the second kind  ,S n k  is the number of ways to partition a set of n objects 

into k nonempty subsets. The empty subsets are also added in the models presented in the article in order to describe 
properly the absence of the corresponding type i of state in the system, i.e. when its “share” . Accordingly, a 

new equation for partitions 

0ip 

 ,P N m

type

 in a set of entities into both empty and nonempty subsets was derived. The indis- 

tinguishableness of particles (N identical atoms or molecules) makes only sense within a cluster (subset) with the size 
. The first-order phase transition is indeed the case of transitions, for example in the simplest interpretation, 

from completely liquid state  to the completely crystalline state . 

These partitions are well distinguished from the physical point of view, so they are ‘typed’ differently in the model. Fi- 
nally, the present developments in the physics of complex systems, in particular the structural relaxation of supercooled 
liquids and glasses, are discussed by using such stochastic cluster-based models. 

0 in N 

 1 2, 0L n N n     1 2ty 0, n N  peC n
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1. Introduction 

In mathematics, particularly in combinatorics and the 
study of partitions, a Stirling numbers of the second kind  

 ,
n

S n k
k

 
  
 

 count the number of ways to partition a  

set of n labeled objects into k nonempty unlabelled sub- 
sets. By the way, Stirling numbers of the second kind 
show up more often than those of first and third kind (or 
Lah numbers), and James Stirling himself considered this 
kind first [1]. Equivalently, they count the number of 
different equivalence relations with precisely k equiva- 
lence classes that can be defined on an n element set, and 
they can be calculated using the explicit formula 

   
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1
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!
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jk

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 
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 , where  is the bi-  

k

j

 
 
 

nomial coefficient. The sum over the values for k of the  

Stirling numbers of the second kind, i.e. 
0

n

n
k

n
B

k

 
 

 
 ,  

gives the nth Bell number, that is the total number of 
partitions of a cluster with n entities or agents [2]. The 
question arises when the empty subsets or clusters are 
needed to be used in the models, for example, with het- 
erogeneous structure interactions and, subsequently, the 
partition by Stirling numbers of the second kind becomes 
inappropriate to count partitions in such complex systems 
[3]. 

In general, agent-based modeling is currently a tech- 
nique widely used to simulate complex systems in com- 
puter science and social sciences. On the other hand, a 
Markovian process is a stochastic process whose future 
probabilities are determined by its most recent values. 
The agent-based computational models (ABM) fits well 
this description, except for the cases when decisions are 
dependent on the state of the systems of more than one 
steps ago, which is the case when ABM agents experi- 
ence learning, adaptation, and reproduction [4]. 

In this study, a general equation that describes cluster- 
ing process among interacting agents in heterogeneous  
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populations, i.e. the partition process in a set of entities 
into empty and nonempty clusters, is derived and used to 
study how different behavioral norms affect the individ- 
ual and social welfare in a population with heterogeneous 
preferences. One can consider them as an idealization of 
an imperative and a more liberal approach to social 
norms or stylized behavioral rules studied by agent-based 
computational models [5,6]. Another application refers to 
the generic stochastic model for crystal nucleation which 
is useful to depict the impact of interface between the nu- 
cleus considered as a cluster of a certain number of 
molecules and the liquid phase for the enhancement of 
the overall nucleation process. It is generally known that 
first-order phase transitions occur by nucleation mecha- 
nism, and both the nucleus, a cluster of atoms or mole- 
cules, and the nucleation work, a energy barrier to the 
phase transition, are basic thermodynamic quantities in 
the theory of nucleation. However, the critical nucleus 
formation is statistically a random event with a probabil- 
ity largely determined by the nucleation work which in- 
creases with the subnuclei size [7]. The traditional dif- 
ferential equation modeling is not the alternative to 
agent-based models; only a set of differential equations, 
each describing the dynamics of one of the system’s con- 
stituent units, is an agent-based model [8]. 

