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ABSTRACT 

In this paper, we extend variational iteration method (VIM) to find approximate solutions of linear and nonlinear thir-
teenth order differential equations in boundary value problems. The method is based on boundary valued problems. 
Two numerical examples are presented for the numerical illustration of the method and their results are compared with 
those considered by [1,2]. The results reveal that VIM is very effective and highly promising in comparison with other 
numerical methods. 
 
Keywords: Variational Iteration Method; Boundary Value Problems; Linear and Nonlinear Problems; Approximate 

Solution 

1. Introduction 

Boundary Value Problems (BVPs) in linear and nonlin-
ear differential equations has been one of the major prob-
lems. Many phenomena in applied Mathematics and other 
sciences can be described very successfully by models 
using mathematical tools from ordinary differential equa-
tions. [3-5] claimed that ODE has gained much attention 
recently due to exact description of nonlinear phenomena. 
In the past, both Mathematicians and Physicists have made 
significant progress in this direction. Analytical methods 
that are commonly used to solve nonlinear equations are 
very restricted and numerical methods involving descrip-
tion of variables on the other hand give rise to rounding 
off errors. Since these equations are linear and nonlinear, 
it may not have precise analytical solutions. On the other 
hand, solving these differential equations analytically may 
guide Mathematicians to know how to describe some 
physical process deeply and sometimes lead to know 
some facts which are not simply understood through 
common observations. As a result, these equations have 
to be solved using other methods. 

References [6,7] gave examples on the free vibration 
analysis of beam structure that is governed by a fourth- 
order differential equation and ring structured by a sixth- 
order differential equation. Moreover, when considering  

the instability setting in an infinite horizontal layer of 
fluid, which is heated from below and is subject to the 
action of rotation, we may model the instability as ordi-
nary convention and over stability by a sixth-order Ordinary 
Differential Equation (ODE) and an eighth-order ODE 
respectively. Even higher order ODE can be involved 
when a uniform magnetic field is applied across the fluid 
in the same direction as gravity. Ordinary convention and 
over stability yield a tenth order and a twelfth order ODEs 
respectively. Such problems modeled by high-order dif-
ferential equations are often associated with initial bound-
ary conditions, so that the problem is well posed. Refer-
ences [8,9] provided examples on the beam vibration 
problem, which is governed by a fourth-order differential 
equation, has four boundary conditions. It is noted that 
for well-posed problems, the number of boundary condi-
tions is the same as the order of the differential equation 
and in general they are only given at each boundary [10-12]. 

In this present work, Variational Iteration Techniques 
for the solution of thirteen order boundary value problem 
is studied, following the variational iteration techniques 
for the solution of eight order boundary value problems. 

2. Variational Iteration Analysis 

To illustrate the basic concept of the variational iteration 
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method, we consider the following general system. 

 Lu Nu f x                 (1) 

where L  is a linear operator,  a nonlinear operator 
and 

N
 f x  is a forcing term. Following the variational 

iteration technique used in [13-17], a correct functional 
can be constructed as 

         
0

1 d
x

n n n nx
u x u x Lu s Nu s f s      x  (2) 

where   is a Lagrange multiplier, which can be identi-
fied optimally via variational iteration method. It may be 
mentioned that  denotes the  approximation n  
is considered to be restricted variation i.e. 

n thn u
0nu  . It 

may also be noted that the Equation (2) is known as a 
correct functional. 

Due to the exert identification of the Lagrange multi-
plier, the solution of the linear problems can be deter-
mined in a single iteration step. The following system of 
differential equations helps in understanding the varia-
tional iteration method. 

   , , 1, 2, ,i i i ix t g t x i   n         (3) 

along in the boundary conditions  0 , 1,2, ,i ix c i n   . 
The system (3) is rewritten as 

      , 1,2, ,i i i ix t g x f t i    n

n

 

The following system is used to approximate the cor-
rect functional for the nonlinear system. (see (4) below) 
where 1 1, 1,2, ,i    

, , , n

 are Lagrange multipliers, 
while 1 2x x x  denote the restricted variations. 

The following iterative scheme can be obtained for 
1, 1,2, ,i i n      as (see (5) below) 

Considering the initial guess values to be  
 0 , 1,2, ,i i ,x c i n    
The final approximation solution can be written as  

     Lim k
i i

k
x t x


 t  can be terminated after suitable num- 

ber of iterations. 

3. Mathematical Formulation 

The basic motivation of this research work is to apply the 
variational iteration technique to solve a system of dif-
ferential equations. The boundary value problem, to be 
solved is as follows 

           
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 

  (6) 

where  , , 1 1 6i iA B i   and 1c  are the finite real con-
stants and functions f  is continuous on  ,a b . 

4. Numerical Examples 

To implement the method developed, two examples are 
considered. 

