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ABSTRACT 

In this paper the transmission of leptospirosis, an infectious disease caused by bacteria, is studied. Leptospirosis is cur- 
rently spreading in Thailand and worldwide. A Susceptible-Infected-Removed sir model is used to study the stability 
analysis, analytical solution and global behavior of the spreading of the disease. The model was analysed using the 
techniques of non-linear dynamical systems. Two equilibrium points were found and the stability conditions for these 
equilibrium points were established. It will be shown that the linearised solutions of the sir equations are in good 
agreement with numerical solutions. 
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1. Introduction 

In Thailand, leptospirosis occurs mainly in the rainy 
season, with an increase in cases beginning in August, 
reaching a peak in October, and beginning to fall in No- 
vember [1]. Leptospirosis in contaminated material may 
infect a person or other mammal. The bacteria penetrates 
the blood vessels, multiplies and infects several organs. 
Acute disease may be observed in several species, espe- 
cially humans and dogs. In livestock sub-acute or even 
endemic, leptospirosis is generally observed. Infection 
induces antibody production in the animal renal carriers, 
shedding leptospirosis in their urine several weeks or 
even months after infection [2]. In humans, symptoms 
are generally flu-like, but the disease can result in liver 
damage and renal failure. 

In this study, a compartmental model, with human sus- 
ceptible-infective-removed-susceptible (sirs) model and 
vector susceptible-infective (si) model, [3-5] was used to 
examine the dynamical behaviour of the spread of lepto- 
spirosis, a vector borne disease. The sir model has been 
used to describe the transmission dynamics of many dis- 
eases. J Holt et al. 2006 [6] used this model to under- 
stand the behavior of infection in an African rodent of 

Tanzania. In Thailand, W. Triampo 2007 [1] introduced a 
deterministic sir model for the transmission of the spread 
of leptospirosis for the Thai population. In this work a 
modification of the sir model, which is used to describe 
the general transmission dynamics of leptospirosis, is 
proposed, and thresholds for changes in stability are 
found. 

2. Model 

The sir model has both human and vector populations. 
The vector in this case are rats. The human population is 
divided into three subgroups; susceptible humans *

HS , 
infected humans *

HI , and recovered humans *
HR . The 

vector population is divided into two subgroups, sus- 
ceptible vectors *

AS  and infected vectors *
AI  [1].  

The following assumptions are considered in the mo- 
del, as in Triampo [1], reproduced below: 
 Newborns are not immunized and are therefore vul- 

nerable instantly; 
 All compartments of vector and human populations 

are well-mixed and therefore are spatially uniform; 
 Humans can be infected by infected vectors but not 

by infected humans; 
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 Infected humans cannot infect susceptible vectors; 
 Susceptible vectors *

AS  become infected vectors *
AI  

instantly, with no incubation period needed for the 
infectious agents (leptospira) to develop. 

In addition, we assume that: 
 Perfect maternal transmission occurs, that is, new 

borns are susceptible if they are born to a susceptible 
mother and infective if they are born to an infective 
mother; 

 Disease transmission is dependent on the product of 
the density of susceptibles and the infected (instead of 
the frequency of transmission: this difference disap- 
pears after normalisation); 

 The total population remains constant. 
Figure 1 shows the dynamics of the transmission of 

leptospirosis based on the assumptions above. 
The law of mass action, where rates are proportional to 

the size (number) of each component, leads to the fol- 
lowing set of coupled ordinary differential equations: 
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where * indicates a non-normalised variable.  
The variables in (1)-(5) are normalised, giving propor- 

tions in each compartment, based on the assumption that 
the population remains constant, by letting 
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Then Equations (1)-(5) become 
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By using the constraints 1H H HS I R    and 
1A AS I   the above system of equations can be sim- 

plified to: 
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Here we have omitted the equations involving HS , AS  
and used the constraints to make the system into only 
three compartments. 

3. Equilibrium Points 

Equilibrium points are found by setting the right hand 
sides of (11)-(13) equal to zero. This gives two equi- 
librium points in the feasible region. The disease-free equi- 
librium point 

   0 , , 0,0,0
E E EH H AE I R I   and the endemic equili- 

brium point  1 , ,
E E EH H AE I R I . After rearrange- 

ments this gives the endemic equlibrium point 
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and 
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When <AI AI AI A      then  0,1
EAI   and 

0A  . In this work the spreading of infection between 
human and vector is assumed to depend on rainfall. This 
means that the basic reproduction number  0 AR   
depends on A . Equations (14)-(16) can be simplified 
to: 
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  which 

is the basic reproduction number [1]. Infection in humans 
is described by an SIR model, but as animals do 

not recover, the disease in this vector is described by a SI 
process. 

4. Local Stability Analysis 

In this section the local stability analysis of (11)-(13) at 
steady-state is carried out. The Jacobian matrix of the 
system is given below: 

 

 

   
 

1

1 2, ,

1

0

0 0 2

E E E

H H AE E E

E

H A HI H A H H HE

HSI R I

AI AI A A A

I r I I R

J r r

I

   


   

      
 
   
     

              (20) 

 
The eigenvalues at 0E  are 

1 1 2 2 3,   and  .HI HS AI AI Ar r                 

(21) 
The eigenvalues of the Jacobian matrix in (19) of the 

disease-free steady state have negative roots which are 
independent of any parameter. These eigenvalues tell us 
that there is only one case of solution, i.e., all eigen- 
values are real and equal. The negative root con-  

dition is found by considering the eigenvalues (20). Now 

3 < 0AI AI A       when <A AI AI    so 

 0 < 1AI A
A
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R
 





 . So the system is stable at the 

disease-free state since  0 < 1AR  .  

In the case of the endemic disease state, the eigen- 
values at 1E  are 
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The following three theorems follow immediately 
from [7]: 

Theorem 1 The disease-free state at 0E  is locally 
asymptotically stable if  0 < 1AR   and unstable if 

 0 > 1AR  . 
Theorem 2 The endemic state at 1E  is locally 

asymptotically stable if  0 > 1AR   and unstable if 
 0 < 1AR  . 

From theorem 2 and theorem 2  0 1AR    is a bi- 
furcation point of the system where  

 0
AI A

A
AI

R
 





 . The expression above shows the  

relationships between  0 AR   and A  including 

bifurcations at 0E  and 1E  respectively. The parameters 

utilized in this calculation are 
1

,
18,000HI   

1
,

21,900HS   1

1
,

15
r   2

1
,

360
r   0.1,AI    

0.7AI   and 0.2H  . Letting 0.1AI   and 
0.7AI   and using the above theorems the bifurcation 

point  0 1AR    occurs when 0.6A   as displayed 
in Figures 2(a)-(c) In the proof of the following theorem, 
the Liapunov function is used to show that the disease 
free state at 0E  is globally asymptotically stable. 

Theorem 3 If  0 < 1AR  , the existence of local 

stability implies its global stability [4]. 
Proof. Define the Liapunov function as    AV t I t .       
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This concludes the proof.  
Then from theorem 2 the disease-free state at 0E  

using 0.2H   is globally asymptotically stable since 
 0 0.428 < 1AR    as shown in Figure 3. 

5. Numerical Solutions 

Numerical calculations were utilized for solving (11) and 
(12), however, an analytical solution was found for (13). 
The solutions were used to analyze and examine the be- 
havior of the model and determine whether the results 
converged.  

From (13) 
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This simplifies to 
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where c  is a constant determined by the value of 
 AI t  at 0t t . 
Let 
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Here (29) is the analytical solution of (13). 
The negative root condition is found by examining (24) 

and (29).  
As the eigenvalues 1  and 2  from (22) and (23) 

must be real, the following inequality is required: 
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when 2HS HIr   . The cases are divided as will 
follow. The results correspond when using  

1
,

18,000HI   
1

,
21,900HS   1

1
,

15
r   2

1
,

360
r   

0.1,AI   0.7,AI    0 0.02,HI t    0 0.01,HR t   

 0 0.02AI t  . 

