
Journal of Software Engineering and Applications, 2013, 6, 5-13 
http://dx.doi.org/10.4236/jsea.2013.610A002 Published Online October 2013 (http://www.scirp.org/journal/jsea) 

Copyright © 2013 SciRes.                                                                                 JSEA 

5

Towards Semantic Mutation Testing of Aspect-Oriented 
Programs 

Abdul Azim Abdul Ghani 
 

Department of Software Engineering and Information System, Faculty of Computer Science and Information Technology, Universiti 
Putra Malaysia, Serdang, Malaysia. 
Email: azim@upm.edu.my 
 
Received July 30th, 2013; revised August 28th, 2013; accepted September 5th, 2013 
 
Copyright © 2013 Abdul Azim Abdul Ghani. This is an open access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

Aspect-oriented programs have received much attention from software testing researchers. Various testing techniques 
and approaches have been proposed to tackle issues and challenges when testing aspect-oriented programs including 
traditional mutation testing. In traditional mutation testing of aspect-oriented programs, mutants are generated by mak- 
ing small changes to the syntax of the aspect-oriented language. Recently, a new approach known as semantic mutation 
testing has been proposed. This approach mutates the semantics of the language in which the program is written. The 
mutants generated misunderstandings of the language which are different classes of faults. Aspect-oriented program- 
ming presents itself with different properties that can be further explored with respect to semantic mutation testing. This 
paper describes various possible scenarios that semantic mutation testing strategy might have particular value in testing 
aspect-oriented programs. 
 
Keywords: Aspect-Oriented Program Testing; Mutation Testing; Semantic Mutation Testing 

1. Introduction 

Aspect-Oriented Programming (AOP) [1,2] was first in- 
troduced in the middle of 1990s at the Xerox Palo Alto 
Research Center. AOP provides means for modularizing 
and separating crosscutting concerns in which it produces 
a system with higher degree of modularity than the other 
paradigms such as Object-Oriented Programs (OOPs). 
However, since it has new constructs and properties that 
other programming paradigms do not have, it brings new 
challenges and aspect-related defects/faults [3,4], which 
are not present when testing other types of programs, 
which in turn cannot be addressed using traditional unit 
or integration testing approaches [5,6]. For instance, an 
aspect is given in a bank system that is supposed to im- 
plement authentication (as crosscutting concern) before 
calling to a set of methods. AOP can get this requirement 
done by simply capturing any call to the given methods 
(i.e. join points) in the core code by means of pointcuts 
and then injects those identification functionalities or 
behaviors (i.e. advice) before the method which were 
invoked by callers. More specifically, if AOP misses to 
capture some calls to the given methods therefore the 
authentication will not properly be applied and it may 

cause a severe failure in the system. 
Therefore, this programming paradigm, although en- 

hances the modularity, cannot provide correctness by itself 
and thus like any other programs, it is prone to errors (by 
developer, programmer, etc.) and requires the use of soft-
ware testing strategy to produce validated and high quality 
AO software. Software testing is an essentially valuable 
practice to ensure correctness of a program in finding 
defects. 

Testing is a central issue in aspect-oriented software de- 
velopment. Since aspect-oriented programming introduces 
new constructs and programming means for separation of 
concerns, testing of AO programs is more sophisticated and 
challenging in which the existing techniques for testing 
cannot accommodate this matter and need to be leveraged 
or extended. Furthermore, research in AO testing has fo- 
cused on approaches such as code-based structural testing 
[6,7], specification-based functional testing [8-10], use of 
random testing [11], and mutation testing [12]. Surveys by 
[13] and [14] have examined the effectiveness of testing 
techniques for AO programs which include data flow 
based unit testing, state-based approach, aspect flow 
graph based technique, unit testing aspectual behaviour, 
and model-based approach. Reference [15] provides an 



Towards Semantic Mutation Testing of Aspect-Oriented Programs 

Copyright © 2013 SciRes.                                                                                 JSEA 

6 

annotated bibliography of aspect-oriented program test- 
ing. 

In the context of this paper, mutation testing [16] (called 
also as traditional mutation testing) is the basis. Mutation 
testing aims to produce test cases that are good at distin- 
guishing some description and variants of them. This is 
done by producing mutants as a result of applying mutation 
operators. In traditional mutation testing, the mutation op- 
erators work at the syntactic level. Thus, the mutants do not 
consider any mistakes or errors due to semantic misunder- 
standing. A new strategy known as semantic mutation test- 
ing [17,18] has shown that it is promising in tackling cer- 
tain aspect of software defects. However this strategy has 
not yet been investigated for AO testing. Therefore, the pur- 
pose of this paper is to explore a semantic mutation testing 
strategy for testing aspect-oriented programs. 

The rest of the paper is structured as follows: Section 2 
describes traditional mutation testing. Section 3 discusses 
mutation testing applied to aspect-oriented programming. 
Section 4 explains about semantic mutation testing. Section 
5 discusses the issues and challenges faced in testing as- 
pect-oriented software. Section 6 provides ways forward 
in dealing with semantic mutation testing for aspect- 
oriented software. These are scenarios that may have 
particular value to be researched. Section 7 is the con- 
clusion. 

2. Mutation Testing (Traditional) 

Mutation testing (also known as mutation analysis [16]) 
is an approach originally to automate testing with the 
purpose to produce test cases that are effective at distin- 
guishing between a computer program and its variants. 
Over the years, mutation testing has been remarkably 
studied and applied not only to programs from different 
programming paradigms such as Fortran programs [19, 
20], C programs [21], Java programs [22], and AspectJ 
programs [12,23], but also to specifications or models of 
programs, such as Finite State Machine [24], Petri Nets 
[25], and Security Policies [26]. Surveys and reviews on 
work in mutation testing can be found in [27-29]. 

The main idea behind this approach is producing mu- 
tants by introducing changes to the program. These 
changes imitate classes of faults and test cases produced 
are used to distinguish the original program from its mu- 
tants. The process begins by systematically seeding faults 
into a program. These faults are introduced through ap- 
plication of some kind of predefined operators called 
mutation operators to the original code. The mutation 
operators involve syntactic changes. For example, re- 
placing a variable with a constant, replacing + with −, or 
replacing > with >=. The mutation operators themselves 
are typically derived from fault models for the specific 
programs in context. 

