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ABSTRACT 

We propose an algebraic model, presenting individual contributions separately in the system of interest, for the exact 
solutions of one-dimensional Poisson-Schrödinger equations used generally in semiconductor device simulations. The 
model presented here reveals an interesting relation between the corresponding Poisson and Schrödinger equation for 
the physical structure considered, which leads to closed solutions without solving the required electrostatic equation. 
 
Keywords: One-Dimensional Poisson-Schrödinger Equation; Exactly Solvable Systems; Single Quantum Wells 

1. Introduction 

Recently much interest has been drawn on the fabrication 
technology of semiconductor nanostructures. At this 
scale, it is well known that electronic properties are 
dominated by quantum effects, until at some points these 
effects become essential for device operation. For in- 
stance, the electronic states in highly confined semicon- 
ductor structures like quantum dots are entirely con- 
trolled by quantum mechanical size quantization, which 
can be exploited for entirely new device designs like 
quantum well or quantum dot lasers. However, the phy- 
sical equations that describe these quantum systems are 
much too complex to be solved analytically and in gen- 
eral efficient numerical solution methods need to be used 
instead. As a consequence different numerical methods 
have been developed, which allow for reasonably effi- 
cient computer simulations in many cases of practical 
relevance. In particular, a large number of papers in the 
literature deal with the self-consistent solution of one- 
dimensional Schrödinger-Poisson equations ([1], and the 
related references therein). In such methods, a trial po- 
tential distribution is used to solve the conventional 
Schrödinger equation and the resulting wavefunctions 
together with the energy eigenvalues are used to calcu-
late the charge density in the quantum well regions. 
Poisson equation is then solved using this charge density 
to get the new potential distribution. For the solution of 
Schrödinger equation in the next iteration, a linear com- 
bination of these both, sum of the original and new addi-  

tional potentials, are used as the new input potential and 
the whole procedure is repeated until the corresponding 
total energy is converged. 

On the other side we stress that a key element of theo- 
retical physics is the conceptualisation of physical phe- 
nomena in terms of models, which are then investigated 
by the tools at hand. For quantum many-body systems, 
some models can be exactly solved and their physical 
properties can be calculated in an exact fashion. To em- 
phasize the relevance of exact models in physics, chem-
istry and engineering the reader is referred to [2] in order 
to see briefly general literature containing some impor- 
tant examples of exactly soluble models in quantum me- 
chanics. Along this line, the ongoing miniaturization of 
semiconductor devices has prompted a shift of the focus 
of the modelling research [3], since the related algebraic 
models available in the literature do not account well 
some of the topics needed to be clarified in ultra-inte- 
grated devices. 

Within this context, here we describe a new algebraic 
technique, in the light of previously reported exactly sol- 
vable models mentioned above, to propose a novel recipe 
in a different manner now to solve self-consistently the 
quantum (stationary Schrödinger’s equation) and the 
electrostatic (Poisson’s equation) for confined charges. 
This consideration of course constrains us in choosing 
the more physically acceptable forms for the particle 
mass and band edge potential functions in theoretical 
treatments. Nevertheless, the novel approach presented in 
this article would lead to more powerful algebraic dis- 
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cussions of the coupled Schrödinger-Poisson equations in 
the near future. A quite extended mathematical frame- 
work, relevant for the study of semiconductor hetero- 
structures modelling, is in fact required for understanding 
and analysing in detail mathematical aspects of such 
calculations. 