5.1. Case 1 

All eigenvalues are real and distinct at the steady state 

0E . When 1 2 3, , < 0    since  

1 2, , , , , , , > 0H H A HS HI AIr r      , then the steady-state 
solution at  0 0,0,0E   is stable. 

Figure 4(a) shows the stable steady state using a phase 
portrait. The graph of the numerical solution converges 
to the equilibrium point  0 0,0,0E  . The parameters  
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Figure 1. Flowchart of the transmission dynamics of lep- 
tospirosis. 
 
used are 0.54, 0.2A H    and so  0 0.91 < 1AR   . 
Figure 5(a) shows the solutions of ,H HI R  and AI  
over time. The values of ,H HI R  and AI  are limited by 
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1 2, , , , , , , > 0H H A HS HI AIr r       so the equilibrium 
point 1E  is stable. 

Figure 4(b) is the phase portrait of the solution. The 
graph of the numerical solution converges to an equi- 
librium point  1 0.0372,0.8792,0.2974E  . The para- 
meters are 0.854, 0.1A H    and so  

 0 1.36 > 1AR   . So 1E  is stable. Figure 5(b) shows 
the solutions of ,H HI R  and AI  over time. The values 
for ,H HI R  and AI  are limited by  

 1 0.0372,0.8792,0.2974E  . In the following cases, 
these is no 0E  because the values of (20) can not be 
found. 

5.2. Case 2 

All eigenvalues 1 2,   and 3  from (21), (22) and (23) 
are real. Two eigenvalues are equal while the third is 
distinct. 

Now 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Equilibrium line between  0 AR   and (a)  HI t , 

(b) HR  (t), (c)  AI t  that shows the bifurcation at 

 0 AR  . The heavy line represents the steady-state and the 

arrows represent the transient flow to the steady-states. 
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Figure 3. Graph shows global asymptotic stablity at 

 0 0,0,0E  . 

 

 
(a) 

 
(b) 

Figure 4. Phase portraits at (a)  0 0,0,0E  ; (b) at steady 

state  1 0.0372,0.8792,0.2974E  . 

 

 2 0when    and  > 1HS HI Ar so         (38) 

Figure 6 shows the phase portrait for this case. The 
graph of the numerical solution converges to the 
equilibrium point  1 0.0382,0.9015,0.2974E  . The 
parameters used are 0.854, 0.1421A H    and so  

 
(a) 

 
(b) 

Figure 5. Numerical solutions for ,H HI R  and AI  at (a) 

 0 0,0,0E  , (b)  1 0.0372,0.8792,0.2974E  . 

 

 

Figure 6. Phase portrait at  1 0.0382,0.9015,0.2974E   

when 0.1421H  . 

 
 0 1.36 1AR     so 1E  is stable. Figure 7 shows the 

solutions of ,H HI R  and AI  over time. The values of 
,H HI R  and AI  are limited by  
 1 0.0382,0.9015,0.2974E  . 

5.3. Case 3 

Two eigenvalues are complex while the third is real. 
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Figure 7. Numerical solution for ,H HI R  and AI  at 

 1 0.0382,0.9015,0.2974E   when 0.1421H  . 

 

   2 2

2 1 2 1
< <

E E

HS HI HS HI

H
A A

r r r r

I I

   


     

(39) 

 2 0when    and  > 1HS HI Ar so          (40) 

Figure 6 is the phase portrait of the solutions. The 
graph of the numerical solution converges to the equi- 
librium point  1 0.0389,0.9076,0.2974E   where the 
parameters are 0.854, 0.2A H    and so  

 0 1.36 > 1AR    so 1E  is stable. Figure 7 shows the 
solutions of ,H HI R  and AI  over time. The values of 

,H HI R  and AI  approach the value of  
 1 0.0389,0.9076,0.2974E  . 