Each fault introduced results in a faulty version of 
program called a mutant that slightly differs from the 
original program. Then, the purpose is to run test cases 
generated on the mutants to see if any of the test cases 
distinguishes the faults introduced earlier into the code. If 
a mutant produces different outputs than the original pro- 
gram then the mutant is killed by the test cases. Other- 
wise, the mutant is classified as either equivalent or live 
mutant. Moreover, mutants that are functionally equiva- 
lent, although syntactically different to the original pro- 
gram, always produce the same output and thus no test 
cases will be able to kill them. The mutants are called 
undetected or live mutants. 

In traditional mutation testing, mutation operators are 
introduced at syntactic level. This represents errors due to 
small slips or typos. Mutants that are produced only rep- 
resent syntactically different programs, but do not repre- 
sent misunderstanding of semantic mistake. Thus, to com- 
plement the traditional mutation testing, semantic muta- 
tion testing was proposed. Section 4 introduces semantic 
mutation testing. 

3. Mutation Testing for Aspect-Oriented 
Programs 

The introduction of AOP is to improve separation of 
concerns by providing explicit concepts to modularize 
the crosscutting concerns. AOP uses some improved ab- 
stractions/constructs to represent concerns that crosscut 
the program modules. Some examples of typical cross- 
cutting concerns are security, synchronization policies, 
and logging, which could span the entire systems. Ideally, 
each crosscutting concern can be designed and imple- 
mented independently. AOP separates crosscutting con- 
cern from the rest of the code (core concern) into named 
modules called aspects. It is claimed that by doing this, 
the cohesion and reusability of the classes that implement 
the core concerns will be increased, thus will increase the 
overall quality of software. 

An aspect is similar to class in object-oriented pro- 
gramming (OOP). Besides having the properties of a 
class in OOP, an aspect encapsulates the behavior, and 
state of a crosscutting concern. In AOP languages, as- 
pects can only be invoked at well-defined points in the 
execution of a program. These points are called join 
points. Examples of joint points are calling or execution 
of methods, access to an attribute, and initialization of an 
object. Join points can be determined in a pointcut or 
pointcut designator. A pointcut describes a set of join 
points where an advice needs to be invoked. 

An advice is a method-like construct that contains be- 
havior to execute at a matched joint point. For example, 
this might be the security code to do authentication and 
access control. The advice is woven into the join points 



Towards Semantic Mutation Testing of Aspect-Oriented Programs 

Copyright © 2013 SciRes.                                                                                 JSEA 

7

when a pattern of a pointcut is matched. In other words, 
an advice is used to express the crosscutting actions that 
must take place within the method body at the matched 
join point. There are three kinds of advices: before advice, 
after advice, and around advice. 

AspectJ [30], an extension of Java language, is widely 
studied aspect-oriented programming language. It is the 
most popular AOP language to date and most of the as- 
pect-oriented testing papers base their work on AspectJ 
language. AspectJ realizes crosscutting constructs in 
AOP by providing many special constructs such as as- 
pects, advice, joinpoints, and pointcuts. 

As far as mutation testing for aspect-oriented programs 
is concerned, the technique focuses on syntactic con- 
structs of aspect-oriented programs to model faults by 
means of mutation operators for aspect-oriented lan- 
guages. References [4,31,32] generalize faults for general 
aspect-oriented programs and produced three groups of 
mutation operators. The mutation operators are grouped 
into pointcut descriptor (PCD), intertype declaration 
(ITD), and advices. Table 1 shows examples of as- 
pect-oriented fault types listed according to each group. 
These groups were obtained from a thorough analysis of 
various work on aspect-oriented fault models and types 
[3,33-42], fault classification [43], and bug patterns [44]. 
Other work that focus on mutation operators for as- 
pect-oriented programs are [45-47]. Table 2 lists muta- 
tion operators for aspect-oriented programs at pointcut 
and advice levels for AspectJ language. 
 

Table 1. Examples of fault types for AOP. 

Description 

Pointcut related faults 

Selection of a superset of join point 

Selection of a subset of join point 

Selection of a wrong set of join points,  
including intended and unintended ones 

Incorrect use of primitive pointcut designators 

Incorrect pointcut composition rules 

Incorrect matching based on dynamic values and events 

Inter-type declaration related faults 

Improper method introduction, resulting in  
inconsistencies in method overriding 

Incorrect changes in class hierarchy 

Incorrect or omitted aspect precedence declaration 

Advice related faults 

Incorrect advice type specification 

Incorrect control or data flow due to  
execution of the original join point 

Incorrect access to join point static information 

Advice bound to incorrect pointcut 

Table 2. Examples of mutation operators for AOP. 

Mutation 
operators 

Description 

 Pointcut level 

PWIW Inserts wildcards into pointcut expressions 

PWAR 
Removes annotation tags from type, field,  
method and constructor patterns 

PSWR Removes wildcards from pointcut expressions 

POPL 
Changes the parameter lists of primitive  
Pointcut Designators/Descriptors (PCDs) 

POEC Adds, omits or alters exception throwing clauses 

PCTT Replaces a this PCD with a target one and vice versa 

PCCE 
Replaces a call PCD with an execution/initialization/ 
preinitialization PCD and vice versa 

PCGS Replaces a get PCD with a set one and vice versa 

PCLO Changes the logical operators in PCDs compositions 

PCCC 
Replaces a cflow PCD with a  
cflowbelow one and vice versa 

 Advice level 

ABAR 
Replaces a before clause with an after  
(returning/throwing) one and vice versa 

APSR Removes invocations to proceed statement 

APER 
Removes guard conditions which  
surround proceed statements 

AJSC 
Replaces a thisEnclosingJoinPointStaticPart reference 
with a thisJoinPointStaticPart one and vice versa 

ABHA Removes implemented advice 

ABPR 
Changes pointcut-advice binding by replacing  
pointcuts which are bound to advice 

 
Most work on mutation testing of aspect-oriented pro- 

gramming focus AspectJ programs. Reference [48] pro- 
poses a framework to automatically generate mutants for 
pointcuts and to detect equivalent mutants. A tool that 
implements the framework for mutation testing on point- 
cut expression was proposed. A tool known as AjMutator 
[49] was proposed to generate and detect mutants related 
to pointcut descriptors. The tool detects equivalent mu- 
tants by leveraging on the static analysis of the compiler. 
Other tools that were proposed to automate generation of 
mutants for AspectJ programs are MuAspectJ [50] and 
Proteum/AJ [51]. 