The general formulation is outlined in Section 2. In 
Section 3 a probabilistic approach to the crystal nuclea- 
tion process is considered. The main conclusions are pre- 
sented in Section 4. 

2. The Model 

There are N entities which can be in 3 different states 
(call them left, center and right), and can play 3 actions 
(again left, center and right). Interaction in this agent- 
based model involves always one active and one passive 
player, but agents can play both roles interchangeably. 
They have preferences over their states: accept one state, 
are neutral with respect to another state and reject the 
remaining state. When two agents meet, the active player 
sets the passive player’s state according to his action,  

which in turn is determined by one of the applied rule. 
This identifies only 6 possible combinations. Denote 
with 1 6  the shares of the population characterized 
by each combination of preferences, as in Table 1. That 
is, drawing randomly one agent, it will be of type i with 
probability i . After each interaction, the passive player 
gets a payoff of +1 if it is in the accepted state, a payoff 
of 0 if it is in the neutral state, and a payoff of −1 if it is 
in the rejected state. The active player does not get any 
feedback. If the active player follows the first J-rule, it 
always plays the action corresponding to the accepted 
state. If it follows the second H-rule, it randomizes be- 
tween actions corresponding to the accepted and neutral 
states. The further example will clarify. Suppose two 
individuals, A and B, meet. Player A is the active one, 
and rejects left, accepts right, and is thus neutral with 
respect to the center. Player B is the passive one. It ac- 
cepts left, rejects right, and is neutral with respect to 
center, like player A. Suppose A follows the J-rule, and 
will play right, setting B’s state to right. B will then have 
a payoff of −1. Suppose, on the other hand, that A fol- 
lows the H-rule, and will randomize between center and 
right. The payoff for B could then be either 0 or −1. Note 
that there is no strategic interaction in the model: the 
passive player’s payoff depends on the active player’s 
choice, but the active player’s choice does not depend on 
the passive player in any way, so the game-theoretic so- 
lution concepts like Nash equilibrium become useless. 

p p

p

Aggregate results are defined in terms of both the 
mean π and the variance σ2 of the payoffs which denote 
the stability and the heterogeneity of population, respect- 
ively. However, in order to avoid arbitrary choices we do 
not specify a particular functional form, and report sepa- 
rately the results for the mean and the variance. Let 

1, 2, ,N    be the total number of entities in the 
model, and the  1 2 3 4 5 6, , , , ,n n n n n n  is their partition 
into 6m   subsets. Each subset can be called cluster, 
and the process itself—clustering. The size of each clus- 
ter can vary from 0 to N,  0, , 1,6in N i  ,  and  

6

1
i

i

n N


 . The number of possible partitions P is a  

 
Table 1. Distribution of preferences in the heterogeneous system with 6 types of states. 

Type Accepted State Rejected State Share left center right 

1 left center p1 p1 −p1 0 

2 left right p2 p2 0 −p2 

3 center left p3 −p3 p3 0 

4 center right p4 0 p4 −p4 

5 right left p5 −p5 0 p5 

6 right center p6 0 −p6 p6 

Coordinates p1 + p2 − p3 − p5 −p1 + p3 + p4 − p6 −p2 − p4 + p5 + p6 
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function of N and m, and the explicit solution is 
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where 6 1 6 5 6 2 6 4 6 3 6 6  
are combinations given by the binomial coefficient  

6, 15, 20, 1C C C C C C     
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C

k m k k

 
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. In general, when the number 

of subsets , the number of possible partitions P of 
N agents into m subgroups or subsets is 

1m 
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1

1

1
,

1 !

m

i

P N m N i
m






   .          (1) 

The matrix is diagonally symmetric 

  , 1 , 1P N i P i N     

for 0,1, , 1,i N   and it can be formed by arranging 
the partition numbers according to the parameters N and 
m. Table 2 contains this array of values for the given 
numbers of partitions. The reccurence relation is 

    , 1, ,P N m P N m P N m 1     

for  with the initial condition . 
For instance, the number 330 in column  and row 