Example 1 
For  0,1 ,x  the following linear boundary value 

problem is considered 
 

                           
                           
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           (4) 
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             (5) 
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          (7) 
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The analytical solution of the given problem from [8] 

  sin cosy x x x                 (8) 

The given thirteen order BVP can be transferred with 
the following system 

 

 

 

 

 

 

 

 
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(9)
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d
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p
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q
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s
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This system of differential equation can be written in 
terms of the following system of integral equation with 
Lagrange multipliers 1, 1,2,3, ,i i      
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xk k
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
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  

  
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 

 
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   
0

1
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(10)
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
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
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











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  
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


where 

               
           
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   
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 
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The system of Equation (11) will provides the follow-
ing approximations 

When 0k   
   1

0
1 d 1

x
y x x x     

     1

0
1 d 1

x
p x x x      

     1

0
1 d 1

x
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   1
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   1
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The solution is given as 

 
2 3 4 5 6 7 8

9 10 11

1
2 6 24 120 720 5040 40320

362880 3628800 39916800

x x x x x ax bx
y x x

cx dx ex

        

  
 

(11) 

The coefficients  are obtained using 
MAPLE 13 with boundary condition at 

, , , anda b c d e
1x  , which 

gives 

1, 1, 1, 0.999997, 1a b c d e        

The series solution can thus, be written as 

     

     

7 82 3 4 5 6

9 10 11

1 1
1

2 6 24 120 720 5040 40320
1 0.999997 1

362880 3628800 39916800

x xx x x x x
y x x

x x x

        

  
  

 

(12) 

Example 2 
For  0,1 ,x  the following linear boundary value 

problem is considered 

   
   
   
   
   
   
   
   
   
   
   
   
   
   

13 2

0

1

2

3

4

5

6

0

1

2

3

4

5

0 1,

0 1,

0 1,

0 1,

0 1,

0 1,

0 1,

1 ,

1 ,

1 ,

1 ,

1 ,

1 ,

xy x y

y

y

y

y

y

y

y

y

y

y

y

y

y

 


 
 



 
 
 


 
 



 
 



 










           (13) 

The analytical solution of the given problem from [18] 

x    xy x                    (14) 
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The given thirteen order boundary value problem can 
be transformed with the following system 

 

 

 

 

 

 

 

 

 

 

 
2

d

d
d

d
d

d
d

d
d

d
d

d (15)d

d
d

d
d

d
d

d
d

d
d

e
d

x

y
p x

x
p

q x
x
q

r x
x
r

s x
x
s

j x
x
j

u x
x
u

z x
x
m

n x
x
n

l x
x
l

g x
x
g

v x
x
v

y
x



 


 



 


 

 



 


 


 



   

with 

         
   
         
 

0 1, 0 1, 0 1, 0 1, 0 1,

0 1, 0 1

0 , 0 , 0 , 0 , 0

0

y p q r s

j u

z a m b n c l d g

v h

    
 
    


,f
 

This system of differential Equations (14) can be writ-
ten in terms of the following system of integral equations 
with Lagrange multipliers 1, 1, 2,3, ,13i i      

       (16) 

   
   
   
   
   
   
   
   
   
   
   
   
 

1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0

1

1 d

1 d

1 d

1 d

1 d

1 d

1 d

d

d

d

d

d

xk k

xk k

xk k

xk k

xk k

xk k

xk k

xk k

xk k

xk k

xk k

xk k

k

y x p t t

p x q t t

q x r t t

r x s t t

s x j t t

j x u t t

u x z t t

z x a m t t

m x b n t t

n x c L t t

L x d g t t

g x f v t t

v x h



























 

 

 

 

 

 

 

 

 

 

 

 

 














  2

0
e d

x k x
ty t

























with 

 
 
 
 
 
 
 
 
 
 
 
 
 

0

0

0

0

0

0

0

0

0

0

0

0

0

1,

1

1

1

1

1

1

y x

p x

q x

r x

s x

j x

u x

z x a

m x b

n x c

l x d

g x f

v x h




 
 



 
  
 



 
 



 

                (17) 

The above system of differential Equations (16) and 
(17) provide the following approximations 

     
 
 
 
 
 
 
 
 
 
 
 
     

1 0

0 0

1

0
1

1

1

1

1

1

1

1

1

1

2 21 0

0 0
1

1 d 1 1 d

1 d 1

1

1

1

1

1

e 1 e

1 e

x x

x

x xx x

x

y x p x x x x

p x x x

q x x

r x x

s x x

j x x

u x ax

z x a bx

m x b cx

n x c dx

L x d fx

g x f hx

v x h y h

v h

 



1    

   

 

 

 

 

 

 

 

 

 

 

   

  

 


 



 

     

   

   

2
2 1

0 0

2 3 4 5 6 7
13

8 9 10 11

12 13

1

1 1 d 1 1 d 1
2

1
2 6 24 120 720 5040

40320 362880 3628800 39916800
1 2 1 2

479001600 6227020800

x x

k

x
y x p x x x x

x x ax bx cx dx
y x x

x x x x

a x b x



       

       

   

   
 

 


 

The solution is given as 
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 

   

2 3 4 5 6 7

8 9 10 11

12 13

1
2 6 24 120 720 5040

40320 362880 3628800 39916800

1 2 1 2

479001600 6227020800

x x ax bx cx dx
y x x

x x x x

a x b x

       

   

   
 

 (18) 

The coefficients  were obtained using 
MAPLE 13 with the boundary condition at 

, , anda b c d
1x   given 

. 1, 1, 0.99a b c   99, 1.0001d 
The series solution can thus be written as 

 
2 3 4 5

7 8 9 10

11 12 13

0.9999
1

2 6 24 120 720
1.00001

5040 40320 362880 3628800

39916800 479001600 6227020800

6x x x x x
y x x

x x x x

x x x

      

   

  

  (19) 

5. Results and Discussion 

In example 1, Equation (13) is the numerical solution of 
Equation (7) using variational iteration technique. Table 
1 below shows the listof the results obtained by Varia-
tional Iteration Method and compared with the Equation 
(8) which is the exact solution of Equation (7). As we see 
from Table 1; it is clear that the result obtained by the 
present method is very superior to that obtained by the 
exact solution with highly accurate. Also the exact solu-
tion and variational iteration method solution are de-
picted in Figure 1. As we see, there is a very good 
agreement between the approximate solution obtained by 
the eleventh iteration using variational iteration method 
and the exact solution which is shown in Table 1. 

In example 2, the comparison of the exact solution 
with the series solution of the Equation (20), obtained 
using the variational iteration technique is shown in Ta-
ble 2. 

 
Table 1. Comparison of the exact solution with the series 
solution of the problem (7). 

x  Exact Solution VIM Error in Present Method

0 1 1 0 
0.1 0.994054 0.994054 3.88578E-15 
0.2 0.931864 0.931864 1.46216E-13 
0.3 0.769356 0.769356 8.80518E-13 
0.4 0.784691 0.784691 2.35822E-12 
0.5 0.659287 0.659287 3.8014E-12 
0.6 0.537115 0.537115 5.14766E-11 
0.7 0.381117 0.381117 1.56224E-11 
0.8 0.240714 0.240714 8.99409E-11 
0.9 0.129106 0.129106 4.70031E-10 
1 0 0 2.06386E-9 

The comparison of the exact solution with the series solution of the problem 
(7) obtained using the variational iteration technique. 

Table 2. Comparison of the exact solution with the series 
solution of the problem (14). 

x Exact Solution VIM Error in Present Method

0 1 1 0 

0.1 1.105170918 1.105170918 4.17444E-14 

0.2 1.221402758 1.221402758 2.64144E-12 

0.3 1.349858808 1.349858808 2.99314E-11 

0.4 1.491824698 1.491824697 1.67101E-10 

0.5 1.648721271 1.64872127 6.30955E-10 

0.6 1.8221188 1.822118799 1.84757E-09 

0.7 2.013752707 2.013752703 4.47866E-09 

0.8 2.225540928 2.225540919 9.21592E-09 

0.9 2.459603111 2.459603095 1.58906E-08 

1 2.718281828 2.718281808 2.09057E-08 

The comparison of the exact solution with the series solution of the problem 
(14) obtained using variational iteration technique. 

 

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2 -

0.4 -

0.6 -

0.8 -

1.0 -

1.2 -

1.4 -

1.6 -

x

Exact
VIM

 

Figure 1. The graph show the exact and VIM solution for 
both Equation (8) and Equation (13) respectively. 

 
The exact solution and the series solution obtained are 

depicted in Figure 2. There is a very good agreement and 
relationship between the series solution obtained by 13th 
iteration using variational iterations method and the exact 
solution which is shown in Table 2. 

6. Conclusions 

In this paper, variational iteration method has been suc-
cessfully employed to obtain the approximate solutions 
of boundary value problem for thirteenth-order differential 
equations. The method is applied in a direct way without 
using linearization, transformation, discretization, per-
turbation or restriction assumptions. We concluded that 
the proposed technique is very powerful and efficient in 
finding the analytical solution for wide classes of bound-
ary value problems. 
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0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5 -

1 -

1 5 -

2.0 -

2.5 -

3.0 -

y(x)

x

Exact
VIM

 

Figure 2. The graph show the exact and VIM solution for 
both Equation (15) and Equation (20) respectively. 

 
It is worthwhile mentioning that the method is capable 

of reducing the volume of the computational work as 
compared to the classical methods. This can be seen in 
Tables 1 and 2, where the exact solution agreed with the 
series solution generated by variatinal iteration method. 
The error estimation is generated as compared with the 
exact method. Both approaches can be seen clearly on 
Figures 1 and 2. The method is extremely simple to be 
used, and is accurate for solving nonlinear differential 
equation. Hence variational iteration method is a power-
ful tool to search for solutions of various linear and nonlin-
ear boundary value problems. 
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