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ABSTRACT 

In this paper, a delayed SIR model with exponential demographic structure and the saturated incidence rate is formu- 
lated. The stability of the equilibria is analyzed with delay: the endemic equilibrium is locally stable without delay; and 
the endemic equilibrium is stable if the delay is under some condition. Moreover the dynamical behaviors from stability 
to instability will change with an appropriate critical value. At last, some numerical simulations of the model are given 
to illustrate the main theoretical results. 
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1. Introduction 

Epidemic models described by ordinary differential equa- 
tions have become important tools in analyzing the 
spread and control of infectious diseases. In recent years, 
more and more delayed models have been investigated 
during the study of epidemic models [1-8]. 

When the diseases spread quickly, the population re- 
mains constant. Furthermore the population remains con- 
stant if the birth is nearly equal to the natural death when 
the disease we consider it over many years. In fact, in 
many diseases the birth of the population can not be bal- 
anced by the natural death, and then we need to assume 
that the population is a function of time. 

Varying total population has become one of the most 
important areas in the mathematical theory of epidemic- 
ology [3-8]. Anderson and May [1,2] have done a lot of 
work about varying total population, and Michael Y. Li 
et al. considered a SEIR model with varying total po- 
pulation in [9]. In this paper the authors incorporated 
exponential natural birth and death, as well as disease- 
caused death into the model, so that the total population 
size may vary in time, and they analyzed the stability of 
the model with normalization method. They also present 
a new method for proving the local stability of the unique 
endemic equilibrium. 

During the study of the dynamical behaviors of the 
disease, the standard incidence rate      S t I t N t  

and the bilinear incidence rate    S t I t  are fre-
quently used [3,5,7-11]. In recent years, more and more 
researchers are interested in the nonlinear incidence rate; 
especially the saturate incidence rate has been investi-
gated by many authors in [12-22], in which the recruit-
ment rate of the population is considered as a constant. 

A class of delayed SIR models has been investigated 
with nonlinear incidence rate. Capasso and Serio [13] 
introduced a saturated incidence rate  g I S  into epi- 
demic models, where  g I  tends to a saturation level 
when  I t  reach the maximum number of effective 
contacts between infective individuals and susceptible 
individuals may saturate at high infective levels due to 
crowding of infective individuals or due to the protection 
measures by the susceptible individuals[14].  

In [15], Rui Xu et al. considered the effect of time de-  
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Here parameters 1 2 3, ,    are positive constants *Corresponding author. 
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representing the death rates of susceptibles, infectives, 
and recovered, respectively. The parameters B  and   
are positive constants representing the birth rate of the 
population and the recovery rate of infectives, respec- 
tively. By analyzing the corresponding characteristic 
equations, they discussed the local stability of an en- 
demic equilibrium and a disease free equilibrium. By 
comparison arguments, they analyzed the globally as- 
ymptotically stable of the disease free equilibrium, and 
by means of an iteration technique and Lyapunov func- 
tional technique, respectively, sufficient conditions are 
obtained for the global asymptotic stability of the en- 
demic equilibrium. 

In [16], Kaddar considered a delayed SIR model with  

a nonlinear incidence rate 
   
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The characteristic of this model is: the saturated inci-  

dence rate 
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 (if 1 0  ) saturated with the  

susceptible and the infective individuals. The inclusion 
of time delay into susceptible and infective individuals in 
incidence rate, only on the first equation, because sus- 
ceptible individuals infected at time t   is able to 
spread the disease at time t . 

In the SIR model (2), they consider the period in the 
evolution of susceptible class, and not in the evolution of 
infectious class. They discuss the local stability and the 
existence of Hopf bifurcation. At last some numerical 
simulations are given to illustrate the theoretical analysis. 

In this paper we consider a delayed SIR model with  

the saturation incidence rate 
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exponential birth rate. We also analyze the stability and 
the existence conditions of Hopf bifurcation. The or- 
ganization of this paper is as follows: In Section 2, we 
consider a delayed SIR model with saturation incidence 
rates and exponential birth rate. Then we also consider an 

exceptional case. In this case the saturation incidence rate 
becomes a bilinear incidence rate. Numerical simulations 
with different values of the delay are given in Section 3. 

