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pose an adaptive sparsity-based DPD (ASDPD) algorithm 
to dynamically adjust both the overcomplete basis and the 
sparse solution so that the solution can better match the 
actual scenario. The method first performs supervised of-
fline dictionary training by using the quadratic program-
ming approach. During the online stage, the dictionary is 
continuously updated in an incremental fashion to adapt 
to time-varying factors. 

The notation used in this paper is according to the 
convention. Symbols for matrices (upper case) and vec-
tors (lower case) are in boldface. ( )H⋅ , 

0
θ , 

1
θ , 

2
θ ,

NI , ⊗  and CN denote conjugate transpose (Hermitian), 

0l  norm, 1l  norm, 2l  norm, identity matrix with the 
dimension N, the Kronecker product and complex Gaus-
sian distribution, respectively. For any matrix Y, vec( )Y  
is denoted as the vertical concatenation of the columns of 
Y. Finally, x̂  denotes the estimate of the parameter of 
interest x . 

The remainder of the paper is organized as follows. 
Section 2 briefly describes the system model assumed 
throughout this paper and formulates as a sparse recovery 
problem. In Section 3, we introduce a scheme calibrating 
the overcomplete basis dynamically and estimating the 
sparse solution adaptively. Simulation results are given 
in Section 4. Finally, Section 5 concludes the paper. 

2. System Model and Problem Formulation 

Consider N base stations (BS) intercepting the narrow-
band signals transmitted by L possible sources. Each BS 
which knows its coordinates is equipped with an antenna 
array consisting of M elements. Denote the lth unknown 
target position by the vector of coordinates lP . We use 
the far-field point-target model, which is commonly used 
for source localization due to its simplicity [3,4,9]. Based 
on this model, the received signal observed by the nth BS 
is given by 

1

( ) ( ) ( ( )) ( ) , 0
L

n n l l n l n
l

t s t t t Tτ
=

= − + ≤ ≤r a p p v   (1) 

where ( )ls t  is the signal waveform considered known. 
( )n la p  is the array response at the nth BS from a signal 

transmitted position, and the propagation delay from the 
lth transmitter to the nth BS is given by ( )n lτ p . The 
vector , {1, , }n n n n N∈= +r H θ v   represents noise 
terms, which is assumed as the independent and identi-
cally distributed (i.i.d.) complex Gaussian process, un-
correlated with the signals. 

We divide the area of interest into K grids. In general, 
K M L> . Then, we formulate the location problem 
as a following CS problem 

, {1, , }n n n n N∈= +r H θ v           (2) 

where ( ) ( )
1[ , , ]n n

n K=H h h  is an overcomplete basis ma-
trix at the nth BS, and ( )n

ih  corresponds to the noiseless  

signal vector between the ith grid and the nth BS. 

1[ , , ]Kθ θ=θ  is a sparse vector that having in total L 
nonzero entries, where the indices of nonzero entries in 
θ  which represents the actual locations. It should be 
emphasized that the above matrix nH  is constructed by 
ideal signals, where the parameters such as AOA and 
TOA can be calculated according to the geometric rela-
tionship directly. Denote H  the matrix obtained by 
concatenation of all the matrices nH , i.e.,  

1[ , , ]T T T
N=H H H . Similarly, by denoting  

1[ , , ]T T T
N=R r r  and 1[ , , ]T T T

N=V v v , we can obtain  

= +R Hθ V                  (3) 

Note that H  is known under the ideal channel condi-
tion, which means that we can estimate the actual coor-
dinates of targets as long as we find the positions of 
nonzero values in θ . That is, the problem of localization 
is converted into one of sparse signal recovery from (3). 
Moreover, the number of these dominant nonzero values 
gives L. 

However, the non-ideal factors are inevitable in a prac-
tical localization system. These factors include the chan-
nel attenuation, phase error, time-varying fluctuations of 
the radio channel and so forth. When these happen, the 
predefined dictionary cannot effectively express the ac-
tual signal, which will cause performance degradation in 
sparse recovery process. 

For avoiding the difficulty of estimate all kinds of the 
time-varying factors, we assume the error dictionary ma-
trix Γ which describe the difference between the prede-
fined dictionary and the practical received signals. Note 
that the error matrix Γ is time-varying and cannot be 
known in advance. In this scenario, the sparse position-
ing model is correspondingly modified as: 

= + +R ΓHθ V Dθ V          (4) 

where =D ΓH  denotes the actual overcomplete basis 
with the time-varying interference. To prevent D from 
having arbitrarily large values (which would lead to arbi-
trarily small values of θ ), it is common to constrain its 
columns 1, , Kd d  to have a 2l  norm less than or 
equal to one. Obviously, the mismatch exists between the 
columns of D and the corresponding columns of the pre-
defined basis H , and thus the performance degradation 
is inevitable in the sparse recovery process. Focused on 
this problem, an adaptive sparse recovery algorithm is 
proposed in this paper, which dynamically calibrate the 
overcomplete basis so that the sparse solution can better 
fit the actual scenario. 

