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ABSTRACT 

The field of environmental sciences is abundant 
with various interfaces and is the right place for 
the application of new fundamental approaches 
leading towards a better understanding of en-
vironmental phenomena. Following the defini-
tion of environmental interface by Mihailovic 
and Balaž [1], such interface can be, for exam-
ple, placed between: human or animal bodies 
and surrounding air, aquatic species and water 
and air around them, and natural or artificially 
built surfaces (vegetation, ice, snow, barren soil, 
water, urban communities) and the atmosphere, 
cells and surrounding environment, etc. Complex 
environmental interface systems are (i) open and 
hierarchically organised (ii) interactions between 
their constituent parts are nonlinear, and (iii) 
their interaction with the surrounding environ-
ment is noisy. These systems are therefore very 
sensitive to initial conditions, deterministic ex-
ternal perturbations and random fluctuations 
always present in nature. The study of noisy 
non-equilibrium processes is fundamental for 
modelling the dynamics of environmental inter-
face regarded as biophysical complex system 
and for understanding the mechanisms of spa-
tio-temporal pattern formation in contemporary 
environmental sciences. In this paper we will 
investigate an aspect of dynamics of energy flow 
based on the energy balance equation. The en-
ergy exchange between interacting environmen- 
tal interfaces regarded as biophysical complex 
systems can be represented by coupled maps. 
Therefore, we will numerically investigate cou-
pled maps representing that exchange. In ana- 

lysis of behaviour of these maps we applied 
Lyapunov exponent and cross sample entropy. 

Keywords: Environmental Interface; Nonlinearity; 
Chaos; Logistic Equation; Energy Balance Equation; 
Coupled Maps, Hierarchy, Biophysical Complex 
Systems 

1. INTRODUCTION 

The field of environmental sciences is abundant with 
various interfaces and is the right place for the applica-
tion of new fundamental approaches leading towards a 
better understanding of environmental phenomena. We 
defined the environmental interface as an interface be-
tween two either abiotic or biotic environments which 
are in relative motion exchanging energy through bio-
physical and chemical processes and fluctuating tempo-
rally and spatially regardless of its space and time scale 
[1]. This definition broadly covers the unavoidable mul-
tidisciplinary approach in environmental sciences and 
also includes the traditional approaches in sciences that 
deal with environmental space. The environmental in-
terface as a complex system is a suitable area for the 
occurrence of irregularities in temporal variations of 
some physical, chemical or biological quantities de-
scribing their interactions [2-4]. For example, such in-
terface can be placed between: human or animal bodies 
and surrounding air, aquatic species and water and air 
around them, and natural or artificially built surfaces 
(vegetation, ice, snow, barren soil, water, urban commu-
nities) and the atmosphere, cells and surrounding envi-
ronment, etc. The environmental interface of different 
media was considered in different contexts [5-8]. Com-
plex environmental interface systems are open and hier-
archically organised and interactions between their parts 
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are nonlinear, while their interaction with the surround-
ing environment is noisy. These systems are therefore 
very sensitive to initial conditions, deterministic external 
perturbations and random fluctuations that always pre-
sent in nature. The study of noisy non-equilibrium proc-
esses is fundamental for (i) modelling the dynamics of 
environmental interface systems and (ii) understanding 
the mechanisms of spatio-temporal pattern formation in 
contemporary environmental sciences [9]. Recently, 
considerable effort has been invested to develop an un-
derstanding of how different fluctuations arise from the 
interplay of noise, forcing, and nonlinear dynamics. 