The present model uses an effective mass-Hamiltonian 
involving two potentials: a conventional finite well po- 
tential with different inside and outside masses for de- 
scribing the band edge potential at zero doping and the 
additional potential due to the non-zero number of carri- 
ers i.e. the charge density. In order to decide whether or 
not typical carrier densities would give rise to a signifi- 
cant additional potential on top of the usual band edge 
potential term (which will be labelled specifically as 

CB ), it then becomes necessary to solve the electrostat- 
ics describing the system. For this reason, the relevant 
Schrödinger equation including the whole potential is 
split carefully in two parts which individually yield, in 
closed forms, the solutions for the unperturbed mass- 
dependent band edge potential and the corrections to the 
solutions due to the charge density in the system under- 
taken. Interestingly, the present formalism reveals that 
this second equation, which is responsible for the modi- 
fications brought to the unperturbed piece of the solu- 
tions, are exactly another form of the related Poisson 
equation. This significant observation makes clear the 
inter-relation between the Schrödinger and Poisson equa- 
tions characterizing the system and suggests directly the 
modifications without solving the required equation. The 
necessary justifications for the results obtained by the 
present model and the assumptions used in the formalism, 
together with their validity and accuracy, are well dis- 
cussed in the following sections. Although the literature 
covered similar works, to our knowledge an investigation 
such as the one we have discussed in this paper was 
missing. 

V

The paper is organized herewith as follows: In Section 
2, we provide first a brief review of the Schrödinger 
equation for systems with a position-dependent effective 
mass. Later, the corresponding equation is decomposed 
meticulously in two pieces to have a clear observation on 
the contributions due to the different interactions in the 
system underlined. Section 3 deals with the application 
of the new formalism involving analytical treatments of 
the coupled equations in the model for a specifically 
chosen mass and potential profile. The significant rela-
tionship between seemingly distinct Poisson and Schrö- 
dinger equations is also discussed in this section, leading 
to the exact solutions in terms of the quantum mechanical 
results, for the Poisson equation, instead of the expres- 
sions in electrostatic. Finally, some conclusions are 
drawn in Section 4. 

2. Formalism 

An interesting question arises when one tries to formu- 
late the correct Hamiltonian for a particle with spatially 
dependent mass in an arbitrary potential well. This prob- 
lem often arises in the calculation of confined energy 
states for carriers in semiconductor quantum well struc- 
tures under the envelope-function and the effective-mass 
approximations where the effective mass of a carrier is 
spatially dependent on the graded composition of the se- 
miconductor alloys used in the barrier and the well re- 
gion of the nanostructures. Since the mass and the mo- 
mentum operators no longer commute, the correct order- 
ing of these operators within the kinetic energy operator 
cannot be trivially assigned. This problem of ordering 
ambiguity is a long standing one in quantum mechanics, 
see for instance [4] for the recent review. Particular in- 
terest has been given to physical systems with position- 
dependent mass in recent years. It appears that a consen- 
sus was made in the majority of these works about the 
following form of the Hamiltonian 

1 1

2
H p p V

m
    

                (1) 

All of the techniques are now in place to be able to 
solve the Schrödinger equation for any heterostructure 
for which the band edge potential profile defining the 
structure is known. However, all of the theoretical meth- 
ods and examples described so far have concentrated 
solely on solving systems for a single charge carrier. In 
many devices such models would be inadequate as large 
numbers of charge carriers, e.g. electrons, can be present 
in the conduction band. Therefore, the additional poten- 
tial term V  arising from this charge distribution

 
can be 

expressed by using Poisson’s equation 

2V



                       (2) 

where   is the permittivity of the material, i.e., 

0r    with r  being material dependent. The solu- 
tion is generally obtained via the electric field strength 

E V                       (3) 

Given the potential profiles, for example, is 
one-dimensional, and then it will also produce a one di- 
mensional charge distribution. In this case, Equation (1) 
reads 

 CBV z

   
     

2 2 2

2

d d d

2 d 2dm z z m z zz

V z z E z

   

d

 
    
   
   

 
        (4) 

where     CBV z V z V z   . Making a new defini- 
tion for the wavefunction 

     1 2
z m z z                (5) 
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one gets a differential equation in a more familiar form 

       
2 2

2

d

2 d
U z z E z

m z z

  
    
  


       (6) 

in which 

   
22 3

4 2

m m
U z V z

m m m

       
   

 
          (7) 

where the primes denote the first and second derivatives 
of the mass function with respect to the variable . z

Considering the structure of the full potential profile, 
we need at this stage to redefine  in (6) as 

     z z   z                 (8) 

The functions   and   are the solutions corre- 
sponding to CBV  and V  potentials, respectively. The 
substitution of (8) into (6) produces coupled equations  

 

     

 

2 2

2

22

d

2 d

3

4 2CB

CB

m z z

m m
V z z

m z m m

E z









              




 



      (9) 

and 

   
     

2 2

2

d d d d
2

2 dd

z

m z z zz

V z z E z 

  


 

  
       
 


          (10) 

where CBE E E  . It is obvious that the individual 
solutions of Equations (9) and (10) provide the needful 
solutions for (6) and, consequently, for the original spec- 
tra in Equation (4). The following section, which is the 
significant piece of the present work, focuses on the ana- 
lytical solutions of these equations for a single quantum 
well. 

3. Application 

We are fully aware of the crudeness of the formalism 
introduced above, but reasons will be given through this 
section for the belief that the solutions will come out 
fairly correctly from this picture, although the physical 
frame of a more realistic solution will differ greatly from 
the one presented here. 

3.1. Solution of Equation (9) 

Here, we first deal with the solution of Equation (9) by 
adopting a finite potential well for the conduction band 
edge and a piecewise flat mass distribution for the parti- 
cles such as 

 
0, 2

, 2
CB

z L
V z

V z L

  
 

             (11) 

where  is the width of the well. The spatially variable 
effective mass is 

L

 
, 2

, 2

w

b

m z L
m z

m z L

  
 

          (12) 

in which  and  are constant, being the conven- 
ient masses of particles in the well and on the barrier. 

wm bm

Within this simple, but physically reasonable, consid- 
eration the wavefunctions inside and outside the well can 
be obtained easily via Equation (9) 

22

2

d

2 d
w

CB w
w

E
m z


 


              (13) 

and 
22

02

d

2 d
b

b CB
b

V E
m z


b   


         (14) 

Following the usual procedure, the unnormalized (odd 
and even) solutions inside the well are 

   odd evensin , cosw wz kz z  kz        (15) 

while the wavefunction outside has the appearance 

  expb z q   z               (16) 

where 

 0

2 2

22
, b Cw CB

m V Em E
k q


 

 
B      (17) 

Remembering the wavefunction connection rules across 
an abrupt interface (i.e., discontinuity in the effective 
mass) associated to the Schrödinger equation in (4),  

d d1 1
,

d
w

w b
w bm z m zd

b 
             (18) 

the boundary conditions at 2z L  give 

sin exp
2 2

cos exp
2 2w b

kL qL

k kL q q

m m

       
   

      
  

L 



       (19) 

for the odd solutions, and 

cos exp
2 2

sin exp
2 2w b

kL qL

k kL q q

m m

       
   

      
  

L  


      (20) 

for the even solutions. These results, which are compati-
ble with those of [5], lead us to 
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tan
2

b

w

mkL k

m q

        
    

 

and 

tan
2

w

b

mkL q

m k

       
   





            (21) 

The solutions of (21) provide the energies associated 
with the confined states of odd and even parities, respec- 
tively. In the particular case of w b , Equation (21) 
reduce to the familiar transcendental equations deter- 
mining the bound eigenvalues of a finite square well. 

m m

3.2. Solution of Equation (10) 

This formula contains the fundamental result of our cal- 
culations. The following discussion, down to the end of 
this section, clarifies a novel representation of the re- 
finements to the solutions of Equation (9). For this rea- 
son, we first concentrate here on convencing the reader 
for the hidden relation between the Poisson equation con- 
cerning with the electrostatic potential V  due to the 
charge distribution, which will be treated in a different 
manner from the previous convential ones, and Equation 
(10) though they have different appearance in their pre- 
sent forms. This point clarifies one of significant consid- 
erations in the related self-consistent calculations that the 
pertinent wavefunction    solely is simultaneously 
solution to both Schrödinger’s and Poisson’s equations. 