3. Sparse Representation Based on the 
Two-stage Dictionary Learning 

The key feature of adaptive sparse recovery is the adap- 
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tive adjustment of the overcomplete basis. This process 
generally learns the uncertainty of the dictionary, which 
is not available from the prior knowledge, but rather has 
to be estimated using a given set of training samples. 
Several different DL algorithms have been presented re-
cently [10]. However, these methods generally cannot 
effectively handle very large training sets or dynamic 
training data changing over time. To overcome these 
shortcomings, we propose a two-stage DL approach that 
can adapt to the varied upcoming samples. 

So far, the most DL methods are generally based on 
alternating minimization. In one step, a sparse recovery 
algorithm finds sparse representations of the training sam-
ples with a fixed dictionary. In the other step, the dictio-
nary is updated to decrease the average approximation 
error while the sparse coefficients remain fixed. The pro-
posed method in this paper also uses this formulation of 
alternating minimization. 

3.1. Sparse Recovery Phase 

The above problem of noisy sparse signal recovery can 
then be converted into a following optimization problem 

2

2 1
min / 2 λ− +R Dθ θ           (5) 

where λ  is the regularization parameter. However, it 
should be emphasized that larger coefficients in θ  are 
penalized more heavily in the 1l  norm than smaller coef-
ficients, unlike the more democratic penalization of the 

0l  norm [11]. In practice, large coefficients are usually 
the entries corresponding to the actual positions of tar-
gets, while small coefficients commonly represent the 
noise entries. The imbalance of the 1l  norm penalty will 
seriously influence the recovery accuracy, which may 
result in many false targets. Therefore, in this paper we 
choose the reweighted 1l  norm minimization algorithm 
in [11] as our sparse recovery method, which can over-
come the mismatch between 0l  norm minimization and 

1l  norm minimization while keeping the problem solva-
ble with convex estimation tools. 

3.2. Dictionary Learning Phase 

In this paper, we propose a two-stage DL framework in 
which the offline DL method allows to train the dictio-
nary in a supervised manner to integrate the large train-
ing sets, and the incremental DL method based on the 
results in the offline stage handles the unseen online var-
iation to enhance its adaptability. 

1) Offline dictionary learning 
In this stage, the ideal overcomplete basis H  is op-

timized to better represent the data of the training sets. 
Since the sparse coefficients θ  are fixed in the DL 
stage, the resulting optimization problem becomes: 

2

2
min / 2, . . 1, 1, ,H

i is t i K− ≤ =R Dθ d d     (6) 

in which 
2

2
−R Dθ can be written as 

2

2
tr[( ) ( )]

tr( ) 2tr( ) tr( )

vec( ) ( )vec( )

2vec( ) vec( ) tr( )

H

H H H H H

H H H H

H H H H

− = − −

= − +

= ⊗

− +

R Dθ R Dθ R Dθ

Dθθ D Rθ D RR

D I θθ D

θR D RR

  (7) 

Let’s introduce several new expressions for clarity of 
notation 

vec( )

vec( )

H

H

H

⊗

α D

G I θθ

γ θR





 

Omitting the terms that do not depend on D, the objec-
tive function in (6) can be equivalent to 

1
min , . . 1, 1, ,

2
H H H

i is t i K− ≤ =α Gα γ α d d    (8) 

Note that (8) is a standard form of constrained qua-
dratic programming problem which can be solved by any 
standard optimization method, such as the gradient pro-
jection algorithm in [12]. Moreover, the matrix G is ob-
viously a positively definite matrix, and thus (8) is con-
vex function and can be guaranteed to find a global op-
timum [13] in this DL phase. 

2) Online dictionary learning 
Although the offline DL stage has adjust the overcom-

plete basis according the training data, it is impossible to 
be fit for all kinds of time-varying interference patterns. 
Moreover, its computation load is quite large for real- 
time localization. On the contrary, the online incremental 
learning is especially applicable when one seeks to find 
the variation in the sense that the time-varying channels 
pattern might not be specifically learned offline but can 
be distinguished from the past online observations. Based 
on the incremental learning pattern, the online learning 
algorithm in [14] can use the result of the offline DL 
stage as a warm restart for computing the next dictionary 
where the new samples will be fed into the online dictio-
nary learning procedure, and thus a single iteration has 
empirically been found to be enough [14]. 