The understanding of complexity in the framework of 
environmental interface systems may be enhanced by 
starting from the so-called simple systems in order to 
grasp the phenomena of interest and then adding details 
that introduce complexity at many levels. In general, the 
effects of small perturbations and noise, which is ubiq-
uitous in real systems, can be quite difficult to predict 
and can often yield counterintuitive behaviour. Even 
low-dimensional systems exhibit a huge variety of 
noise-driven phenomena, ranging from a less ordered to 
a more ordered system dynamics. Before proceeding 
further, several terms require detailed clarification. The 
term complex system we use in Rosen’s sense [2] as ex-
plicated in the comment by Colier [10]: “In Rosen’s 
sense a complex system cannot be decomposed non- 
trivially into a set of parts for which it is the logical sum. 
Rosen’s modelling relation requires this. Other notions 
of modelling would allow complete models of Rosen 
style complex systems, but the models would have to be 
what Rosen calls analytic, that is, they would have to be 
a logical product. Autonomous systems must be complex. 
Other types of systems may be complex, and some may 
go in and out of complex phases”. Also, the term com-
plexity can entail a lot of ambiguities, since there is a 
great variety of its uses. Sometimes [e.g., 2] it just refers 
to systems that cannot be modelled precisely in all re-
spects. However, following [11], the term “complexity” 
has three levels of meaning: (a) there is self-organization 
and emergence in complex systems [12], (b) complex 
systems are not organized centrally but in a distributed 
manner there are many connections between the sys-
tem’s parts [12,13] and (c) it is difficult to model com-
plex systems and to predict their behaviour, even if one 
knows to a large extent the parts of such systems and the 
connections between the parts [12,14]. 

In the past years the study of deterministic mathe-
matical models of environmental systems has clearly 
revealed a large variety of phenomena, ranging from 
deterministic chaos to the presence of spatial organiza-
tion. The chaos in higher dimensional system is one of 
the focal subjects of physics today. Along with the ap-

proach starting from modelling physical and biophysical 
systems with many degrees of freedom, there emerged a 
new approach, developed by Kaneko [15], to couple 
many one-dimensional maps to study the behaviour of 
the system as a whole. However, this model can only be 
applied to study the dynamics of a single medium such 
as the pattern formation in a fluid. What happens if two 
media border on each other like environmental interface? 
One may naturally lead to the model of coupled logistic 
maps with different logistic parameters. Even two logis-
tic maps coupled to each other may serve as the dy-
namical model of driven coupled oscillators [16]. It has 
been found that two coupled identical maps possess sev-
eral characteristic features which are typical for higher 
dimensional chaos. This model of coupling can be ap-
plied, for example, to the modelling of energy exchange 
between two interacting environmental interfaces [17]. 
In modelling the processes on environmental interfaces 
we should keep in mind that in such interacting bio-
physical systems hierarchical relations are always estab-
lished. Practically it means that we cannot directly com-
pare interactions from different hierarchical levels. Their 
mutual relations are always mediated through particular 
segments of underlying processes, which serve as in-
puts/outputs of functional regulations. In order to for-
mally represent this, we cannot use standard tools from 
mathematical analysis. Instead we need to use a more 
general algebraic approach under which we can con-
struct subsystems with different local rules [18]. 

In this paper we will address one illustrative issue 
important for the modelling of interacting environmental 
interfaces regarded as complex systems. We will nu-
merically investigate coupled logistic maps representing 
an approach in analysis of the energy balance equation 
for environmental interface as well as energy exchange 
between interacting environmental interfaces. Finally, 
we applied nonlinear dynamical analysis using Lyapunov 
exponent and cross sample entropy. 

2. ENERGY BALANCE EQUATION FOR 
ENVIRONMENTAL INTERFACE 

2.1. Energy Exchange over Environmental  
Interfaces 

Although the establishment of organisation in any 
system is of a crucial importance for its functioning, it 
should not be forgotten that we are dealing with real-life 
problems in biophysical systems where a number of 
other conditions should be reached in order to put the 
system to work. Undoubtedly, one of the key conditions 
is the proper supply of the system by the energy. For 
example, in biological complex systems as part of bio-
physical ones, for example, this can be achieved by vari-
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ous mechanisms like assimilation, transpiration, chemi-
cal transformations, etc. In all of these cases, the survival 
of individual entities of the system depends on the bal-
ance between energy reached and energy spent. There-
fore, in this section we will investigate the dynamics of 
energy flow based on the energy balance equation. In its 
basic form it includes temperature differences between 
the underlying surface and surrounding environment. 
However, it can be used in a more general form for 
analysis of energy balance of any environmental inter-
face. We keep it in the basic form, since it is suitable not 
only for investigation of biophysical systems but also for 
differently created environmental interfaces. Since all 
the energy transfer processes occur in the finite time 
interval, we shall immediately write this equation in 
terms of finite differences, i.e. in the form of difference 
equation 