Considering the structure of the full wavefunction for 
the entire system, which is introduced by Equation (8), 
and using the spirit of the excellent recent work [6], we 
suggest a reasonable form for the electrostatic potential 

   lnV z C z                (22) 

in which  2 bC   m  is a constant. The unit 
analysis of (22) implies that  , being as another con-  

stant, should has a dimension like    1
ÅV e


, the  

physics behind of which will be disclosed below. It will 
also prove convenient for our forthcoming discussion to 
express V  with such a constant. This definition trans- 
forms smoothly the Poisson equation to the Schrödinger 
equation, explicitly, with a constant mass . Note 
that the proper mass  and material permittivity 

 bm
 bm

 b , which is also constant for the present consideration 
although w b  , are used throughout the discussion 
here since the only contribution to the energy of the 
whole system comes from the attractive part of the elec- 
trostatic potential, though they will disappear automati- 
cally at the end of the calculations. 

By substituting (22) into the one-dimensional form of 
(2), the Poisson equation turns out to be 

   

   

2 2

2

2

d

2 d 2b b

z
z

m z m

E z
z

 





  
       

 
   

 

 
b

      (23) 

where 

     
 

d

d

V z z
E z C

z
 




   
z

            (24) 

is the electric field strength which is constant, as dis- 
cussed comprehensively in Refs. [6,7]. Additionally, the 
natural verification of this concept through the analytical 
structure of   will appear spontaneously at the end of 
this section. A brief discussion related to this topic is also 
presented below. From the comparison of (23) with 
Equation (10), it is clear that 

   

2 2

2 bb

bz

b b

z
V z

m

E
E

m








 
 

 
   

 



                




         (25) 

from which and Equation (22),   has the unit of 
  . 
In the light of all these, and bearing in mind the one- 

dimensional potential profile  CB  and one-dimen- 
sional charge distribution discussed in the previous sec- 
tion, together with remembering that the quantum wells 
are assumed infinite in the 

V

x y  plane, then any charge 
density  z  can be thought of as an infinite plane, i.e. 
a sheet, with areal charge density . Such an infinite 
plane of charge produces an electric field perpendicular 
to it, and with a strength 

 z 

2z
b

z
E

z




                 (26) 

at any space point. Note that as the sheet is infinite in the 
plane, then the field strength is constant for all distances 
from the plane. Thus, this theoretical consideration sup- 
ports the reliability of Equation (23). For the total electric 
field strength due to many of these planes of charge, one 
needs of course to take the sum of the individual contri- 
butions, if required. 

Further, the determinative factor in such electrostatic 
expressions is the form of . An extensive analyti- 
cal solution of such an equation is presented by Ref. [6], 
from which we stress that the only charge distribution to 
produce a uniform electrostatic field are an odd number 
of parallel infinite sheets with opposite electric charge 
densities 

 z

 . Hence the analogy of the Poisson and 
Schrödinger equations argued above works only with a 
charge density given by 
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     1 , 0,1,
N

i

i
i N

z z z N  


    2,



   (27) 

where  is the Dirac delta function at the posi- 
tion i . The symmetry of the original heterostructure 
and doping profiles is reflected by the shape of 

 iz z 
z

 V z  
in (25). The electrostatic potential is positive at the center 
of the well since the system under consideration consists 
of electrons in the conduction band, so any test charge in 
the well-used to probe the potential is also electron which 
would be repelled by the existing charge. Similarly, it is 
attractive in the outside region (or through the barrier) 
due to many ionized donors in the system, though we 
expect that it is almost negligible when compared to its 
repulsive part. This observation explains the individual 
contributions having opposite signs in the whole struc- 
ture of V  in (25) and of   in (27). Note further that, 
when considering the case of for instance a -type ma- 
terial, it is worth stating that the number of free electrons 
in the conduction band is equal to the number of posi- 
tively charged ionized donors in the heterostructure. 
Thus, due to this charge neutrality, the electric field and 

  go to zero at large distances from the charge dis- 
tribution. 

n

 z V

Consequently, the exact solutions of Equation (23), in 
connection with Equation (10), for the electrostatic po- 
tential in there  

   1
2

N
i

i
i Nbb

V z z z
m


 
 

 
     

 


     (28) 

are 

   2

1
exp 1

N
i

i
i Nb

z

 

 
   


 z z 


      (29) 

within the consideration of Equations (22), (25) and (27), 
and the single bound eigenvalue regarding the weak at- 
tractive pieces of V  mentioned above penetrating to 
the barriers  

2 2

2
b

b b b

E
m

 
  

    
           

 
        (30) 

by means of Equations (25) and (26). For the sake of 
clarity, we remind again that structure of the functions 
above do not cause any trouble in the frame of physics as 
this term as a whole yields a constant contributing to E , 
which will be clear below. The significant point here is 
that the solutions above are obtained without solving 
Equation (23), which is another form the related Poisson 
equation for an appropriate definition of V . The same 
is valid Equation (10), as well. The results obtained are 
in agreement with those of Ref. [6]. 

For precise calculations, however, we should now pro- 

ceed with reducing the present consideration to a well- 
known case. For instance, Equation (27) takes the form 
of    z  z  for the case  and 00N  0z  . In 
this perspective, it is not hard to see that the classical 
electrostatic potential in (28) resembles to the quantum 
mechanical attractive delta function potential 

   
2 bb

z
m

  


 


z          (31) 

where   has the units of  and depends on the  ÅeV 
mass and doping properties. The expression above en- 
ables us to express the strengths of the potentials in terms 
of each other. In this case, taking Equations (3), (22), (26) 
and (31) into account, one can easily make a mapping 
between different frames, namely 

   
  2

2
exp exp

2

b b

b

z m
z z

m

  




          



    (32) 

Similarly, for a given  and bm b   profile, Equa- 
tion (30) turns out to be 

22
bm

E


  q
  

                (33) 

which, together with (32), coincide with the solutions for 
the attractive delta function potential in [8] in case of 
course 0q  , justifying the credibility of our findings. 
Moreover, the potential in (28) possesses only one expo- 
nentially localized bound state for all values of  , with 
exactly the same energy. 

Nevertheless, we need one more equation to be able to 
express   in the quantum mechanical frame, which is 
vague in its present form, in terms of  that has a cer- 
tain value given by (17). This means that the corrections, 
because of the charge density, to the unperturbed energy 
of the conduction band can be denoted purely by the 
quantum mechanical expressions without a need of clas- 
sical datum. Within this context our exhaustive analysis 
(see the Appendix) puts forward that 

q

22
bmq 




                   (34) 

which is crucial for the exact computations in (33). 
Therefore, the required expression for the full energy of 
the system is transformed to its final form 

 0

1
9 5

4CB CBE E E E V              (35) 

We close this section with a simple but realistic exam- 
ple for a deep understanding of the all theoretical consid- 
erations, in brief, introduced and discussed throughout 
the work presented here. Recalling the significant steps 
in the present framework: 
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1) Determine first  and  for a given system, 
together with  and V ; 

wm bm
L

E
0

2) Calculate  within the frame of Equations (17) 
and (21); 

CB

3) Finalize the calculations with the computation of the 
full energy via Equation (35). 