For completeness, a full description of the algorithm is 
given in Algorithm 1. 

 
Algorithm 1          Two-stage DL algorithm 

Initialization: set the training sample set; generate the ideal dictionary 
H 

Offline DL stage: 

Input: the training sample set; (0)

off
ˆ =D H ; the number of itera-

tions T; 
     for  j=1 to T               

1) use the reweighted 1-norm algorithm to compute the vector 
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( j)

offθ̂  with ( 1)

off
ˆ j−D  fixed for each sample; 

      2) use the gradient projection algorithm to minimize the objec-

tive function in (8) with respect to ( )

off
ˆ jD  keeping ( j)

offθ̂

fixed; 
     end for 

Output: (T)

off off
ˆ ˆ=D D ; (T)

off off
ˆ ˆ=θ θ ; 

Online DL stage: 

Input: (0)

on off
ˆ ˆ=D D ; (0)

on off
ˆ ˆ=θ θ ; the latest observation samples;       

     1) update the pre-trained dictionary according to the latest

observations using the online DL algorithm in [14] with offD̂

as warm restart, and return the learned dictionary (1)

onD̂ ; 

2) use the reweighted 1-norm algorithm to minimize the objec-

tive function in (6) with respect to (1)

onθ̂  keeping (1)

onD̂  fixed;

     3) (0) (1)

on on
ˆ ˆ=D D ; (0) (1)

on on
ˆ ˆ=θ θ ; 

 Output: (1)

on on
ˆ ˆ=D D ; (1)

on on
ˆ ˆ=θ θ ; 

4. Simulation Results 

In order to examine the performance of the proposed 
ASDPD method, we compare it with the decoupled DPD 
approach in [4] and covariance-based sparse DPD (CDPD) 
method [9]. Consider four BSs placed at the corners of a 
1 km × 1 km square. Assume the number of grids in the 
location area is 26 26K = × , which means yielding a 
40m resolution along both x and y axes. The carrier fre-
quency of the simulated signal is assumed to be 900 
MHz. Each BS is equipped with a uniform linear array of 
ten antenna elements with the adjacent elements spacing 
of half a wavelength. The locations of targets are selected 
at random, uniformly, within the square. All the simula-
tion results are obtained based on 200 Monte Carlo rea-
lizations. In each simulation, we consider the following 
multipath channel model 

1

( ) ( )
Q

i i
i

c τ β δ τ τ
=

= −            (9) 

to obtain a set of channel data. { }iβ  is a et of indepen-
dent and identically distributed (i.i.d.) random variables 
which satisfy (0, )ib

i CN e τβ − . b = 1/16 is the expo-
nential power delay profile and iτ  is the delay spread 
for the ith path [15]. 

As shown in Figure 1, the improvement in location 
accuracy for the proposed method can be seen in terms of 
the root mean square error (RMSE), when the number of 
emitters is two and the SNR is set to 5 dB. We can ob-
serve that the location performance of DPD and CDPD 
algorithms decreases evidently as the number of multi-
path increases. On the contrary, the variation of RMSE in 
the ASDPD algorithm is very small due to its adaptive 
ability through DL technique. This result reveals that our 
method is very robust to multipath channels and effec-
tively enhances location accuracy. 

Figure 2 illustrates the location error with respect to 

the number of emitters when the SNR is set to 5 dB. Here, 
real lines describe the case of single-path channel for three 
algorithms, while dashed lines represent the case of three 
paths. With the increase in the number of emitters, the 
RMSE of DPD algorithm increases quickly due to the 
high sensitivity to the estimated number of targets. Note 
that the CDPD method does not rely on a good estimate 
of the number of emitters in the single-case, but its per-
formance decreases evidently as the number of multipath 
increases. On the contrary, the ASDPD algorithm is very 
robust to two scenarios. The importance of the low sensi-
tivity of our algorithm to the number of targets is twofold: 
first, the number of sources is usually unknown, and second 
low sensitivity provides robustness against mistakes in 
estimating the number of targets. 

 

 

Figure 1. The localization error with respect to the number 
of multipaths. 

 

 

Figure 2. The localization error with respect to the number 
of emitters. 
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5. Conclusion 

In this paper, we exploit the inherent spatial sparsity to 
present a novel direct location method by combining the 
offline training and online learning into a unified DL 
framework, thereby better matching time-varying scena-
rios. The effectiveness of the proposed scheme has been 
demonstrated by simulation results where substantial im-
provement for localization performance is achieved. Fur-
ther research will emphasize on the off-grid error analy-
sis and the theoretic bound on the location estimation 
precision. 
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