i nT FD                    (1) 

where D is the finite difference operator defined as 
 , 1 , ,i i n i nT T T t D D  iT  is the environmental inter-

face temperature, n is the time level, tD  is the time 
step,  n n n n n iF R H E S c     is defined at the nth 
time level, R is the net radiation flux, H, and E are the 
sensible and the latent heat flux densities, respectively, 
transferred by convection, and is the heat flux trans-
ferred by conduction into deeper layers of underlying 
matter while ic  is the environmental interface soil heat 
capacity per unit area. Eq.1 can also be written in the 
finite difference form from an additional reason. It can 
be explained if we follow comprehensive consideration 
by van der Vaart [19] about replacing given differential 
equations by appropriate difference equations in model-
ling of phenomena in physical and biological world. 
According to him many mathematical models for envi-
ronmental problems have been and will be built in the 
form of differential equations or systems of such equa-
tions. With the advent of computers one has been able to 
find (approximate) solutions for equations that used to 
be intractable. Many of the mathematical techniques 
used in this area amount to replacing the given differen-
tial equations by appropriate difference equations, so 
that extensive research has been done into how to choose 
appropriate difference equations whose solutions are 
“good” approximations to the solutions of the given dif-
ferential equations. For further analysis finite difference 
Eq.1 will be written in the resistance representation, 
when it gets the form of Eq.2. 

Where the symbols introduced have the following 
meaning: RC  is a constant in the net radiation term 

[20,21], rT  is the air temperature at the reference level, 

LC  the water vapour transfer coefficient,  s ie T  the 
saturated water vapour pressure at the environmental 
interface temperature, re  the water vapour pressure at 
reference level, HC  the heat transfer coefficient, DC  the 
coefficient of conduction and dT  the temperature of the 
deeper soil layer. For the boundary condition 

 , , ,d n r n i D r nT T c C T  D , that expresses slow temperature 
changes in both the environment and underlying matter, 
i.e. soil in our case, Eq.2 can be written in the form 

   2 2
, ,( ) 2n c L s i n i n L s i n i nζ a C be T c ζ C b e T c ζ       D  

(3) 

where c R H Da C C C    and , ,n i n r nζ T T   while b 
= 0.06337˚C–1 is a constant [1], that occurs in expanding 
the expression for  ,s i ne T  in Taylor’s series. After 
some transformations we reach the equation having the 
form 

  
 

1

2 2

1

2

n c L s i i n

L s i i n

a C be T c t

t C b e T c

 



     

   

D

          D
     (4) 

or in a shorter form 
2

1 1 2n n nζ A ζ A ζ                      (5) 

where the symbols introduced have the following mean-

ing  1 1 c L s i iA a C be T t c    D  and 

   2
2 , 2L s i n iA C b e T c t   D . 

After some rearrangement the last equation takes the 
form of a difference equation 

 1 1n n nx ρx x                     (6) 

where  1 2x A A ζ  and 1ρ A . In the last equation x 
and 1A  can take positive as well as negative values 
determining a complexity of the energy exchange proc-
esses in the vicinity of the environmental interface. In 
the next section we will analyze properties of this equa-
tion. 

2.2. Entropies as a Measure of Complexity 
of Energy Exchange over           
Environmental Interfaces 

An environmental interface is a complex nonlinear 
system. Estimation of its complexity, through analysis of 
temporal variation of the environmental interface tem-
perature as well as the temperature of air adjacent to that 
surface, is of great interest for modelling procedure. In 
this paper, we use the sample entropy (SampEn) and the 

 

        , , , , , , , ,i R i n r n H i n r n L s i n r n D i n d n iT C T T C T T C e T e C T T c         D               (2)
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permutation entropy (PermEn) to measure the complex-
ity and uncertainties of difference of those two tempera-
ture time series described by the aforementioned differ-
ence equation. 