0m 

7

 0, 0 1P m  
5m 

N   is given by 330 210 120  , where 210 is the 
number above and 120 is the number on the left of 330. 
The diagonal elements of the bi-triangular array of values 
for the numbers of partitions are 1, 2, 6, 20, 70, 252, 924, 
3432, 12,870, 48,620, …, and it is represented by nth 
central binomial coefficient:  
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 2
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!

nn
C n n
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 
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 for all . 0n 

They are called central since they show up exactly in 
the middle of the even-numbered rows in Pascal’s train- 
gle. These numbers have the generating function  

2 3 4

6 7

1
1 2 6 20 70 252

1 4

924 3432 .

5x x x x
x

x x

     
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x
 

It is known that the asymptotics for the central bino- 
mial coefficient  2 ,C n n  can be written in the form of 
a particular case of the Wallis formula, i.e.  
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Table 2. Bi-triangular array of values for the numbers of partitions P(N,m). 

N,m 1 2 3 4 5 6 7 8 9 10 Recurrence Relation 

0 1 1 1 1 1 1 1 1 1 1 

1 1 2 3 4 5 6 7 8 9 10 

2 1 3 6 10 15 21 28 36 45 55 

3 1 4 10 20 35 56 84 120 165 220 

4 1 5 15 35 70 126 210 330 495 715 

5 1 6 21 56 126 252 462 792 1287 2002 

6 1 7 28 84 210 462 924 1716 3003 5005 

7 1 8 36 120 330 792 1716 3432 6435 11,440 

8 1 9 45 165 495 1287 3003 6435 12,870 24,310 

9 1 10 55 220 715 2002 5005 11,440 24,310 48,620 

10 1 11 66 286 1001 3003 8008 19,448 43,758 92,378 

P(N,m) = P(N−1,m) + P(N,m−1) 
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where  is the gamma function, so )(x

2 4
~ ,

nn
n

n n
 

  
 

. 

By the way, this equation can also be used to deter- 
mine the constant 2  in front of the Stirling’s for- 
mula. 

Now it is straightforward to see that when all indi- 
viduals share the same preferences (polarization) the first 
rule gives a higher payoff. In the other extreme case, 
when preferences are equally distributed in the ensemble  

(dispersion) and 1 2 6

1
,

6
p p p     it is again  

straightforward to see that the rules are equivalent, and 
lead to an average payoff 0 

N

. Consider next an active 
player of type 1 (accepts left and rejects center) which 
meets in turn all other (passive) agents, including himself. 
If it follows the first rule, then it will play left causing a 
payoff of +1 in 1 2  agents, and a payoff of −1 
in 3 5  agents. Note that there are  
similar entities in the ensemble. Suppose now that eve- 
rybody meets everybody else both as active and as pas- 
sive players. Coupling them randomly and randomly 
choosing active and passive players only adds some 
noise to the simulation results. So the average payoff 
when everybody plays according to the first J-rule is 

 p p
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Similarly, the average payoff with the second H-rule is  
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To study the behavior of 1 2   based on Equations 
(2) and (3), it is convenient to set some of the probabili- 
ties to zero. It is straightforward to see that when there is 
just one probability different from 0 (and thus equal to 1)  

we have 1 2

1
0

2
    . In general, the number of dif- 

ferent possible combinations of non-zero probabilities is 
given by the above binomial coefficient . m k

Thus for two non-zero probabilities we obtain a set of 

6 2

C

15C   equations which can be grouped in just 3 dif- 
ferent functional forms shown in Table 3. Figure 1 
graphs these 3 curves for all values of pi and 1j ip p  . 
The J-rule still performs better in all cases but one, when  

 
Table 3. Expressions of  for different numbers of non-zero probabilities pi, i = 1, 2, ···, 6. 1π π 2

No. pi Non-zero Probabilities Expressions for 1 2     
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2

1

1
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Figure 1.  in the case of two non-zero probabilities, pi and pj = 1 − pi. 1π π 2

 
the two rules are equivalent. However, from three non- 
zero probabilities onward things start to look differently. 
For three non-zero probabilities we have 6 3 20C   
equations, while for four non-zero probabilities there are 

 equations, and for five non-zero probabilities 

6 5  equations. These equations reduce to just three 
different functional forms in case of three and four non- 
zero probabilities, and to just one expression in case of 
five non-zero probabilities. 