2. Stability Analysis of the Delayed SIR  
Model 

In Section 2.1, we consider the delayed SIR model with  

the saturated incidence rate
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we consider the parameter measure 0  , the satura- 
tion incidence rate will become a bilinear incidence rate 

   eS t I t      , we consider it in Section 2.2. 

2.1. The Delayed SIR Model with the Saturated  
Incidence Rate 

In the section, we consider the following SIR model with  

the saturation incidence rate 
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a time delay describing a latent period. Let  S t  is the 
number of susceptible individuals,  I t  is the number 
of infective individuals, and  R t  is the number of re- 
covered individuals, then we have the following model: 
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 (3) 

The parameter 0b   is the rate of natural birth, 
0   is the rate of natural death  b  , 0   is 

the rate of disease-related death, 0   is the rate of  

recovery, 
1


 is the incubation period.   is the pa-  

rameter that measure in infections with the inhibitory 
effect. Define the basic reproduction number by 
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and we have the following theorem. 
Theorem 1. If 0 1R  , the solution of system (3) is 
        , , ,0,0S t I t R t    with t  . If 0 1R  , 

system (3) has a unique endemic equilibrium  
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Proof: Considering two case:   0I t   and   0I t  . 
If   0I t  , from the third equation in (3), we get 
  0R t  , then from the first equation in (3), it follows 
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Then substituting the above equations into (2) we get 
the unique root 
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It means that we must make sure 0 1R  . Thus we get 
if 0 1R  , system (3) has a unique endemic equilibrium. 

In the next, we will analyze the stability of the ende- 
mic equilibrium *E  with 0 1R  . We analyze the sta- 
bility by the characteristic equation. 

The characteristic equation of system (3) at the en- 
demic equilibrium *E  is of the form 
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Theorem 2. If 0 1R  , suppose 2 0b    and 
when 0  , the endemic equilibrium *E is stable, and 
when 0  , it is unstable. 

Proof. We consider the case without 0  , the char- 
acterristic Equation (4) reads as: 
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According to the Hurwitz criterion, we can know when 
0  , endemic equilibrium *E  of system (3) is stabil- 

ity.  
When 0  , we suppose system (3) has a purely 

imaginary root  0i   , then separating real and ima- 
ginary parts, we have 
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and the steady state becomes unstable. A Hopf bifurca- 
tion occurs when   passes through the critical value 1  
[18]. 
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Incidence Rate 
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 * * * *, ,P S I R , where: 

  
    

*

*

( )e
,

e
,

S

b
I

b





   


    
      

 


  


   

 

  
    

* .
b e

R
b

    
      

  


   
 

Proof: When t  , consider two case:   0I t   
and   0I t  . 

If   0I t  , we can get   0R t   from the third Equa- 
tion in (9), then we have 

     
d

.
d

S t
b S t

t
   

When t  , we have  S t  . Then, we can get 
that system (9) always has       , ,S t I t R t  

        , , ,0,0S t I t R t    with t  . 
If   0I t  , from the third equation of system (9), we 

get 

* * ,R I



  

and from second equation, we have 

 * e
.S

   


 
  

Then, we get 
  
    

* b e
I

b

    
      

  


   
. 

To make sure * 0,S  * 0,I  * 0.R   We must have 
    0b          . This implies that there 

exists the endemic equilibrium with 0 1R  .  
In the next, we will analyze the stability of the en- 

demic equilibrium *P  with 0 1R  . 
Theorem 4. If 0 1R  and when 0  , the endemic 

equilibrium *P  is stable, and when 0  , *P  is un- 
stable. 

Proof. When 0  , the characteristic equation of 
system (9) read as: 

3 2
1 2 3 0c c c       

It is easy to show 1 0c  , 2 0c   and 3 0c  . Ac- 

cording to Hurwitz criterion, we can know the system is 
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stable with 0  . 
When 0  , use the same method as system (3). Sup- 

pose it has a purely imaginary root  0i   , then we 
can get: 

  3 2
4 5 6 ,f z z c z c z c              (10) 

where 2 2
6 3 3c p q  . Then, we have  0 0f    and 

 f     . Thus Eq.(10) has at least one positive root  

2z . Also, we can have 
 

2

d Re
0

d
 

 




 . A Hopf bi-  

furcation occurs when   passes through the critical va- 
lue 2 . 