Sample Entropy (SampEn), a measure quantifying 
regularity and complexity, is believed to be an effective 
analysing method of diverse settings that include both 
deterministic chaotic and stochastic processes, particu-
larly operative in the analysis of physiological, sound, 
climate and environmental interface signals that involve 
relatively small amount of data [22-24]. SampEn (m, r, 
N) is the negative natural log of the conditional prob-
ability that two sequences similar within a tolerance r for 
m points remain similar at the next point, where N is the 
total number of points and self matches are not included, 
i.e., SampEn (m, r, N)  ln m mA B   where 

 
 

1

N m
m
i

m i

A r
A r

N m







              (7) 

and 

 
 

1 .

N m
m
i

m i

B r
B r

N m







              (8) 

A low value of SampEn is interpreted as one showing 
increased regularity or order in the data series. The 
threshold factor or filter r is an important parameter. In 
principle, with an infinite amount of data, it should ap-
proach zero. With finite amounts of data, or with meas-
urement noise, r value typically varies between 10 and 
20 percent of the time series standard deviation [25]. 

Permutation Entropy (PermEn) of order 2n   is 
defined as PermEn    lnp π p π   where the sum 
runs over all !n  permutations π of order n. This is the 
information contained in comparing n consecutive val-
ues of the time series. Consider a time series  

1,...t t T
x


. 

We consider all !n  permutations π of order n which are 
considered here as possible order types of n different 
numbers. For each π we determine the relative frequency 

    1# | 0 , , ,t t np π t t T n x x       

has type   1π T n  . This estimates the frequency of 
π as good as possible for a finite series of values. To 
determine  p π  exactly, we have to assume an infinite 
time series  1 2, ,x x   and take the limit for T   
in the above formula. This limit exists with probability 1 
when the underlying stochastic process fulfils a very 
weak stationarity condition: for k n , the probability 
for t t kx x   should not depend on t. Permutation en-
tropy as a natural complexity measure for time series 
behaves similar as Lyapunov exponents, and is particu-
larly useful in the presence of dynamical or observa-
tional noise [26]. 

2.3. Consideration of the Difference     
Equation Representing Energy      
Exchange over Environmental       
Interfaces 

Let us consider a dynamical system 

 1X S Xn n                    (9) 

and make transformation  T : T X Y , where X and Y 
are vectors. If the Jacobi matrix is regular (locally or 
globally), then for a transformed system 

 1Y G Yn n                  (10) 

information about the dynamics of this system can be 
obtained from the dynamics of the system (9) and vice 
versa. In our case we deal with the difference equation 

 1 1 ; 0n n nx ρx x ρ            (11) 

whose dynamics (in further text ρ will be referred as 
parameter of difference equation) can be completely 
described by the dynamics of the logistic difference 
equation 

 1 1 ; 0 4n n nx rx x r          (12) 

Namely, making successive transformations 1T  
(symmetry), 2T  (homotety) and 3T  (translation) in 
Eq.11, where  1T x x  ,    2T 1 2x ρ x   and 

 3T 1 1x x ρ   , we get Eq.12. Jacobian for all 
transformations is globally different from zero while r 
and ρ are related by the equation 2r ρ  . Finally, for 
the difference equation (11) we have the following prop-
erties: a) x = 0 is the attractive fixed point for 0 1ρ  ; 
b) bifurcations start for 1ρ    (Figure 1a); c) function 
   1f x ρx x   maps interval  1 , 1 1ρ ρ  on itself 

for 2 0ρ   ; d) occurrence of the intermittency and 
chaotic behaviour for 2 ρ ρ    where 

 2 3.56994ρ r r     while Eq.12 has the same 
behaviour for  , 4r r  and finally e) orbits tend to 
infinity for 2ρ   . Here we have to bear in mind that 

1A  depends on discrete “time” n. With 
 p i c L s it c a C be T D  we indicate the scaling time 

range of energy exchange at the environmental interface 
including coefficients, which express all kind of energy 
reaching and departing the environmental interface. 