6 4 15C 
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A trend towards a better performance of the H-rule, as 
the distribution of preferences in the system becomes less 
polarized, is evident. However, in order to better investi- 
gate it, a definition of how much preferences are polar- 
ized is needed. We represent the distribution of states as 
a single point in a three dimensional space, where the 
axes are labeled l, c and r. The l coordinate is found by 
counting all agents who accept left, and subtracting all 
agents who reject left. The result is then normalized to 
the size of the population. Similarly for the other two 
coordinates. Hence,  
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where . Note that different distributions of 
states can lead to the same point in the sphere. For in- 
stance, the point in the origin is given not only by 
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1 2 6p   1 6p p  , but by any combination of pref- 
erences such as 1 3 , 2 5p p p p , and 4 6 . Tak- 
ing into account Equation (4), one can define now the 
polarization of states as the distance from the center of 
the sphere: 
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value D  as follows:  


6 22

,
1

,D i i D D
i

p  


             (6.1) 

where 

1,1 1 2 3 4

4,1 3 4 5 6

2,1 1 2 5 6

5,1 1 2 5 6

3,1 1 2 3 4

6,1 3 4 5 6

,
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,

p p p p

p p p p

p p p p

p p p p

p p p p

p p p p
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   

   

   

    

    

    

          (6.2) 

and 

 
 
 
 
 
 

1,2 1 3 5 6

4,2 1 2 4 6

2,2 2 3 4 5

5,2 2 3 4 5

3,2 1 3 5 6

6,2 1 2 4 6

2,

2,

2,

2,

2,

2.

p p p p

p p p p

p p p p

p p p p

p p p p

p p p p













   

    

   

    

    

   

      (6.3) 

Figure 2 explores how outcomes vary as functions of 
the distance  , ,d l r c  defined by Equation (5). The 
whole range  0,1  is sampled, for all probabilities 

1 6 . The step considered for creating all combina- 
tions of probabilities is 0.025, i.e. the total number of 
agents is 40. The average values for 1

p p

  and 2  are 
shown in Figure 2(a), and for each value of the distance 
from the center of the sphere, , the frequency 
of wins with each rule is computed (see Figure 2(b)). 
When 1 2

 , ,d l r c

0  
1 2 0

 a win is assigned to the first J-rule, 
and when     a win is assigned to the second  


 : all points thus lie inside a 

sphere around the origin. 
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Figure 2. Average values for  (upper line) and  (a), 

and relative frequency of negative and positive values for 
 (b) as functions of the distance d p  

from the center of sphere with a radius of 

1π 2π

 , ,1 2 p1π π 2 , 6p

2 : 40 entities, 
6 clusters in a similar ABM model. 
 
one. Exactly in the center of the sphere the two rules lead 
to the same payoff, independently of the underlying dis- 
tribution of states. Close to the center, each rule wins in 
about 50% of the cases. Then, as we move away from the 
center, the first rule improves its performance, and it is 
always better when the states are totally polarized, but 
the total number of states for intermediate values of the 
distance d is much larger than for the dispersed and po- 
larized states.  

Meanwhile, the variance (6.1) with the J-rule (6.2) is 
generally higher than the variance with the H-rule (6.3), 
especially when the preferences are dispersed in the sys- 
tem, and when they are quite polarized. On average, 
however, when one rule is better in terms of higher ex- 
pected payoffs it is also better in terms of lower hetero- 
geneity, and there are the same average values of the 
scale-free coefficients of variation on the distance d for 
any level of fragmentation of states. 