4. Semantic Mutation Testing 

Semantic mutation testing concept was proposed by 
[17,18]. The idea behind this concept is that a description 
language with semantics is mutated to represent likely 
misunderstandings. Thus, it allows us to explore possible 
variation of the semantics. In the case of programming 
languages, there are situations that need specific imple- 



Towards Semantic Mutation Testing of Aspect-Oriented Programs 

Copyright © 2013 SciRes.                                                                                 JSEA 

8 

mentation that lead to different version of compilers be- 
ing written, for example in handling of precision of 
floating point [52]. As a consequence, a program involv- 
ing manipulation of floating point numbers will semanti- 
cally wrong in certain compilers. Mutation operators 
could be applied to the semantics of the language to re- 
flect the different or alternative semantics. 

Semantic mutation testing formally can be represented 
as follows [18]: Given a source code N written in a pro- 
gramming language with semantic L, the behavior is de-
fined by the pair (N, L). The application of a semantic 
mutation operator is of the form (N, L) → (N, L') will 
produce a first-order mutant (N, L') of (N, L) by applying 
one mutation operator once to the semantics of the lan- 
guage. Suppose that (N, L') is mutated from (N, L). Then 
N has its meaning under L represented by NL and its 
meaning under L' represented by NL'. Given a test case t, 
NL(t) is the behavior produced when applying t to N un- 
der semantics L and NL'(t) is the behavior produced when 
applying t to N under semantics L'. The mutant (N, L') is 
said to be killed by a test case t if and only if NL(t) ≠ 
NL'(t). Moreover, this mutant (N, L') is an equivalent mu- 
tant if t |NL(t) = NL'(t). 

In mutation testing of a source code N with semantics 
L, a set of mutation operators are applied individually to 
L. This will produce alternative semantics L1,….,Lm. The 
mutants (N, L1),…,(N, Lm) are used to evaluate a test suite 
or to drive test generation in which a test suite should kill 
every non-equivalent mutant in the set of mutants. 

According to [17,18], three approaches to implement 
semantic testing are: 
 Have a parameterisable system for interpreting a lan- 

guage, the parameters allowing the semantic to be 
mutated. 

 Express the semantics in the form that can be mani- 
pulated. 

 Simulate a mutation of the semantic by making changes 
to the syntax of the description. 

Besides the work in [52], semantic mutation testing for 
C language has also being implemented by using the third 
approach in which semantic mutation are simulated by 
making changes to the syntax of C program [53]. A tool 
known as SMT-C was implemented to handle this. In this 
tool, they implement a group of 13 semantic mutation 
operators based on specific misunderstandings of C lan- 
guages including 4 related to floating point numbers. 

As far as we are concerned from our reading, there is 
no work on semantic mutation testing for aspect-oriented 
program. Only a few works using traditional mutation 
testing have been reported in the literature as mentioned 
in the above section. In traditional mutation testing, the 
mutation operators work at the syntactic level and mostly 
focusing on AspectJ language. Thus, the mutants pro- 
duced do not consider any mistakes or errors due to se- 

mantic misunderstanding of the aspect-oriented pro- 
gramming language. Semantic mutation testing has 
shown that it is promising in tackling certain type of 
software defects, for example, floating-point numbers. 
However this strategy has not been yet applied to AOP 
testing.  

5. Issues and Challenges of AO Programs 

Aspect-oriented programming paradigm new concepts 
and properties extend the capabilities of other pro- 
gramming paradigms. In AOP, separate aspects are de- 
fined (or coded) to contain crosscutting actions (obli- 
viousness nature). These aspects then are woven into 
classes to represent the core concerns of the system. The 
woven code may vary between different compilers and 
versions. Such concepts and properties pose new chal- 
lenges and issues regarding testing. Testing aspect- 
oriented programs must consider faults due to an aspect 
code fragments or where the fragments are inserted 
through pointcuts. Furthermore the types of code inserted 
by an aspect can be different, thus different aspects may 
need different testing strategies. Up to now many testing 
strategies has been proposed. 

The proposed testing strategies are the outcomes from 
trying to handle the issues [3,54-56] faced in testing as- 
pect-oriented programs: 
 Aspects do not have independent identity. Aspects 

depend on the context of their use in a program with 
respect to the base classes. Thus, an aspect could not 
be separately tested as a unit. The aspect needs to be 
woven together with its base classes to generate ex- 
ecutable code before testing it. 

 Aspects can be tightly coupled to their woven context. 
Aspects are often tightly coupled with their woven 
classes. Thus, any change to these classes will likely 
impact the aspects. 

 Control and data dependencies are not readily appar- 
ent from the source code of aspects or classes. The 
nature of weaving process results in difficulty in 
comprehension of control and data dependencies by 
developers. Thus, relating failures to corresponding 
faults becomes difficult. 

 Interaction between classes and aspects results in 
emergent behavior. The root cause of a fault may lie 
in a class, or an aspect, or it may be as a side effect of 
a particular weave order of multiple aspects. Thus, 
resulting is potential faults that are difficult to diag- 
nose. 

 Behavioral changes due to foreign aspects. The use of 
foreign aspects in a software system can introduce 
unexpected and undesired behavior. Thus, they can 
affect program correctness, comprehension, and main- 
tenance. 

 Interference of aspects can result conflicting behavior. 



Towards Semantic Mutation Testing of Aspect-Oriented Programs 

Copyright © 2013 SciRes.                                                                                 JSEA 

9

The introduction of different types of changes by as- 
pects into a software system produces different types 
of interferences that the aspects can cause. 

 Problems in pointcut descriptors (PCDs) if they are 
wrongly formulated. Faults will be injected due to 
wrong formulation of PCDs by developers. This in- 
troduces additional behavior or fails to be applied to 
related join points. 