We analyse now the occurrence of the chaos in solu-
tion of Eq.11. Since a quantitative measure for identifi-
cation of the chaos is the Lyapunov exponent λ, we will 
calculate its spectrum for the difference equation (11) as 
a function of the parameter ρ ranging from –2 to 4, fol-
lowing Parker and Chua [27]. Their values are seen in 
Figure 1b. This figure depicts two features of the Lya-
punov exponent spectrum of Eq.11. They are i) its 
strong symmetry due the point 1ρ    with the exact 
characteristics of the logistic equation spectrum going 
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left and right towards to values –2 and 4, respectively 
and ii) it is positive in the intervals ( 2, 2 )r     and 

( , 4)r r  indicating chaotic fluctuations of x. 
However, inside of the [ 2,2 ]r     and [ , 4]r  

intervals there are a lot opened periodical “windows” 
where 0λ  . It means the dynamical system, i.e. energy 
exchange on the environmental interface, is synchro-
nized in some regions where the chaotic regime prevails. 

2.4. Analysis of the Entropies of Difference 
Equation Representing Energy      
Exchange over Environmental       
Interfaces 

The increasing complexity of environmental models is 
a growing concern in the modelling community. Envi-
ronmental models are used to integrate and process 
knowledge from different parts of the system, and in 
doing so allow us to test system understanding and gen-
erate hypotheses about how the system will respond to 
particular actions via measurements. However, as we 
strive to make our models more “realistic“, the more 
parameters and processes we include. With increased 
model complexity we are less able to manage and under-
stand model behaviour. As a result, the ability of a mod-
el to simulate complex dynamics is no more an absolute 
value in itself, rather a relative one: we need enough 
complexity to realistically model a process, but not so 
much that we ourselves can not handle. For example, if 
we want to model biophysical processes over non-uni- 
form surface we meet a lot of uncertainties in time series 
of calculated temperature, energy fluxes, etc. Various 
measures of complexity were developed to compare time 
series and distinguish regular (e.g., periodic), chaotic, 
and random behaviour. The main types of complexity 
parameters are entropies, fractal dimensions, and Lyapunov 
exponents. They are all defined for typical orbits of pre-
sumably ergodic dynamical systems, and there are pro-
found relations between these quantities [26]. 

Figure 2 depicts SampEn of a single time series ob-
tained from Eq.11 as a function of the parameter ρ 
ranging from –2 to –1.4 (2(a)) and from 3.4 to 4 (2(b)). 
Those two figures show output for this equation over a 
range of growth values, for sample length 2m  . its is 
clearly seen some regions of stability around –1.83 and 
3.83, respectively. We also computed permutation en-
tropy. The test case used was, again, Eq.11. Figures 2(c) 
and 2(d) plot the computed PermEn versus the growth 
rate of parameter ρ, which is periodic for some regions 
and chaotic for others. They show output for 4th order. It 
can be also clearly seen some regions of stability around 
–1.83 and 3.83, respectively. Let us note that PermEn is 
very similar to the positive Lyapunov exponent (Figures 
1(a) vs. 2(c) and 2(d)). 

 
(a) 

 
(b) 

Figure 1. Bifurcation diagram (a) and Lyapunov expo-
nent (b) of the difference equation Eq.11 as a function of 
the parameter ρ ranging from –2 to 4. 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 2. Sample entropy as a function of the parameter 
ρ ranging from –2 to –1.4 (a) and from 3.4 to 4 (b); per-
mutation entropy as a function of the parameter ρ ranging 
from –2 to –1.4 (c) and from 3.4 to 4 (d). 

3. ENERGY EXCHANGE BETWEEN  
ENVIRONMENTAL INTERFACES 

Under the aforementioned conditions, Eqs.11 and 12 
represent energy exchange at a uniform environmental 
interface. In nature, however, we usually encounter a 
mixture of two or more environmental interfaces, for 
example, a surface covered by spots consisting of dif-
ferent plant communities and barren soil or any two 
other biophysical interfaces. In this case there exist a 
number of interacting environmental interfaces. There-
fore, the energy exchange between them is more com-
plex because it has to be described with more equations 
having the form of Eqs.11 and 12. Like many other in-
teresting physical problems [28], interaction between 
environmental interfaces can be described by the dy-
namics of coupled oscillators. In order to study their 
behaviour as a function of coupling strength and nonlin-
earity, we consider the dynamics of two coupled maps 
belonging to the same universality class as oscillators. 