3. A Probabilistic Approach to the Crystal 
Nucleation Process 

The second application refers to the nucleation process, a 
widely spread phenomenon in both nature and technol- 
ogy, which may be considered as a representative of the 
aggregation phenomena in complex systems. Let’s con- 
sider N atoms which can be in 3 different states (cluster, 

liquid and their interface), and can perform 4 possible 
moves: liquid to interface, interface to liquid, interface to 
cluster, and cluster to interface. One can identify 4 dif- 
ferent combinations denoted with probabilities 1 4 , 
as in Table 4. That is, drawing randomly one particle, it 
will be of type i with probability i  Let 

p p

1, 2, ,p N    
be the total number of atoms in the system, and 
 1 2 3 4, , ,n n n n  are their partition into 4 subsets. Each 
subset can be called cluster, and the number of possible 
partitions (1) in this case is 

   
3

1

1
, 4

3! i

P N m N i


   , 

where 0, , 1, 4in N i   and  . For example, in  

a system of N=1000 atoms,  , 4P N m   equals to 

4

1
i

i

n N




167,668,501! Accordingly, the n eated com- 
puter runs in an ABM model would be very large due to 
different possible partitions. But we are able to overcome 
this problem, as already mentioned in the previous sec- 
tion, by developing similar stochastic mathematical mod- 
els which can describe exactly the results of the agent- 
based computational models, and, finally, by bridging the 
gap between ABM modeling and stochastic processes. 

Let’s consider further that each particle interacts wi

umber of rep

th 
the entire group both as an aggressor in terms of the 
Kolmogorov mathematical theory [9], and as a passive 
agent in terms of the ABM computational models as well. 
Then the mean π, namely the stability index, takes here 
the form 

    
 

1 1 3 2 3 1 2 3 4

4 4 2

p p p p p p p p

p p p

      

 
 

p 
   (7.1) 

or, taking into account that , one can exclude  

one probability, for example p4, from the above equation:  

4

1

1i
i

p




  p p p  

 
  

1 1 3

1 2 3 1 2 3

2 3 2 3

1 2 1

1 2 2 .

p p p p p p

p p p p

      

    

        (7.2) 

One can represent again the distribution of states as a 
three-dimensional point  , ,l r c  inside a sphere, and the 
mean payoff π (Equation r Equation (7.2)) can be 
obtained as a function of the distance 

(7.1) o

    2 2 2
1 2 3 4, , , , ,d l r c d p p p p l r c    , 

where the axes are labeled l, c and 1 3: ,r l p p   

2 3 1 4 4 2,c p p p p r p p      , and, as  stated in the
previous section, 0l c r    and 0, 2d     . Thus 
different distributions e point 
in the sphere, i.e. different microscopic partitions can    

of states can lead to t
 

he sam
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rejected states in the system. 

Type Accepted State Rejected State Share cluster interface liquid 

 
Table 4. Distribution of accepted and 

1 cluster/nucleus interface p  1 1 1p  –p  0 

2 interface liquid p  0 2 2 2 

3 3 3

4 – 4 4

Coordinates p1 – p3 –p1 + p2 3 – p4 –p2 p4 

p  –p

3 interface cluster/nucleus p  –p p  0 

4 liquid interface p  0 p  p  

 + p  + 

 
enerate the same result on aggregate inside a sphere g

around the origin. The results for the two limit cases are 
obviously: if all particles would show the same behavior, 
then 2d   and there is a maximum stability of states 
in such a completely asymmetrical system, but 0   
for a homogeneous system, 1 2 3 4p p p p    , 
and for combinations such as 

1 4

1 3p p  and 2 4p p  in 
the case of unstable states. 

4. Conclusions 

ls developed in this paper were used 

between agent-
ba

its diagonal elements are represented by nth central bi- 

e point inside the sphere around 
th

ardi for his ABM contribu- 
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