3. Simulations and Sensitivity Analysis 

In this section, we present some numerical results of sys- 
tem (3) and (9) at different values   of supporting the 
theoretical analysis in Section 2.  

When 0 1R  , we know system (3) has  
        , , ,0,0S t I t R t    with t  ; and when 

0 1R   system (9) has         , , ,0,0S t I t R t   . 
In Figures 1(a) and (b), we give appropriate parameter 
values of system (3) and system (9) with 0  . 

From Figure 1, we know system (3) (and system (9)) 
has         , , ,0,0S t I t R t    (and  

        , , ,0,0S t I t R t   ). The system (3) (or sys- 
tem (9)) exist unique endemic equilibrium with 0 1R   
(or 0 1R  ). 

When 0  , we give the same parameters for en- 
demic equilibrium in system (3) and (9) as follows: 

0.8, 0.6, 0.2, 0.7, 0.3.b          

In Figure 2, the numerical simulations support the 
analysis given in Section 2. The endemic equilibriums of 
the delayed SIR epidemic model with the saturated inci- 
dence rate and the bilinear incidence rate are locally sta- 
ble without delay. 

Compare with system (9), we can know the proportion 
of  S t  in system (3) is higher, and the proportions of 
 I t ,  R t  are lower. 
When 0  , we give the parameters with different 

  for endemic equilibrium in system (3) as follows: 

0.8, 0.75, 0.2, 0.7, 0.3, 0.01.b            

In Figure 3(a), we give 0.1  , we find endemic 
equilibrium in system (3) is stable. When 0.85  , from 
Figure 3(b), we find it is unstable; from Figure 3(c), we 
find endemic equilibrium in system (3) exists a periodic 
solution. 

If we don’t consider the parameter measure, it means 
that 0  , the incidence rate will become to the stan- 
dard incidence rate, then we have system (9). We give 
parameters with different   for endemic equilibrium in 
system (9) as follows: 

 
(a) 

 
(b) 

Figure 1. (a) System (3) has         , , , ,0 0S t I t R t    

with t   and 0 1R ; (b) System (9) has 

        , , , ,0 0S t I t R t    with t   and 0 1R . 

 

0.8, 0.7, 0.2, 0.7, 0.3.b          

In Figure 4(a), we give 0.1  , we find it is stable; 
from Figure 4(b), we find it is unstable with 0.85  ; 
and from Figure 4(c), we find the endemic equilibrium 
in system (9) exists a periodic solution. 

4. Discussions 

From the numerical simulations, we show that the en- 
demic equilibrium is locally stable without time delay. In 
Figure 2, we know it is more effective that taking meas- 
ures of the inhibition effect from the behavioral change 
of  I t  reduce the infective proportion. From Figures 
3 and 4, when 0.1  , the endemic equilibrium in sys- 
tem (3) and (9) is locally asymptotically stable; when 

0.85  , the endemic equilibrium in system (3) and (9) 
exists periodic solutions. It showed that endemic equilib-  
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(a)                                                     (b) 

Figure 2. (a) The endemic equilibrium is locally stable with 0  in system (3). (b) The endemic equilibrium is locally stable 
with 0  in system (9). 
 

   
(a)                                                     (b) 

 
(c) 

Figure 3. (a) The endemic equilibrium is asymptotic stable with 0.1  in system (3); (b) The endemic equilibrium is unsta- 
ble with 0.85  in system (3); (c) The endemic equilibrium exists periodic solution with 0.85  in system (3). 
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(a)                                                     (b) 

 
(c) 

Figure 4. (a) The endemic equilibrium is asymptotic stable with 0.1  in system (9); (b) The endemic equilibrium is unsta- 
ble with 0.85  in system (9); (c) The endemic equilibrium exists periodic solution with 0.85  in system (9). 
 
rium of system (3) and (9) is locally stable when   is 
suitably small. Furthermore, there exist periodic solu- 
tions with appropriate *  for two models. When 

*0,   , the endemic equilibriums is locally asymp- 
totically stable; and unstable when *  , and there 
exists a Hopf bifurcation. 