6. Discussion and Conclusion 

The important factors of the spreading of leptospirosis 
are the rate of transmission of leptospirosis from an 
infected vector to a susceptible human  H  and the 
rate of transmission of leptospirosis from an infected 
vector to a susceptible vector  A  [1]. These two fac- 
tors depend on rainfall. A summary of the two factors is 
included here: 

1) The spreading of leptospirosis has two states: the 
disease-free state and the endemic state. The occurence 
of a state depends on A . If  0 < 1AR  , then the dis- 
ease-free state will occur but if  0 > 1AR   then the 
endemic state will occur as shown in Figures 2(a)-(c). 

2) For the disease-free state, a Liapunov function was 
used to prove that it is globally asymptotically stable. So 
for any initial population, over a long time, the popula- 
tion will converge to the disease-free steady state, as 
shown in Figure 3. 

3) Two factors impact on the endemic state case: A  
and H . Before the convergence point 

 

Figure 8. Numerical solutions for ,H HI R  and AI  at 

 1 0.0389,0.9076,0.2974E   when 0.2H  . 

 

 2

2 1

E

HS HI

H
A

r r

I

 


  
          (41) 

when 2HS HIr    then  0 1,AR    
1

,
18,000HS   

1
,

21,900HI   1

1
,

15
r   2

1
,

360
r   0.1AI   and 

0.7AI   which can be classified as below: 

I. For 0.1421 0.3218H   the number of infected 
humans initially increases before decreasing to the 
endemic state while the number of recovered humans 
increases to the endemic state. This is shown in Figures 
5(b) and 7. 

II. For 0.1421 < < 0.3218H  the number of infected 
humans initially increases before decreasing to the en- 
demic state while the number of recovered human ini- 
tially increases before decreasing to the endemic state. 
This is shown in Figure 8. 

4) The death rate of the infected vector population is 
equal to or greater than the natural birth rate of the in- 
fected vector population. 

5) The time to convergence to the disease free state is 
longer than the time to convergence to the endemic state 
because the amount of time before the disease disappears 
is longer than that of the endemic state. This reflects 
what would happen in the real world. 
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Nomenclature 

*
HS : number of humans susceptible (non-normalised). 
*
HI : number of humans infected (non-normalised). 
*
HR : number of humans recovered (non-normalised). 
*
AS : number of vectors susceptible (non-normalised). 
*
AI : number of vectors infected (non-normalised). 

t : time measured in days. 

H : natural birth rate of human population. 

HN : human population. 

HS : natural death rate of susceptible and recovered 
humans. 

*
H : rate of transmission (non-normalised) of lepto-

spirosis from an infected vector to a susceptible human, 
varying with rain fall. 

2r : rate immune individuals become susceptible 
 *

HS  again. 

HI : natural death rate of infected humans plus the 
death rate due to the infection. 

1r : rate infected humans can be cured by antibiotic 
medicines and become immune. 

AS : natural birth rate of susceptible vectors. 

AS : natural death rate of susceptible vectors. 

AI : constant natural birth rate of infected vectors. 

AI : natural death rate of infected vectors plus the 
death rate due to the infection. 

*
A : rate of transmission (non-normalised) of lepto- 

spirosis from an infected vector to a susceptible vector, 
varying with rain fall. 

HS : proportion of humans susceptible (normalised). 

HI : proportion of humans infected (normalised). 

HR : proportion of humans recovered (normalised). 

AS : proportion of vectors susceptible (normalised). 

AN : vector population. 

AI : proportion of vectors infected (normalised). 

H : rate of transmission of leptospirosis from an in- 
fected vector to a susceptible human, varying with rain 
fall. 

A : rate of transmission of leptospirosis from an in- 
fected vector to a susceptible vector, varying with rain 
fall. 

0E : disease free equilibrium point. 

EHI : proportion of humans infected at equilibrium 
point (normalised). 

EHR : proportion of humans recovered at equilibrium 
point (normalised). 

EAI : proportion of vectors infected at equilibrium 
point (normalised). 

1E : endemic equilibrium point. 

0R : basic reproduction number. 

i : 1,2,3i   eigenvalues. 
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