One can readily evaluate the validity and accuracy of 
the present method. For this purpose, we consider here 
the eigenstates of an electron in a simple rectangular quan- 
tum well of 0.8 0.2GaAs Ga Al As

 
where 0  

and 0  with 0  being the mass of the 
free carrier. The width of the well is chosen to be 100 Ǻ 
and the height of the potential barrier is 0 . 
Although the magnitude of the electrostatic potential is 
small compared to the conduction band offset, it has a 
measurable effect on the energy eigenvalues of the 
quantum well. To observe the change in the energy level 
from the single carrier system, which are approximately 

 (first even) and 107  (first odd) low-ly- 
ing levels, to the doped system, one may compute pre- 
cisely the value of 

0.067wm 

170 meVV 

m
0.0796bm m

meV

E

m

28 meV

  with the help of (33). The shift in 
the energy levels of the conduction band, as the inherent 
nature of the model, due to the additional bound state 
owing to the attractive part of V , which is 

 2 2
02b Cm E   4VB , compels us to choose 

as the ground-state eigenvalue of the single 
quantum well instead of the lowest one that is the case in 
general. Altogether the ground-state energy changes, 
through Equation (35), to almost  when ac- 
counting for the finite charge density in (27). This ob- 
servation is in well agreement with the numerical self- 
consistent calculations, e.g. see Figure 3.37 in Ref. [7]. 


107 meV

30 meV

4. Concluding Remarks 

In this paper we present a simple procedure to solve the 
one-dimensional Poisson-Schrödinger equations, as an 
algebraic alternative treatment to the corresponding self- 
consistent calculations. The Poisson equation is analyzed 
within the frame of quantum theory to find the modified 
conduction band solutions. Although we have only dis- 

cussed the one-dimensional case, it is straightforward to 
extend this approach for the larger dimensions and dif- 
ferent forms of charge densities. Along this line, the 
works are in progress. We foresee that the present simple 
model will find wide applications in the related area. 
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Appendix: Derivation of Equation (34)  

To find an appropriate relation between   and  as 
in (34), one needs to repeat the whole procedure used in 
section III-B considering the algorithm of the self-con- 
sistent calculations. Starting with a prescription similar 
to (22) for the electrostatic potential 

q

     ln bV z C z z                 (A.1) 

and substituting it into the one-dimensional Poisson 
equation one obtains 

 
 

 
 

 
 

 
 

 

2
2

2

2

2

b b

b b b

bb

z z

m z z

z z

z z

z

m

 
 

 
 




            
             

 
   
 





           (A.2) 

As the definition of the electric field strength now 
takes a new form,  

     
 

 
 

d

d
b

b

V z z z
E z C

z z
  

 

  
     
 
 z


  (A.3) 

the Poisson equation in Equation (A.2) is then reduced to  

 
 

 
 

   
 

 
 

 

2

2 2

2

2

2

b

b b

b

b b

bb

z z

m z z

E z z z

m z z

z

m

 
 

 
 




  
  
  

      
    

 
   
 







Keeping the discussion in section III-B in mind, and 
reminding the interplay between (A.4) and Equation (10), 
we offer (for a closed solution) that 

 
 

 
 

 
 

2b b

b b

z z

z z

  
  
   z

z

 
   

  
         (A.5) 

which does not cause any inconvenience in the calcula- 
tions. This plausible recognition has a power of predict- 
ing the correct behavior of  without solving (A.4), 
which also serves as a benchmark for testing the present 
calculations. Consequently, as the behaviour of 

 z

 e q z
b

  is known, the use of (A.5) reveals smoothly 
the behaviour of the wavefunction responsible for the 
refinement  2eq z 

 
and the comparison of the 

structure of the total wavefunction with the right hand 
side of (32) 

    2
exp b

b

m
z z z


   

 

         (A.6) 

produces directly Equation (34). Remarkably, the whole 
solution in (A.6) is the product of growing  2eq z   
and decaying  e q z

b
  exponential functions as in 

(29). This clarifies the inter-relation between the electro- 
static and related quantum mechanical solutions. 
 
 
 
 

        (A.4) 
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