5. Acknowledgements 

This research was supported by the National Science 
Foundation of China (10901145) and the National Scie- 
nces Foundation of Shanxi Province (2012011002-1). 

REFERENCES 
[1] R. M. Anderson and R. M. May, “Population Biology of 

Infectious Diseases I,” Nature, Vol. 280, 1979, pp. 361- 
367. http://dx.doi.org/10.1038/280361a0 

[2] R. M. May and R. M. Anderson, “Population Biology of 
Infectious Diseases II,” Nature, Vol. 280, 1979, pp. 455- 
461. http://dx.doi.org/10.1038/280455a0 

[3] H. W. Hethcote and P. van den Driessche, “An SIS Epi- 
Demic Model with Variable Population Size and a De- 

lay,” Journal of Mathematical Biology, Vol. 34, No. 2, 
1995, pp. 177-194. 
http://dx.doi.org/10.1007/BF00178772 

[4] F. Chamchod and N. F. Britton, “Analysis of a Vector- 
Bias Model on Malaria Transmission,” Bulletin of Mathe- 
matical Biology, Vol. 73, No. 3, 2011, pp. 639-657. 
http://dx.doi.org/10.1007/s11538-010-9545-0 

[5] K. L. Cooke and P. van den Driessche, “Analysis of an 
SEIRS Epidemic Model with Two Delays,” Journal of 
Mathematical Biology, Vol. 35, No. 2, 1996, pp. 240-260. 
http://dx.doi.org/10.1007/s002850050051 

[6] Y. Takeuchi, W. Ma and E. Beretta, “Global Asymptotic 
Properties of a Delay SIR Epidemic Model with Finite 
Incubation Times,” Nonlinear Analysis, Vol. 42, No. 6, 
2000, pp. 931-947. 
http://dx.doi.org/10.1016/S0362-546X(99)00138-8 

[7] J. Mena-Lorca and H. W. Hetheote, “Dynamic Models of 
Infectious Diseases as Regulators of Population Sizes,” 
Journal of Mathematical Biology, Vol. 30, No. 7, 1992, 
pp. 693-716. 

[8] B. K. Mishra and D. K. Saini, “SEIRS Epidemic Model 
with Delay for Transmission of Malicious Objects in 
Computer Network,” Applied Mathematics and Computa- 
tion, Vol. 188, No. 2, 2007, pp. 1476-1482. 

http://dx.doi.org/10.1038/280361a0�
http://dx.doi.org/10.1038/280455a0�
http://dx.doi.org/10.1007/BF00178772�
http://dx.doi.org/10.1007/s11538-010-9545-0�
http://dx.doi.org/10.1007/s002850050051�
http://dx.doi.org/10.1016/S0362-546X(99)00138-8�


W. W. WANG  ET  AL. 

Copyright © 2013 SciRes.                                                                                  AM 

67

http://dx.doi.org/10.1016/j.amc.2006.11.012 

[9] M. Y. Li, J. R. Graef, L. Wang and J. Karsai, “Global 
Dynamics of a SEIR Model with Varying Total Popula- 
tion Size,” Mathematical Biosciences, Vol. 160, No. 2, 
1999, pp. 191-213. 
http://dx.doi.org/10.1016/S0025-5564(99)00030-9 

[10] M. Gabriela, M. Gomes, L. J. White and G. F. Medley, 
“The Reinfection Threshold,” Journal of Theoretical Bi- 
ology, Vol. 236, No. 1, 2005, pp. 111-113. 
http://dx.doi.org/10.1016/j.jtbi.2005.03.001 

[11] Z. Jiang and J. Wei, “Stability and Bifurcation Analysis 
in a Delayed SIR Model,” Chaos, Solitons & Fractals, 
Vol. 35, No. 3, 2008, pp. 609-619. 
http://dx.doi.org/10.1016/j.chaos.2006.05.045 

[12] T. Zhang and Z. Teng, “Global Behavior and Permanence 
of SIRS Epidemic Model with Time Delay,” Nonlinear 
Analysis: Real World Applications, Vol. 9, No. 4, 2008, 
pp. 1409-1424. 
http://dx.doi.org/10.1016/j.nonrwa.2007.03.010 

[13] V. Capasso and G. Serio, “A Generalization of the Ker- 
mack-Mckendrick Deterministic Epidemic Model,” Ma- 
thematical Biosciences, Vol. 42, No. 1-2, 1978, pp. 41-61. 
http://dx.doi.org/10.1016/0025-5564(78)90006-8 

[14] A. Kaddar, “On the Dynamics of a Delayed SIR Epi- 
demic Model with a Modified Saturated Incidence Rate,” 
Journal of Differential Equations, Vol. 2009, No. 133, 
2009, pp. 1-7.  

[15] R. Xu and Z. Ma, “Global Stability of a SIR Epidemic 
Model with Nonlinear Incidence Rate and Time Delay,” 
Nonlinear Analysis: Real World Applications, Vol. 10, 
No. 5, 2009, pp. 3175-3189. 

http://dx.doi.org/10.1016/j.nonrwa.2008.10.013 

[16] A. Kaddar, A. Abta and H. T. Alaoui, “Stability Analysis 
in a Delayed SIR Epidemic Model with a Saturated Inci- 
dence Rate,” Nonlinear Analysis: Modelling and Control, 
Vol. 15, No. 3, 2010, pp. 299-306. 

[17] A. Abta, A. Kaddar and H. T. Alaoui, “Global Stability 
for Delay SIR and SEIR Epidemic Models with Saturated 
Incidence Rates,” Journal of Differential Equations, Vol. 
2012, No. 23, 2012, pp. 1-13. 

[18] H. Wei, X. Li and M. Martcheva, “An Epidemic Model of 
a Vector-Borne Disease with Direct Transmission and 
Time Delay,” Journal of Mathematical Analysis and Ap- 
plications, Vol. 342, No. 2, 2008, pp. 895-908. 
http://dx.doi.org/10.1016/j.jmaa.2007.12.058 

[19] R. Xu and Z. Ma, “Global Stability of a Delayed SEIRS 
Epidemic Model with Saturation Incidence Rate,” Non- 
linear Dynamics, Vol. 61, No. 1, 2010, pp. 229-239. 
http://dx.doi.org/10.1007/s11071-009-9644-3 

[20] R. Xu, Z. Ma and Z. Wang, “Global Stability of a De- 
layed SIRS Epidemic Model with Saturation Incidence 
Rate and Temporary,” Computers & Mathematics with 
Applications, Vol. 59, No. 9, 2010, pp. 3211-3221. 
http://dx.doi.org/10.1016/j.camwa.2010.03.009 

[21] H. Huo and Z. Ma, “Dynamics of a Delayed Epidemic 
Model with Non-Monotonic Incidence Rate,” Communi- 
cations in Nonlinear Science and Numerical Simulation, 
Vol. 15, No. 2, 2010, pp. 459-468. 

[22] R. Xu and Z. Ma, “Stability of a Delayed SIRS Epidemic 
Model with a Nonlinear Incidence Rate,” Chaos, Solitons 
& Fractals, Vol. 41, No. 5, 2009, pp. 2319-2325. 
http://dx.doi.org/10.1016/j.chaos.2008.09.007 

 

http://dx.doi.org/10.1016/j.amc.2006.11.012�
http://dx.doi.org/10.1016/S0025-5564(99)00030-9�
http://dx.doi.org/10.1016/j.jtbi.2005.03.001�
http://dx.doi.org/10.1016/j.chaos.2006.05.045�
http://dx.doi.org/10.1016/j.nonrwa.2007.03.010�
http://dx.doi.org/10.1016/0025-5564(78)90006-8�
http://dx.doi.org/10.1016/j.nonrwa.2008.10.013�
http://dx.doi.org/10.1016/j.jmaa.2007.12.058�
http://dx.doi.org/10.1007/s11071-009-9644-3�
http://dx.doi.org/10.1016/j.camwa.2010.03.009�
http://dx.doi.org/10.1016/j.chaos.2008.09.007�

