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ABSTRACT 

The effect of fragmented host distributions on the transmission dynamics of directly-transmitted pathogens was ex- 
plored via stochastic automata simulation. Sixteen diverse population distributions varying in shape and density were 
used as a substrate for simulated outbreaks. Extended neighborhoods (80 cells), with probability of infection weighted 
by proximity to an infective source were used to define the overall probability of transitions from susceptible to infected. 
A static probability defined transitions from infected to recovered. The duration of active transmission as well as the 
proportion of each population infected per outbreak was averaged over a series of 30 simulations per parameter set. The 
level of aggregation for each population, measured in terms of the Moran Coefficient (MC) of spatial autocorrelation, 
was found to affect both the intensity of an outbreak and its length of persistence. Denser populations produced the 
most cases and lasted longer than those that were sparser. Elongated distributions, measured as the ratio between pe- 
rimeter and area (PA) reversed some of the trends of increasing density. Long, narrow distributions produced fewer 
cases and were less persistent than populations composed of more compact clusters but with similar MC. Thus, both the 
shape and density of host distribution patterns affected the incidence rate, duration of epidemics and the percent of the 
population infected. Certain patterns of habitat fragmentation, thus, may put more hosts at risk of becoming infected 
than others. 
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1. Introduction 

Fragmented populations of endangered flora and fauna 
may be exposed to greater stresses than populations that 
are larger and more continuous [1]. Increasing the amount 
of edge or transition area between habitats may increase 
exposure to predation, parasitism and environmental stress- 
ors. From the perspective of certain plant hosts, some of 
these effects may be positive, such as decreased herbi- 
vory when patches become isolated due to the destabi- 
lizing effects of habitat fragmentation on local popula- 
tions of insect herbivores [2,3]. Associations between 
host spatial structure and pathogen dynamics have been 
observed with rusts and smuts of various plants [4-7], 
where patchiness appears to prevent the perpetuation of 
outbreaks. 

For pathogens that rely on close contact for transmis- 

sion, the configuration of populations in space may 
greatly affect the rate and stability of epidemic outbreaks. 
Such effects have been repeatedly noted in the natural 
documentation and simulation of measles outbreaks [8, 
9]. 

Distributions of organisms that are organized into dis- 
continuous clusters display especially complex and un- 
predictable dynamics. The manner in which such ensem- 
bles of populations or “metapopulations” are arranged 
can affect the persistence of certain populations both 
free-living or parasitic. In metapopulation models of 
free-living organisms, dispersal can either stabilize 
[10,11] or destabilize [12] populations depending on how 
far, and with what frequency organisms disperse. Parasi- 
toid populations seem to persist less stably in the face of 
strong dispersal in structured metapopulations than do 
free-living organisms [13]. 
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The mathematical modeling of infectious disease trans- 
mission still generally relies on non-spatial methods 
based on ordinary differential equations (ODEs) pio- 
neered early in the 20th century [14]. These techniques 
treat time and state as continuous entities and assume that 
populations are homogeneous and completely mixing. 
Various extensions of the basic method have been de- 
veloped to recreate some level of natural complexity by 
simulating spatial or social discontinuity. Stochastic mo- 
dels also allow for the effects of chance on small popula- 
tions or subsets of larger ones. 

These extensions generally rely on subdividing popu- 
lations into smaller groups with shared characteristics. 
Such methods become very quickly limited in how much 
spatial structure they are able to represent before becom- 
ing computationally intractable. 

Cellular-automata offer an opportunity to study the ef- 
fect of host spatial distribution on the dynamics of infec- 
tious disease transmission in a manner that captures the 
full complexity of the spatial structure of natural popula- 
tion distributions [15].  

Cellular automata are discrete mathematical systems 
that allow “bottom-up” simulations of complex systems 
by applying simple sets of local rules to a matrix of inte- 
gers over time [16]. These rules take into account both 
the state of individual cells and those that neighbor them 
[17]. Rule sets can be probabilistic or deterministic. 
Neighborhoods may include only adjacent cells, or any 
number of concentric groupings or layers outward and 
upward. Thus, automata are ideally suited for simulation 
of complex systems that depend on local interactions 
between discrete entities, and useful for understanding 
dynamics of biological systems [18]. 

Automata have been widely applied to ecological sys- 
tems including forest gap dynamics, forest fires [19], and 
to explore fundamental properties of spatial distributions 
in eco-systems [20]. It the life sciences it has been used, 
for example, to study dynamics of neural populations 
[21] and to model proliferation of tissue growth [22]. 
Epidemics modeling with cellular automata has been 
previously implemented to study the spread of disease 
among moving individuals [23,24]. Applications in- 
clude simple models of measles outbreaks [25], effect 
of vaccination [26], to explore drug therapy for HIV 
[27] and to study transmission of vector borne diseases 
[28].  

Here we apply methods derived from stochastic auto- 
mata to explore the effect of host organization in specific 
spatial pattern on the persistence and intensity of out- 
breaks of directly-transmitted pathogens. 

2. Methods 

2.1. Host Population Distribution 

Patchy population distributions were created by first 

seeding 100 cells randomly in a blank matrix then ap- 
plying a cellular automata-based growth algorithm that 
used various rules governing the probability of an empty 
cell becoming occupied based on the number of neigh- 
boring cells that were already occupied. In some cases, 
probabilities were weighted more heavily along certain 
axes in order to create long, narrow aggregations. These 
population growth models were suspended once the po- 
pulation reached 10,000. 

To produce more variation in patterns, differing num- 
bers of initial seeds were used to initiate growth and were 
allowed to expand for different durations until the popu- 
lation size limit was reached. To produce more linear 
patterns, probabilities of growth were weighted to favor 
expansion along particular axes. The intensity of the 
weighting affected the length and width of the resulting 
pattern which is shown in Figure 1. For each distribution 
Moran Coefficients (MC) and perimeter/area ratios (PA) 
were calculated to characterize aggregation as presented 
in Table 1. The Moran Coefficient (MC) is a powerful 
method to assess spatial dependence or auto correlations 
[29,30]. 

MC = 0 indicates total randomness, while MC = 1 in- 
dicates maximum spatial clustering; values in between 
indicate various degrees of aggregation. See Figure 1. 

2.2. Initial Conditions 

All simulations were encoded using the interpreted “J” 
programming language (Version 4.62, Iverson Software), 
which is optimized for array manipulation. Simulations 
were structured as follows: 

Assumptions and rules: 
1) The environment is represented by a square matrix 

(224 × 224) of 50,176 integers. 
2) Population distributions of hosts are represented by 

10,000 variously distributed cells. 
Patchy population distributions were created by first 

seeding 100 cells randomly in a blank matrix then ap- 
plying a cellular automata-based growth algorithm that 
used various rules governing the probability of an empty 
cell becoming occupied based on the number of neigh- 
boring cells that were already occupied. In some cases, 
probabilities were weighted more heavily along certain 
axes in order to create long, narrow aggregations. These 
population growth models were suspended once the po- 
pulation reached 10,000. 

3) Codes representing the current infective state of in- 
dividual cells are as follows: 

0 = unoccupied 
1 = susceptible and uninfected 
2 = infected and infectious 
3 = immune 
4) Time (t) advances in discrete units of one week per 

time step. 
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0                        0.414                        0.451                        0.732 

(a)                       (b)                           (c)                           (d) 

       
0.757                     0.818                       0.821                        0.845 

(e)                       (f)                           (g)                           (h) 

       
0.858                    0.898                        0.238                         0.732 

(i)                       (j)                           (k)                           (l) 

       
0.84                    0.961                         0.979                       0.981 

(m)                       (n)                          (o)                          (p) 

Figure 1. Host population distribution patterns used as the basis for simulated epidemics. The first level Moran Coefficient of 
spatial autocorrelation is indicated below each matrix. 
 

5) During each time step (t), an infection can be trans- 
ferred from a source (i) to adjacent or nearby contacts up 
to 4 cells away from the source, as described in Figure 2. 

The basic structure of an automaton is as follows: 

 1 ,t t tx f x y                 (1) 

The future composition of a matrix   1tX   is thus a 
function of the current state of that matrix  tX  and 
external factors  tY  such as treatment or vaccination 
that might be imposed. In the present simulation, only the 
internal state of the matrix is considered. 

6) The probability of a set of contacts giving rise to an 
infection is calculated using a state transition probability 
function as in Figure 1. 
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Table 1. The average total number of infected hosts and the average total duration of simulated outbreaks occurring with 
each pattern were compared with statistics describing the shape of each host distribution, including the Moran spatial auto- 
correlation coefficient and the perimeter to area ratio (Force of infection = 2, n = 30). 

 (Days) (%) Coeff. of Variation 

Pattern Moran Coefficient Perimeter/Area Ratio Total # Infected Duration of Outbreak Total Duration 

A 0 3.08 49.5 32.8 38.4 34.4 

B 0.414 1.84 980.5 67.8 39.2 20.0 

C 0.451 1.69 366.8 60.5 46.6 32.4 

D 0.732 0.841 2,220.6 91.7 27.8 20.2 

E 0.757 0.157 7,163.8 129.5 19.6 22.4 

F 0.818 0.087 1,253.8 60.2 33.5 19.7 

G 0.821 0.557 3,343.1 90.0 31.6 18.4 

H 0.845 0.097 2,847.0 86.4 23.9 26.7 

I 0.858 0.449 4,481.2 76.2 20.6 18.3 

J 0.898 0.073 9,321.5 124.6 1.3 33.1 

K 0.238 0.626 206.0 59.2 46.9 25.6 

L 0.732 0.188 3,764.3 194.6 24.1 16.7 

M 0.840 0.581 5,030.0 140.8 19.9 29.5 

N 0.961 0.016 9,966.4 94.8 0.06 16.0 

O 0.979 0.009 9.976.7 78.8 0.07 15.1 

P 0.981 0.040 9,978.9 83.2 0.05 9.8 

 

 

Figure 2. Diagram of stochastic automaton model structure. 
 
where: 

infP  = the probability that an uninfected host becomes 
infected. 

f  = an index of the relative transmissibility of a par- 
ticular pathogen. 

, , ,i i i ia b c d  = the number of infective neighbors at 
each distance a-d. 

a dW   = the relative effect of distance on relative 
transmissibility portraying a geometric decline. 

7) For each time step, transitions from an uninfected 
state to infected are determined by comparing the prob- 
ability of transmission to each uninfected cell  infP  to 
a set of randomly generated numbers between 0 and 1 
using the Mersenne Twister algorithm. 

8) Births and mortality from other causes are not con- 
sidered due to the short term (up to several months) that 
was assumed for the duration of an outbreak. 

Each simulation was terminated until extinction of the 
pathogen occurred and all infected individuals either be- 
came immune or dead, however long that required. For 
each of the eight distributions, simulations were repli- 
cated 10 times and averaged. 

3. Results 

The spatial characteristics (shape, density) of host popu- 
lation distributions were found to greatly affect the dy- 
namics of infectious disease outbreaks. Epidemic curves 
generated for each distribution (Figures 2(a)-(p)), were 
diverse in amplitude and period (Figure 3). The least 
aggregated population (Figure 2(a) produced a peak in- 
cidence of less than 100 daily cases during the simulated 
outbreak, while the most aggregated conditions (Figures 
2(o)-(p)) produced a peak incidence of 5000 daily cases. 
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Each of the other distribution patterns produced inci- 
dence peaks that were intermediate between these two 
extremes. These incidence peaks reflect the cumulative 
morbidity for each of the simulated outbreaks. 

The mean number of infections occurring in an out- 
break tended to be positively associated with the inten- 
sity of spatial autocorrelation (Figure 4) as represented 
by the first order Moran Coefficient (R2 = 56.7%). The 
average magnitude of an outbreak was also strongly, but 
negatively associated (R2 = 41.3%) with the perimeter/ 
area ratio (Figure 5). 

Spatial autocorrelation was much less significantly as-
sociated (R2 = 21.4%) with the average duration of out- 
breaks (Figure 6). The association between perimeter/ 
area ratio and outbreak duration (Figure 7) was simi- 

larly weak (R2 = 25.7%). 
Variation in the total number of infections occurring in 

an outbreak between simulations tended to be negatively 
associated (R2 = 61.4%) with the degree of spatial auto- 
correlation (Figure 8). Perimeter/area ratio (Figure 9) 
showed a milder, positive association (R2 = 40.2%) with 
the average magnitude of outbreaks. The duration of out- 
breaks was less strongly associated with either the Moran 
Coefficient (R2 = 30.5%,) or perimeter/area ratio (R2 = 
27.9%). 

Spatial statistics that account for degree of aggregation 
and exposure did not always suffice to explain the varia- 
tion in outcomes between simulated outbreaks. Other 
aspects of shape, such as degree of elongation and fenes- 
tration may have impacted outbreak dynamics. For ex-  
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Figure 3. Representative epidemic curves for each of sixteen host population distribution patterns. 
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Figure 4. The relationship of spatial autocorrelation to the total number of infections occurring for each population distribu- 
tion pattern (n = 30). 
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Figure 5. The relationship of perimeter to area ratio to the total number of infections occurring for each population distribu- 
tion pattern (n = 30). 
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Figure 6. The relationship of spatial autocorrelation to the total duration of outbreaks for each population distribution pat- 
tern (n = 30). 
 
ample, cumulative number of infections was lower in 
elongated patches (MC = 0.84) with a higher perimeter- 
area ratio (Figure 2(m)) relative to a more clustered dis- 
tribution (MC = 0.858) with more rounded patches and a 
lower proportion of individuals along boundaries (Figure 
2(i)). The persistence of outbreaks of infectious disease 
was also affected by the shape of host distribution pat- 
terns. Generally, the time required for epidemic out- 
breaks to resolve and for transmission to cease in- 
creases as the degree of aggregation increases. Spatial 
discontinuities between individuals and groups of indi- 

viduals increase the probability that transmission will be 
interrupted and that epidemics will abort. This general 
trend of extended transmission with increasing density 
can again be modified by altering the shape of particular 
distributions, particularly when the force of infection is 
relatively high. A population of elongated patches (PA = 
0.581) persists longer than a population of similar density 
but lower perimeter-area ratio (PA = 0.449). Thus, both 
population density and the shape of population distribu- 
tions can determine the intensity and persistence of out- 
breaks of infectious diseases.  
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Figure 7. The relationship of perimeter to area ratio to the total duration of outbreaks for each population distribution pat- 
tern (n = 30). 
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Figure 8. The relationship of spatial autocorrelation to the coefficient of variation for the total number of infections occurring 
for each population distribution pattern (n = 30). 
 

4. Discussions 

The degree of fragmentation and the connectivity of po- 
pulation distributions contribute to the dynamics of the 
spread of infectious pathogens. The shape of population 
distributions can affect both the duration of persistence 
of an epidemic outbreak. While the intensity of contacts 
reflected by density was also a critical factor, differences 
in shape had the ability to negate trends that were other- 
wise apparent across a gradient of density values. 

Shape modulates the intensity of infectious contacts in 

a population by altering the number of individuals ex- 
posed on the edges of a distribution. When the perimeter 
to area ratio is small, the population behaves more like a 
homogeneous distribution. For a given density, when the 
perimeter to area ratio is large, simulations tended to 
terminate more quickly, and left a greater number of in- 
dividuals uninfected. 

Habitat fragmentation may either protect populations 
or render them more vulnerable to disease outbreaks, 
depending on the nature of the pathogen and the ar- 
rangement and size of habitat patches. Protection may be 
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Figure 9. The relationship of perimeter to area ratio to the coefficient of variation of the total duration of outbreaks for each 
population distribution pattern (n = 30). 
 
provided in certain cases by fragmentation by interrupt- 
ing transmission between patches. In natural populations 
of a Swiss wetland plant (Primula farinosa), outbreaks of 
smut fungus (Urocystis pimulicola) were more likely to 
occur in larger, more contiguous habitats [7]. 

Conditions might be considered as well in which frag- 
mentation allows a pathogen to persist by imposing 
asynchrony on its infection dynamics. While an active 
outbreak is occurring in one patch, other patches are re- 
covering and increasing their immunologic vulnerability 
through the recruitment of young individuals. Certain 
pathogens, especially those which either kill or render 
hosts permanently immune, might be expected to cause 
their own extinction in host populations that are distrib- 
uted uniformly and contiguously. 

These results may be important in terms of evaluating 
trends in local and global biodiversity. Models similar to 
this may define more precisely the vulnerability of spa- 
tially discontinuous populations to pathogens, particu- 
larly populations of threatened flora and fauna that have 
become isolated through habitat fragmentation. Popula- 
tion viability analyses (PVAs) have not been reliable in 
defining these risks, partly because of the complexity that 
homogeneous models fail to capture but which can be 
highly relevant to outcomes. The manner in which hosts 
are distributed can fundamentally affect the dynamics of 
disease spread through a population. 
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