3.1. Maps Representing Energy Exchange 
between Biophysical Environmental 
Interfaces 

In modelling complex environmental interface sys-
tems, it is also interesting to consider the behaviour of 
the following system of two linearly coupled maps 

       1 2
1 1n n nx ε f r x εf r y         (13) 

       2 1
1 1n n ny ε f r y εf r x         (14) 

where the map    , 1f r x rx x   is taken to be the 
logistic map with logistic parameters  1r  and  2r  
while, is a coupling parameter. In the case of    1 2r r , 
two maps are synchronized no matter what the initial 
conditions may be, i.e., coupled maps are identical with 
a single logistic map. Interesting is the case of    1 2r r . 

In the following we fix the logistic parameters above and 
below the critical value  1 3.56994r   for  1r  and  2r  
respectively. We choose the logistic parameters  1r  
and  2r  and regard the coupling parameter ε as the 
controlling parameter. In Figures 3 and 4, the attractors 
of the coupled-map are displayed as functions of cou-
pling ε. Figure 3 shows the result of  1 4r   and 

 2 3r   while Figure 4 shows that of  1 4r   and 
 2 2r  . In both cases, for each value of ε we used the 

final value of the previous ε and 500 iterations were 
plotted. They are two typical examples of the various 
values of  1r  and  2r . One immediately notices sev-
eral interesting features. The fact that there are two cha-
otic regions in both 0ε   and 1ε   ends seems odd 
at first sight, but after some reflection, one realizes that 
very weak ε means very strong  1 ε , which brings 
chaos first to the variable x and then to y, however weak 
the coupling term may be. The most salient feature is the 
appearance of a stable period four cycle right after the 
period one around 0.77ε   in Figure 3. Another case, 
found both in Figure 3 and Figure 4 cases, is the sudden 
filling of the x and y space around 0.85ε   and above. 
The broad window-like region with period four around 

0.9ε   in the case of Figure 4 is also noteworthy. 
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Figure 3. Phase diagram for the maps given by Eqs.13 

and 14 with (1) 4.0r   and (2) 3.0r  , and 0 1  . 
For each value of  , the map was iterated 1500 times 
from the initial point 0.2,  0.4x y   to eliminate tran-
sients, and the next 500 iterates were plotted. 
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Figure 4. Phase diagram for the maps given by Eqs.13 

and 14 with (1) 4.0r   and (2) 2.0r  , and 0 1  . 
For each value of  , the map was iterated 1500 times 
from the initial point 0.2,  0.4x y   to eliminate tran-
sients, and the next 500 iterates were plotted. 

3.2. Lyapunov Exponent and Cross Sample 
Entropy of Map Representing Energy 
Exchange between Biophysical     
Environmental Interfaces 

Nonlinear dynamical analysis is powerful approach in 
understanding biophysical complex systems. We will 
consider two parameters included in the archive of this 
analysis Lyapunov exponent and cross sample entropy 
(Cross-SampEn). 

Consider the general vector mapping 

 1 F , 0, 1,n nx x n  
            (15) 

and its thN  iterate         1F F FN Nx x
   

 with 
     1F Fx x
  

. The asymptotic behaviour of a series of 
iterates of the map can be characterized by the largest 
Lyapunov exponent, which, for an initial point 0x


 is an 

attracting region, is defined to be 

( )
0ln D ( )

lim

N

N

x
λ

N

  
    
 
 



        (16) 

where  is the norm of the Jacobi matrix D and  D N  

for the mappings  F x
 

 and    F N x
 

 respectively. 
For mapping given by Eqs.13 and 14 

         
         

1 2

1 2

1 1 2      1 2
D

1 2 1 1 2

ε r x εr y

εr x ε r y

   
 
    

  (17) 

This exponent measures how rapidly two nearby or-
bits in attracting region converge or diverge. It can be 
evaluated by noting that  

          1
0 0 0D D F DN Nx x x

  
; 

so if 0 1 2, , ,x x x
     are successive iterates of the map, 

then 
         0 1 1 0D D D D .N

Nx x x x
        (18) 

In practice, λ is computed by initially iterating the 
map many times to eliminate transient behaviour and 
then using a large number N of successive points to 
compute the derivative matrix as indicated in Eq.18. 
Finally, the quantity ( )

0ln D ( )N x N 
 


 is used as an 

approximate value of the Lyapunov exponent for the 
attracting region [29]. This exponent provides a way to 
distinguish among periodic, quasiperiodic, and chaotic 
motion. Specifically, if 0x


 is part of a stable periodic 

orbit of length K, then the norm of the derivative matrix 
   D K x


 will be less than one for every x in the K 

cycle. Thus the exponent will be negative and will char-
acterize the rate at which small perturbations from the 
fixed cycle decay. A zero value for the exponent indi-
cates quasiperiodic behaviour in which nearby paths 
maintain their distance on average. Finally, when λ be-
comes positive, nearby points in the attracting region 
diverge from each other giving chaotic motion. In gen-
eral, the exponent will depend on the initial point used in 
the iteration because there may be several stable attrac-
tors, each with a separate basin of attraction [28]. 

We calculated the Lyapunov exponent λ to see the 
behaviour of the coupled maps given by Eqs.13 and 14 
depending on different values of coupling parameter ε. 
Figures 5(a) and 5(b) show Lyapunov exponent for the 
coupled maps as a function of ε ranging from 0 to 1. 
Each point was obtained by iterating 1500 times from 
the initial condition to eliminate transient behaviour and 
then averaging over another 500 iterations starting from 
initial condition (1) 0.20r   and (2) 0.25r   with 500 ε 
values. This simple analysis, where we consider Lyapu-
nov exponent, shows a very interesting features of two 
coupled logistic maps representing interaction of two 
environmental interfaces, regarded as biophysical com-
plex systems, through exchange of energy between them. 
For, example it is seen from Figure 5(a) and 5(b) that 
the region with positive Lyapunov exponent, respect to ε, 
is more emphasised when the one of the logistic map has 
larger values of the logistic parameter. 
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(b) 

 
(c) 
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Figure 5. Lyapunov exponent (a) and (b) and the Cross-Sem- 
ple Entropies (c) and (d) of the coupled maps as a function of 
coupling parameter ε ranging from 0 to 1 for parameter values 
with different the logistic parameters. The logistic equation 
with the logistic parameter r = 4.0 is coupled with the logistic 

equation having the following logistic parameters: (1) 2r   

and (2) 3r  . 

 
Cross-SampEn measure of asynchrony is a recently 

introduced technique for comparing two different time 
series to assess their degree of asynchrony or dissimilar-
ity [30,31]. Let      1 , 2 ,u u u u N     and 

     1 , 2 ,v v v v N     

fix input parameters m and r. Vector sequences:  

       , 1 , 1x i u i u i u i m       

and 

       , 1 , 1y j v j v j v j m     
 

and N is the number of data points of time series, ,i j   
1N m  . For each i N m   set   m

iB r v u = 
(number of j N m  such that    ,m md x i y j r     ) 
 N m , where j  ranges from 1 to N m . And then 

  
  

1

N m
m
i

m i

B r v u
B r v u

N m







        (18) 

which is the average value of  m
iB v u . 

Similarly we define mA  and m
iA  as    m

iA r v u = 
(number of j N m   such that    ,m md x i y j r     ) 
 N m ). 

  
  

1

N m
m
i

m i

A r v u
A r v u

N m







        (19) 
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which is the average value of  m
iA v u . And then 

 
  
  

, , ln
m

m

A r v u
Cross SampEn m r n

B r v u

      
  

  (20) 

We applied Cross-SampEn with 5m   and 0.05r   
for x and y time series. Figures 5(c) and 5(d) show high 
synchronisation between them in the interval 0.2-0.8 of 
coupling parameter. 

4. CONCLUDING REMARKS 

We considered a combined approach to the modelling 
of environmental interfaces regarded as biophysical 
complex systems. They are higher dimensional complex 
systems where both of their parts, organization and 
temporal dynamics, demand different kinds of formalism. 
Therefore, we reported the results of numerical investi-
gation on the systems of two coupled maps, representing 
the exchange of energy, of two interacting environ-
mental interfaces. It has been done by calculating the 
phase diagrams of the coupled maps for different values 
of the logistic and coupling parameters as well as by the 
calculation of the Lyapunov exponent and cross sample 
entropy. It seems that further analysis of this system will 
be useful for understanding the processes of the ex-
change of different quantities between two interacting 
environmental interfaces. 
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