Besides the above issues, other issues that can influ- 
ence aspect-oriented program testing are undisclosed type 
of errors or bug patterns, and recurring or symptomatic 
issues. Even though the current testing strategies test 
AOP statically, we believe that the semantics of AOP 
influence the behavior of the program. 

Many researchers have investigated techniques with 
the goal of understanding and verifying the effects of 
aspect on the core concern as well as an aspect interac- 
tion as the result of obliviousness nature of AOP. Refer- 
ences [57,58] pointed out that new aspects introduce into 
a program may cause certain modules cease to function 
as expected due to conflicts between superimposed as- 
pects. Thus the occurrence of the problems may be un- 
predictable. This problem (also called semantic interfer- 
ence conflicts) can occur when different aspects possibly 
developed by different developers at different time are 
superimposed on the same join point may semantically 
interfere with each other. Potential conflicts may occur 
depending on the model used or specification style for 
expressing aspects [57]. 

These drawbacks are reflected as composition prob- 
lems between aspects and base code. An aspect composi- 
tion problem refers to an incorrect behaviour in an appli- 
cation that is related to the use of AOP language. Work to 
determine this category of problems has been reported in 
recent years [59-62]. For example [61] classifies aspect 
interference as the following: 
 Wildcards Pointcut Problem that refers to the use of 

wildcards characters can lead to accidental joinpoints 
capture and miss. 

 Conflicts between Aspects that refers to the order of 
weaving of a set of aspects is very important to ensure 
correct behaviour. 

 Circular Dependency between Aspects that refers to 
the formation of circles of the semantic dependencies 
between aspects. 

 Conflicts between Concerns that refers to functional- 
ity needed by a concern is changed by another con- 
cern. 

A more recent work on the classification of aspect 
composition problems is the work of [63]. The classifica- 
tion is a three-dimensional taxonomy of aspect composi- 
tion problems which include the following categories: 
 Functional versus Crosscutting Aspect Composition 

Problems classify problems that impact the function- 

alities of an aspect or a base program, and problems 
that prevent the correct implementation of crosscut- 
ting concerns respectively. 

 Inter-Aspects Problems versus System-Wide Prob- 
lems refers respectively to the aspect compositions 
problems during aspectual composition process, and 
problems involving both aspect and base programs. 

 Semantic versus Syntax Problems refers problems that 
occur due to inconsistencies that change the meanings 
or logic of an AO programs, and problems that are 
incurred by the insufficient of AOP languages to sup- 
port implementation of crosscutting concerns. 

The issues raised by the researchers are not only con- 
cerned with syntax of AO program, but also the seman- 
tics of it. 

6. Way Forward 

Since there are aspect and non-aspect code (i.e. base code) 
in a program, the aspect code must be run properly with 
the non-aspect code. This can be realized through aspect 
weaving. Aspect weaving is the process by which be- 
haviour on aspects are merged to the core concern code 
to yield a working system. However as being mentioned 
in previous section not all types of fault can be detected 
by testing techniques. This situation provides avenue for 
more research in AO testing as up to recently researchers 
are focusing on testing syntactic-oriented of AO pro- 
grams. Thus, inspired by semantic mutation testing tech- 
nique, it is also desirable to study into detail the appli- 
cability of the technique. Below are some possible sce- 
narios that can be further explored. 
 Model transformation–refinement and translation 

In aspect-oriented software development, various de- 
scription of the underlying aspect-oriented software may 
be generated by different activities. Requirements and de- 
signs artifacts are transformed to aspect-oriented lan- 
guage such as AspectJ or AspectC++. UML diagrams 
have been extended for aspect-oriented modeling [64] at 
the requirement and design levels. A more recent notation 
is aspect-oriented user requirements notation [65,66] to 
depict user requirements with respect to aspects has been 
proposed which later can be transformed to aspect-ori- 
ented design model [67]. The form of description of as- 
pect-oriented software changes from abstract models to 
concrete code in aspect-oriented programming language. 
As transformation moves to the target description, se- 
mantic misunderstanding can be introduced because of 
the informality of either description or the semantic dif- 
ferences between the source and target description. Se- 
mantic mutation operators could change the semantics of 
the target description to simulate the semantics given to 
the source description. 
 Common misunderstanding 

For a given set common misunderstandings for a par- 



Towards Semantic Mutation Testing of Aspect-Oriented Programs 

Copyright © 2013 SciRes.                                                                                 JSEA 

10 

ticular aspect-oriented description, a set of semantic mu- 
tation operators could represent these misunderstandings. 
Such a set of operators could be formed by analysis and 
studies of common faults; such as the studies on mutation 
analysis for model transformation [68], on mutation op- 
erators for AspectJ language [31], on fault model for the 
aspect composition at design level [41], and on the recur- 
ring mistakes by programmers [69]. Given a mutation 
operator representing a misunderstanding, a test set that 
kills the mutants generated by this operator should be 
good at locating faults that due to the misunderstanding. 
 Refactoring 

Misunderstandings may occur through refactoring. 
Refactoring is a process of changing a software system in 
such a way to improve the code’s internal structure wi- 
thout changing its external behaviour. In the perspective 
of aspect-oriented applications, refactoring can be applied 
in situation where an aspect can be introduced to an ex- 
isting object-oriented program or legacy system, for ex- 
ample, refactoring a Java program to an equivalent As- 
pectJ program. The legacy system and the new system 
may exhibit different semantics. However, support for 
assuring that refactoring preserves behaviour is lacking. 
Thus semantic mutation testing seems logical to be ap- 
plied in order to test semantic differences between the 
two systems. References [35,70] are worth to be consid- 
ered involving refactoring of aspects and testing. 
 Migration 

It can happen that a specific aspect-oriented language 
used needs to be migrated to a different programming 
language. For example migrating from AspectJ to As- 
pectC++. The original language and the new one may 
encompass different semantics. There is a tendency that 
mistakes will be caused by this difference in semantics. 
Further analysis of the languages need to be done to de- 
termine the possible different in semantics. The process 
of migration could be assisted using a tool to generate 
test case that can locate mistakes caused by the differ- 
ences in semantics. Mutation operators defined depend 
on the original and new language semantics. 
 Aspect Composition 

Multiple pieces of advice can be applied to the same 
join point. Advice precedence determines the order in 
which advice is woven. In AspectJ programming lan- 
guage, precedence is dealt with differently depending on 
where the pieces of advice are defined. It can be either in 
the same aspect or in different aspects. AspectJ pro- 
grammers have the option of declaring the order in which 
aspects are woven by a precedence statement. It can hap- 
pen that no precedence statement is declared. Thus, the 
precedence of aspects is undefined in the semantics of 
AspectJ. In this case, the AspectJ compiler chooses an 
order in which to weave aspects. Generally this order 
cannot be inferred by programmers prior to weaving. Un- 
fortunately, different weaving orders can result in pro- 

grams that behave differently. We need to know the 
weaving order to be able to predict the result. If the 
weaving order is undetermined, as in the absence of a 
precedence declaration, the woven program will at the 
least be not portable (since different compilers can 
choose different weaving orders). Moreover, program- 
mers will not be informed about the order the compiler 
chooses. In another perspective, different pieces of advice 
can appear within aspects in a certain textual order that 
their precedence follows certain predetermined rules. 
However these rules lead to the problems of circularity 
and unable to express all weaving orders. In such cases, 
programmers must manually modify the order the advice 
is listed in the program text to ensure the resulting weav- 
ing order eliminates circularity, and produce a semanti- 
cally appropriate weaving for the task at hand which is a 
non-trivial and lengthy process. However, if the pro- 
grammers forget to do that or if it is not obvious to find 
the precedence relation due to a big number of aspects or 
the complexity of their properties then the result can be 
disastrous. Semantic mutation testing can be used to ex- 
plore the impact of undeclared precedence of pieces of 
advice and aspects, and thus assists in determining of 
portability of the program. Semantic mutation operator 
would rearrange the order of the precedence. If the muta- 
tion operator generates an equivalent mutant then the 
behaviour of the program of the tested program is not 
affected by portability issues. The above scenario on as- 
pect composition only involves precedence. There are 
other problems that can occur in aspect composition as 
mentioned in [59-63]. These problems provide opportu- 
nity for applying semantic mutation testing. 

7. Conclusion 

In this paper, the new type of mutation testing called 
semantic mutation testing which has been introduced is 
advocated to be applied in testing aspect-oriented pro- 
gram. The aim is to represent mistakes due to the mis- 
understandings of semantics of aspect-oriented pro- 
grams. A range of scenarios in which semantics mutation 
testing may have specific value has been initially de- 
scribed. The scenarios provide opportunities for further 
research in this area. 

8. Acknowledgements 

The author would like to thank Malaysia Ministry of 
Education for providing grant under Fundamental Re- 
search Grant Scheme (08-01-13-1222FR) for the project. 

REFERENCES 
[1] G. A. Colyer and A. Clement, “Aspect-Oriented Pro- 

gramming with AspectJ,” IBM Systems Journal, Vol. 44, 
No. 2, 2005, pp. 301-308. 



Towards Semantic Mutation Testing of Aspect-Oriented Programs 

Copyright © 2013 SciRes.                                                                                 JSEA 

11

http://dx.doi.org/10.1147/sj.442.0301 

[2] G. Kiczales, J. Lamping, C. V. Lopes, J. J. Hugunin, E. A. 
Hilsdale and C. Boyapati, “Aspect-Oriented Program- 
ming,” US Patent No. 6467086, 2002. 

[3] R. T. Alexander, J. M. Bieman and A. A. Andrews, “To- 
wards the Systematic Testing of Aspect-Oriented Pro- 
grams,” Technical Report, Colorado State University, Fort 
Collins, 2004. 

[4] F. C. Ferrari, J. C. Maldonado and A. Rashid, “Mutation 
Testing for Aspect-Oriented Programs,” Proceedings of 
the 1st International Conference on Software Testing, 
Verification, and Validation, Norway, 9-11 April 2008, pp. 
52-61. 

[5] M. Harman, F. Islam, T. Xie and S. Wrappler, “Auto- 
mated Test Data Generation for Aspect-Oriented Pro- 
grams,” Proceedings of the 8th International Conference 
on Aspect-Oriented Software Development, Charlottes- 
ville, 2-6 March 2009, pp. 185-196. 

[6] J. Zhao, “Dataflow-Based Unit Testing of Aspect-Orient- 
ed Programs,” 27th Annual IEEE International Computer 
Software and Applications Conference (COMPSAC’2003), 
Dallas, 3-6 November 2003, pp. 188-197. 

[7] O. A. L. Lemos, A. M. R. Vincenzi, J. C. Maldonado and 
P. C. Masiero, “Control and Data Flow Structural Testing 
Criteria for Aspect-Oriented Programs,” Journal of Sys- 
tems and Software, Vol. 80, No. 6, 2007, pp. 862-882. 
http://dx.doi.org/10.1016/j.jss.2006.08.022 

[8] D. Xu, W. Xu and W. E. Wong, “Testing Aspect-Orient- 
ed Programs with UML Design Models,” International 
Journal of Software Engineering and Knowledge Engi- 
neering, Vol. 18, No. 3, 2008, pp. 413-437. 
http://dx.doi.org/10.1142/S0218194008003672 

[9] D. Xu and W. Xu, “State-Based Incremental Testing of 
Aspect-Oriented Programs,” Proceedings of the 5th In- 
ternational Conference on Aspect Oriented Software De- 
velopment (AOSD’06), Bonn, 20-24 March 2006, pp. 180- 
189. 

[10] W. Xu and D. Xu, “State-Based Testing of Integration 
Aspects,” Workshop on Testing Aspect-Oriented Programs 
(WTAOP’06), Portland, 17-20 July 2006, pp. 7-14. 

[11] R. M. Parizi, A. A. Abdul Ghani, R. Abdullah and R. 
Atan, “On the Applicability of Random Testing of As- 
pect-Oriented Programs,” International Journal of Soft- 
ware Engineering and Its Application, Vol. 3, No. 3, 2009, 
pp. 1-19. 

[12] F. C. Ferrari, A. Rashid and J. C. Maldonado, “Towards 
the Practical Mutation Testing of AspectJ Programs,” 
Science of Computer Programming, Vol. 78, No. 9, 2013, 
pp. 1639-1662. 
http://dx.doi.org/10.1016/j.scico.2013.02.011 

[13] S. A. Ali Naqvi, S. Ali and M. Uzair Khan, “An Evalua- 
tion of Aspect-Oriented Testing Techniques,” Proceed- 
ings of the 2005 International Conference on Emerging 
Technologies, Islamabad, 17-18 September 2005, pp. 461- 
466. 

[14] R. M. Parizi and A. A. Abdul Ghani, “A Survey on As- 
pect-Oriented Testing Approaches,” Proceedings of the 
5th International Conference on Computational Science 

and Applications, Malaysia, 26-29 August 2007, pp. 78- 
85. 

[15] A. A. Abdul Ghani and R. M. Parizi, “Aspect-Oriented 
Program Testing: An Annotated Bibliography,” Journal 
of Software, Vol. 8, No. 6, 2013, pp. 1281-1300. 

[16] R. A. DeMillo, R. J. Lipton and F. G. Sayward, “Hints on 
Test Data Selection: Help for the Practicing Programmer,” 
IEEE Computer, Vol. 11, No, 4, 1978, pp. 34-41. 
http://dx.doi.org/10.1109/C-M.1978.218136 

[17] J. A. Clark, H. Dan and R. M. Hieron, “Semantic Muta- 
tion Testing,” Proceedings of the 3rd International Con- 
ference on Software Testing, Verification, and Validation 
Workshops, Paris, 6-10 April 2010, pp. 100-109. 
http://dx.doi.org/10.1109/ICSTW.2010.8 

[18] J. A. Clark, H. Dan and R. M. Hieron, “Semantic Muta- 
tion Testing,” Science of Computer Programming, Vol. 
78, No. 4, 2013, pp. 345-363. 
http://dx.doi.org/10.1016/j.scico.2011.03.011 

[19] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton and 
F. G. Sayward, “Mutation Analysis,” Technical Report 
GIT-ICS-79/08, Georgia Institute of Technology, Atlanta, 
1979. 

[20] K. N. King and J. Offutt, “A Fortran Language System for 
Mutation-Based Software Testing,” Software: Practice 
and Experience, Vol. 21, No. 7, 1991, pp. 685-718. 
http://dx.doi.org/10.1002/spe.4380210704 

[21] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, E. W. 
Krauser, R. J. Martin, A. P. Mathur and E. Spafford, “De- 
sign of Mutant Operators for the C Programming Lan- 
guage,” Technical Report SERC-TR-41-P, Purdue Uni- 
versity, Lafayette, 1989. 

[22] P. Chevalley and P. Thevenod-Fosse, “A Mutation Ana- 
lysis Tool for Java Programs,” International Journal of 
Software Tools for Technology Transfer, Vol. 5, No. 1, 
2002, pp. 90-103. 
http://dx.doi.org/10.1007/s10009-002-0099-9 

[23] P. Anbalagan and T. Xie, “Efficient Mutant Generation 
Testing of Pointcuts in Aspect-Oriented Programs,” Pro- 
ceedings of the 2nd workshop on Mutation Analysis, 2006, 
pp. 51-56. 

[24] S. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado and P. 
Masiero, “Mutation Analysis Testing for Finite State 
Machine,” Proceedings of the 5th International Sympo- 
sium on Software Reliability Engineering, Monterey, 6-9 
November 1994, pp. 220-229. 

[25] S. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E. 
Delamaro and W. E. Wong, “Mutation Testing Applied to 
Validate Specification Based on Petri Nets,” Proceedings 
of IFIP TC6 8th International Conference on Formal De- 
scription Techniques VIII, Vol. 43, 1995, pp. 329-337. 

[26] E. E. Martin and T. Xie, “A Fault Model and Mutation 
Testing of Access Control Policies,” Proceedings of the 
16th International Conference on World Wide Web, May 
2007, pp. 667-676. 
http://dx.doi.org/10.1145/1242572.1242663 

[27] Y. Jia and M. Harman, “An Analysis and Survey of the 
Development of Mutation Testing,” IEEE Transactions 
on Software Engineering, Vol. 37, No. 5, 2011, pp. 649- 

http://dx.doi.org/10.1147/sj.442.0301�
http://dx.doi.org/10.1016/j.jss.2006.08.022�
http://dx.doi.org/10.1142/S0218194008003672�
http://dx.doi.org/10.1016/j.scico.2013.02.011�
http://dx.doi.org/10.1109/C-M.1978.218136�
http://dx.doi.org/10.1109/ICSTW.2010.8�
http://dx.doi.org/10.1016/j.scico.2011.03.011�
http://dx.doi.org/10.1002/spe.4380210704�
http://dx.doi.org/10.1007/s10009-002-0099-9�
http://dx.doi.org/10.1145/1242572.1242663�


Towards Semantic Mutation Testing of Aspect-Oriented Programs 

Copyright © 2013 SciRes.                                                                                 JSEA 

12 

678. http://dx.doi.org/10.1109/TSE.2010.62 

[28] J. Offut, “A Mutation Carol: Past, Present and Future,” 
Information and Software Technology, Vol. 53, No. 10, 
2011, pp. 1098-1107. 
http://dx.doi.org/10.1016/j.infsof.2011.03.007 

[29] J. Offut and R. H. Untch, “Mutation 2000: Uniting the 
Orthogonal,” Proceedings of Mutation 2000: Mutation 
Testing in the Twentieth and Twenty First Centuries, San 
Jose, October 2000, pp. 45-55. 

[30] R. Laddad, “AspectJ in Action: A Practical Aspect-Ori- 
ented Programming,” Manning Publications Co., New 
York, 2003. 

[31] F. C. Ferrari, A. Rashid and J. C. Maldonado, “Design of 
Mutant Operators for the AspectJ Language,” Technical 
Report Version 1.0, University of Sao Carlos, Sao Carlos, 
2011. 

[32] F. C. Ferrari, R. Burrows, O. A. L. Lemos, A. Garcia and 
J. C. Maldonado, “Characterising Faults in Aspect-Ori- 
ented Programs: Towards Filling the Gap between Theory 
and Practice,” Proceedings of the 2010 Brazilian Sympo- 
sium on Software Engineering, Salvador, 27 September-1 
October, 2010, pp. 50-59. 

[33] M. Ceccato, P. Tonella and F. Ricca, “Is AOP Code Eas- 
ier or Harder to Test than OOP Code?” Proceedings of the 
Workshop on Testing Aspect-Oriented Programs, Chicago, 
March 2005. 

[34] N. McEachen and R. T. Alexander, “Distributing Classes 
with Woven Concerns—An Exploration of Potential Fault 
Scenarios,” Proceedings of the 4th International Confer- 
ence on Aspect-oriented Software Development (AOSD’ 
05), Chicago, 14-18 March, 2005, pp. 192-200. 
http://dx.doi.org/10.1145/1052898.1052915 

[35] V. Deursen, M. Marin and L. Moonen, “A Systematic As- 
pect-Oriented Refactoring and Testing Strategy, and its 
Application to JHotDraw,” arXiv:cs/0503015v1 [cs.SE], 
2005. 

[36] J. S. Baekken and R. T. Alexander, “Towards a Fault 
Model for AspectJ Programs: Step 1—Pointcut Faults,” 
Proceedings of the 2nd Workshop on Testing Aspect- 
Oriented Programs, Portland, 20 July 2006, pp. 1-6. 
http://dx.doi.org/10.1145/1146374.1146375 

[37] J. S. Baekken and R. T. Alexander, “A Candidate Fault 
Model for AspectJ Pointcuts,” Proceedings of the 17th 
International Symposium on Software Reliability Engi- 
neering (ISSRE’06), Raleigh, 7-10 November 2006, pp. 
169-178. 

[38] J. S. Baekken, “A Fault Model for Pointcuts and Advice 
in AspectJ Programs,” Master Thesis, School of Electrical 
Engineering and Computer Science, Washington State 
University, Pullman, 2006. 

[39] C. Zhao and R. Alexander, “Testing AspectJ Programs 
Using Fault-Based Testing,” Proceedings of the 3rd 
Workshop on Testing Aspect-Oriented Programs, Van- 
couver, 12-13 March 2007, pp. 13-16. 

[40] M. L. Bernardi and G. A. Di Lucca, “Testing Aspect- 
Oriented Programs: An Approach Based on the Coverage 
of the Interactions among Advices and Methods,” Pro- 
ceedings of the 6th International Conference on the Qua- 

lity of Information and Communication Technology, Lis- 
bon, 12-14 September 2007, pp. 65-76. 

[41] C. Babu and H. R. Krishnan, “Fault Model and Test-Case 
Generation for the Composition of Aspects,” SIGSOFT 
Software Engineering Notes, Vol. 34, No. 1, 2009, pp. 1- 
6. http://dx.doi.org/10.1145/1457516.1457521 

[42] N. Kumar, A. Rathi, D. Sosale and S. N. Konuganti, 
“Enabling the Adoption of Aspects—Testing Aspects: A 
Risk Model, Fault Model and Patterns,” Proceedings of 
the 8th International Conference on Aspect-Oriented 
Software Development (AOSD’09), Charlottesville, 2-6 
March 2009, pp. 197-206. 

[43] O. A. Lemos, F. C. Ferrari, P. C. Masiero and C. V. Lopes, 
“Testing Aspect-Oriented Programming Pointcut De- 
scriptors,” Proceedings of the 2nd Workshop on Testing 
Aspect-Oriented Programs, New York, 20 July 2006, pp. 
33-38. http://dx.doi.org/10.1145/1146374.1146380 

[44] S. Zhang and J. Zhao, “On Identifying Bug Patterns in 
Aspect-Oriented Programs,” Proceedings of the 31st An- 
nual International Computer Software and Applications 
Conference (COMPSAC 2007), Beijing, 24-27 July 2007, 
pp. 431-438.  
http://dx.doi.org/10.1109/COMPSAC.2007.159 

[45] M. Mortensen and R. T. Alexander, “Adequate Testing of 
Aspect-Oriented Programs,” Technical Report CS04-110, 
Department of Computer Science, Colorado State Uni- 
versity, Fort Collins, 2004. 

[46] M. Mortensen, and R. T. Alexander, “An Approach for 
Adequate Testing of AspectJ Programs,” Proceedings of 
the 1st Workshop on Testing Aspect-Oriented Programs 
—In Conjunction with AOSD’2005, Chicago, 14-18 
March 2005. 

[47] M. Singh and S. Mishra, “Mutant Generation for Aspect- 
Oriented Programs,” Indian Journal of Computer Science 
and Engineering, Vol. 1, No. 4, 2010, pp. 409-415. 

[48] P. Anbalagan and T. Xie, “Automated Generation of 
Pointcut Mutants for Testing Pointcuts in AspectJ Pro- 
grams,” Proceedings of the 19th International Symposium 
on Software Reliability Engineering, Seattle, 10-14 No- 
vember 2008, pp. 239-248. 

[49] R. Delamare, B. Baudry and Y. Le Traon, “AjMutator: A 
Tool for the Mutation Analysis of AspectJ Pointcut De- 
scriptors,” Proceedings of the IEEE International Con- 
ference on Software Testing, Verification and Validation 
Workshops (ICSTW 2009), Denver, 1-4 April 2009, pp. 
200-204. http://dx.doi.org/10.1109/ICSTW.2009.41 

[50] A. Jackson and S. Clarke, “MuAspectJ: Mutant Gene- 
ration to Support Measuring the Testability of AspectJ 
Programs,” Technical Report (TCD-CS-2009-38), ACM, 
2009. 

[51] F. C. Ferrari, A. Rashid, E. Y. Nakagawa and J. C. 
Maldonado, “Automating the Mutation Testing of As- 
pect-Oriented Java Programs,” Proceedings of the 5th 
Workshop on Automation of Software Test (AST’10), 
Cape Town, 3-4 May 2010, pp. 51-58. 
http://dx.doi.org/10.1145/1808266.1808274 

[52] H. Dan and R. M. Hierons, “Semantic Mutation Analysis 
of Floating-Point Comparison,” Proceedings of IEEE 5th 

http://dx.doi.org/10.1109/TSE.2010.62�
http://dx.doi.org/10.1016/j.infsof.2011.03.007�
http://dx.doi.org/10.1145/1052898.1052915�
http://dx.doi.org/10.1145/1146374.1146375�
http://dx.doi.org/10.1145/1457516.1457521�
http://dx.doi.org/10.1145/1146374.1146380�
http://dx.doi.org/10.1109/COMPSAC.2007.159�
http://dx.doi.org/10.1109/ICSTW.2009.41�
http://dx.doi.org/10.1145/1808266.1808274�


Towards Semantic Mutation Testing of Aspect-Oriented Programs 

Copyright © 2013 SciRes.                                                                                 JSEA 

13

International Conference on Software Testing, Verifica- 
tion and Validation, Montreal, 17-21 April 2012, pp. 290- 
299. 

[53] H. Dan and R. M. Hierons, “SMT-C: A Semantic Muta- 
tion Testing Tool for C,” Proceedings of IEEE 5th Inter- 
national Conference on Software Testing, Verification 
and Validation, Montreal, 17-21 April 2012, pp. 654-663. 

[54] M. Amar and K. Shabbir, “Systematic Review on Testing 
Aspect-Oriented Programs: Challenges, Techniques and 
Their Effectiveness,” Master Thesis, Software Engineer- 
ing, School of Engineering, Blekinge Institute of Tech- 
nology, Sweden, 2008. 

[55] R. M. L. M. Moreira, A. C. R. Paiva and A. Aguiar, 
“Testing Aspect-Oriented Programs,” Proceedings of the 
5th Iberian Conference on Information Systems and 
Technologies, Santiago de Compostela, 16-19 June 2010, 
pp. 1-6. 

[56] A. Restivo and A. Aguiar, “Towards Detecting and Solv-
ing Aspect Conflicts and Interferences Using Unit Tests,” 
Workshop SPLAT’07, Vancouver, 12-13 March 2007. 

[57] L. Bergmans, “Towards Detection of Semantic Conflicts 
between Crosscutting Concerns,” AAOS 2003 (Analysis 
of Aspect-Oriented Software), Darmstadt, 21 July 2003. 

[58] P. Durr, T. Staijen, L. Bergmans and M. Aksit, “Reason- 
ing about Semantic Conflicts between Aspects,” Euro- 
pean Interactive Workshop on Aspects in Software, EI- 
WAS, Brussels, 1-2 September 2005. 

[59] L. Bussard, L. Carver, E. Ernst, M. Jung, M. Robillard 
and A. Speck, “Safe Aspect Composition,” Workshop on 
Aspects and Dimensions of Concern at ECOOP’2000, 
Cannes, June 2000. 

[60] W. Havinga, I. Nagy and L. Bergmans, “An Analysis of 
Aspect Composition Problems,” Third European Work- 
shop on Aspects in Software 2006, Enschede, 31 August 
2006, pp. 1-8. 

[61] F. Tessier, M. Badri and L. Badri, “A Model-Based De- 
tection of Conflicts between Crosscutting Concerns: To- 
wards a Formal Approach,” International Workshop on 
Aspect-Oriented Software Development, China, Septem- 
ber 2004. 

[62] H. Chengwan, L. Zheng and H. Keqing, “Towards Trust- 
ed Aspect Composition,” Proceedings of IEEE 8th Inter-

national Conference on Computer and Information Tech-
nology Workshops, Sydney, 8-11 July 2008, pp. 643- 648. 

[63] K. Tian, K. Cooper, K. Zhang and H. Yu, “A Classifica- 
tion of Aspect Composition Problems,” Proceedings of 
the Third IEEE International Conference on Secure Soft- 
ware Integration and Reliability Improvement, Shanghai, 
8-10 July 2009, pp. 101-109.  
http://dx.doi.org/10.1109/SSIRI.2009.33 

[64] W. Xu and D. Xu, “A Model-Based Approach to Test 
Generation for Aspect-Oriented Programs,” Workshop on 
Testing Aspect-Oriented Programs (AOSD2005), Chicago, 
14-18 March 2005. 

[65] G. Mussbacher, “Aspect-Oriented User Requirements 
Notation,” Ph.D. Thesis, SITE, University of Ottawa, 
Canada, 2010. 

[66] G. Mussbacher, D. Amyot, J. Araujo and A. Moreira, 
“Requirements Modeling with the Aspect-Oriented User 
Requirements Notation (AoURN): A Case Study,” In: S. 
Katz, M. Mezini and J. Kienzle, Eds., Transactions on 
Aspect-Oriented Software Development VII, Springer, 
Berlin, 2010, pp. 23-68. 

[67] S. Mosser, G. Mussbacher, M. Blay-Fornarino and D. 
Amyot, “From Aspect-Oriented Requirements Models to 
Aspect-Oriented Business Process Design Models—An 
Iterative and Concern-Driven Approach for Software En- 
gineering,” Proceedings of 10th International Conference 
on Aspect-Oriented Software Development (AOSD 2011), 
Porto de Galinhas, 21-25 March 2011, pp. 31-42 . 

[68] J. M. Mottu, B. Baudry and Y. Le Traon, “Mutation 
Analysis Testing for Model Transformations,” In: A. 
Rensink and J. Warmer, Eds., ECMDA-FA 2006, LNCS 
4066, 2006, pp. 376-390. 

[69] P. Alves, A. Santos, E. Figueiredo and F. Ferrari, “How 
Do Programmers Learn AOP? An Exploratory Study of 
Recurring Mistakes,” Proceedings of 5th Latin-American 
Workshop on Aspect-Oriented Software Development 
(LA-WASP.11), Sao Paolo, 26 September 2011, pp. 131- 
140. 

[70] L. Cole and P. Borba, “Deriving Refactorings for As- 
pectJ,” Proceedings of the 4th International Conference 
on Aspect-Oriented Software Development (AOSD’05), 
Chicago, 14-18 March 2005, pp. 123-134.

 

 

http://dx.doi.org/10.1109/SSIRI.2009.33�

