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ABSTRACT 

We study a mathematical model of biological neuronal networks composed by any finite number 2N   of non-neces- 
sarily identical cells. The model is a deterministic dynamical system governed by finite-dimensional impulsive differen- 
tial equations. The statical structure of the network is described by a directed and weighted graph whose nodes are cer- 
tain subsets of neurons, and whose edges are the groups of synaptical connections among those subsets. First, we prove 
that among all the possible networks such as their respective graphs are mutually isomorphic, there exists a dynamical 
optimum. This optimal network exhibits the richest dynamics: namely, it is capable to show the most diverse set of re- 
sponses (i.e. orbits in the future) under external stimulus or signals. Second, we prove that all the neurons of a dynami- 
cally optimal neuronal network necessarily satisfy Dale’s Principle, i.e. each neuron must be either excitatory or inhibi- 
tory, but not mixed. So, Dale’s Principle is a mathematical necessary consequence of a theoretic optimization process of 
the dynamics of the network. Finally, we prove that Dale’s Principle is not sufficient for the dynamical optimization of 
the network. 
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Mathematical Model in Biology 

1. Introduction 

Based on experimental evidence, Dale’s Principle in Neu- 
roscience (see for instance [1,2]) postulates that most 
neurons of a biological neuronal network send the same 
set of biochemical substances (called neurotransmitters) 
to the other neurons that are connected with them. Most 
neurons release more than one neurotransmitter, which is 
called the co-transmission” phenomenon [3,4], but the set 
of neurotransmitters is constant for each cell. Neverthe- 
less, during plastic phases of the nervous systems, the 
neurotransmitters are released by certain groups of neur- 
ons change according to the development of the neuronal 
network. This plasticity allows the network perform di- 
verse and adequate dynamical responses to external sti- 
mulus: Evidence suggests that during both development 
(in utero) and the postnatal period, the neurotransmitter 
phenotype of neurons is plastic and can be adapted as a 
function of activity or various environmental signals [4]. 
Also a certain phenotypic plasticity occurs in some cells 
of the nervous system of mature animals, suggesting that 
a dormant phenotype can be put in play by external 

inputs [4]. 
Some mathematical models of the neuronal networks 

represent them as deterministic dynamical systems (see 
for instance [5-8]). In particular, the dynamical evolution 
of the state of each neuron during the interspike intervals, 
and the dynamics of the bursting phenomenon, can be 
modelled by a finite-dimensional ordinary differential 
equation (see for instance [8,9] and in particular [10] for 
a mathematical model of a neuron as a dynamical system 
evolving on a multi-dimensional space). When consi- 
dering a network of many neurons, the synaptical con- 
nections are frequently modelled by impulsive coupling 
terms between the equations of the many cells (see for 
instance [7,11-13]). In such a mathematical model, Dale’s 
Principle is translated into the following statement: 

Dale’s Principle: Each neuron is either inhibitory or 
excitatory. We recall that a neuron i  is called inhibitory 
(resp. excitatory) if its spikes produce, through the elec- 
tro-biochemical actions that are transmitted along the 
axons of i , only null or negative (resp. positive) chang- 
es in the membrane potentials of all the other neurons 
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j i  of the network. The amplitudes of those changes 
may depend on many variables. For instance, they may 
depend on the membrane instantaneous permeability of 
the receiving cell j . But the sign of the postsynaptical 
actions is usually only attributed to the electro-chemical 
properties of the substances that are released by the 
sending cell i . In other words, the sign depends only on 
the set of neurotransmitters that are released by i . Since 
this set of substances is fixed for each neuron i  (if i  
satisfies Dale’s Principle), the sign of its synaptical 
actions on the other neurons j i  is fixed for each cell 
i , and thus, independent of the receiving neuron j . 

In this paper we adopt a simplified mathematical 
model of the neuronal network with a finite number 

2N   of neurons, by means of a system of deter- 
ministic impulsive differential equations. This model is 
taken from [11,13], with an adaptation that allows the 
state variable ix  of each cell i  to be multidimensional. 
Precisely ix  is a vector of finite dimension, or equi- 
valently, a point in a finite-dimensional manifold of an 
Euclidean space. The finite dimension of the state va- 
riable ix  is larger than or equal to 1, and besides, may 
depend on the neuron i . The dynamical model of the 
network is the solution of a system of impulsive dif- 
ferential equations. This dynamics evolves on a product 
manifold whose dimension is the sum of the dimensions 
of the state variables of its N  neurons. 

We do not assume a priori that the neurons of the 
network satisfy Dale’s Principle. In Theorem 16 we 
prove this principle a posteriori, as a necessary final 
consequence of a dynamical optimization process. We 
assume that during this process, a plastic phase of the 
neuronal network occurs, eventually changing the total 
numbers of neurons and synaptical connections, but such 
that the graph-scheme of the synaptic connections among 
groups of mutually identical cells remains unchanged. 
We assume that a maximal amount of dynamical richness 
is pursued during such a plastic development of the 
network. Then, by means of a rigourous deduction from 
the abstract mathematical model, we prove that, among 
all the mathematically theoretic networks   of such a 
model, those exhibiting an optimal dynamics (i.e. the 
richest or the most versatile dynamics) necessarily satisfy 
Dale’s Principle (Theorem 16). 

The mathematical criteria to decide the dynamical 
optimization is the following: First, in Definition 9, we 
classify all the theoretic neuronal networks (also those 
that hypothetically do not satisfy Dale’s Principle) into 
non countably many equivalence classes. Each class is a 
family of mutually equivalent networks, with respect to 
their internal synaptical connections among groups of 
cells (we call those groups of cells synaptical units in 
Definition 6). Second, in Definitions 11 and 14, we agree 
to say that a network   has an  optimal dynamics 

conditioned to its class, if the dynamical system mo- 
delling any other network   in the same class as  , 
has a space of orbits in the future that is a subset of the 
space of orbits of  . In other words,   is the net- 
work capable to perform the richest dynamics, namely, 
the most diverse set of possible evolutions in the future 
among all the networks that are in the same class. 

RESULTS TO BE PROVED 
In Theorem 15 we prove that the theoretic dyna- 

mical optimum exists in any equivalence class of net- 
works that have isomorphic synaptical graphs. 

In Main Theorem 16 we prove that such an optimum 
is achieved only if the network   satisfies Dale’s Prin- 
ciple. 

In Main Theorem 17 we prove that the converse of 
Theorem 16 is false: Dale’s Principle is not sufficient for 
a network exhibit the optimal dynamics within its sy- 
naptical equivalence class. 

The results are abstract and theoretically deduced from 
the mathematical model. They are epistemologically 
suggestive since they give a possible answer to the fol- 
lowing question: 

Epistemological question: Why does Dale’s Prin- 
ciple hold for most cells in the nervous systems of ani- 
mals? 

Mathematically, the hypothesis of searching for an 
optimal dynamics implies (through Theorem 16) that at 
some step of the optimization process all the cells must 
satisfy Dale’s Principle. In other words, this principle 
would be a consequence, instead of a cause, of an op- 
timization process during the plastic phase of the net- 
work. This conclusion holds under the hypothesis that 
the dynamical optimization (i.e. the maximum dy- 
namical richness) is one of the natural pursued aims 
during a certain changeable development of the net- 
work. 

Finally, we notice that the converse of Theorem 16 is 
false: there exist mathematical examples of simple ab- 
stract networks whose cells satisfy Dale’s Principle but 
are not dynamically optimal (Theorem 17). Thus, Dale’s 
Principle is necessary but not sufficient for the dynamical 
optimization of the network. 

Structure of the paper and purpose of each section: 
In Section 2, we write the hypothesis of Main Theorems 
16 and 17. This Section is necessary because the proofs 
of the theorems are deduced from the hypothesis. In 
other words, their statements could be false if not all the 
hypothesis holded. 

From Section 3 to 6 we prove Main Theorem 16. The 
proof is developed in four steps, one in each separate 
section. The first step (Section 3) is devoted to prove the 
intermediate result of Proposition 7. The second step 
(Section 4) is deduced from Proposition 7. The third step 
(Section 5) is logically independent from the first and 
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second steps, and is devoted to obtain the two intermedi- 
ate results of Proposition 13 and Theorem 15. Section 6 
exposes the fourth step (the end) of the proof of Main 
Theorem 16, from the logic junction of the previous three 
steps, using the intermediate results (Propositions 7 and 
13, and Theorem 15). 

On the one hand, the intermediate results (Propositions 
7 and 13, and Theorem 15) are necessary stages in the 
logical process of our proof of Main Theorem 16 which 
ends in Section 6. In fact, Theorem 16 establishes that, if 
there exists a dynamical optimum within each synaptical 
equivalence class of networks, this optimal network nec- 
essarily satisfy Dale’s Principle. But this result would be 
void if we did not prove (as an intermediate step), that a 
dynamically optimal network exists (Theorem 15). It 
would be also void if we did not prove that the synaptical 
equivalence classes of networks exist (Definition 9). The 
synaptical equivalence classes of networks could not 
been defined if the inter-units graph of the network did 
not existed (Definition 8). And these graphs exist as an 
immediate corollary of Proposition 7. So, Proposition 7 
must be proved as an intermediate step for our final pur- 
pose. Finally, the end of the proof of Main Theorem 16 
argues by contradiction: if the dynamically optimal net- 
work did not satisfy Dale’s Principle, then Proposition 13 
would be false. So, we need first, also as an intermediate 
step, to prove Proposition 13. 

On the other hand, to prove all the required intermedi- 
ate results, we need some other (previous) mathematical 
statements from which we deduce the intermediate re- 
sults. So, we start posing all the previous mathematical 
statements (obtaining them from the general hypothesis 
of Section 2), in a series of mathematical definitions, 
comments and remarks that are at the beginning of Sec- 
tions 3, 4 and 5. 

In Section 7, we end the proof of Main Theorem 17 
stating that Dale’s Principle is not sufficient for the dy- 
namical optimization. Its final statement is proved by 
applying directly some of the definitions, intermediate 
results and examples of Sections 3, 4 and 5 (in particular, 
those of Figures 1-3). 

Finally, in Section 8 we write the conclusions obtained 
from all the mathematical results that are proved along 
the paper. 

2. The Hypothesis (The Model by a System  
of Impulsive Differential Equations) 

We assume a simplified (but very general) mathematical 
model of the neuronal network which is defined along 
this section. The model, up to an abstract reformulation, 
and a generalization that allows any finite dimension for 
the impulsive differential equation governing each neu- 
ron, is taken from [11] and [13]. In the following subsec- 
tions we describe the mathematical assumptions of this 

model: 
 

 

Figure 1. The graph of a network  1,2,3,4,5 . The 

directed and weighted edges correspond to the nonzero 
synaptical interactions Δ j,i  among the neurons j i . 

 

 

Figure 2. The inter-units graph of the network 

 1,2,3,4,5  of Figure 0. It is composed by three 

homogeneous parts A , B  and C . The part A  is com- 

posed by two synaptical units  1 1,3U   and  2 2U  , 

the part B  is the single unit  4 4U   and the part C  is 

the single unit  5 5U  . 

 

 

Figure 3. The graph of a network   1,2,3,4,5,6 . It is 

composed by three homogeneous parts A , B  and C . 

This network   is synaptically equivalent to the net- 

work   of Figure 1. 
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2.1. Model of an Isolated Neuron 

Each neuron i , while it does not receive synaptical 
actions from the other cells of the network, and while its 
membrane potential is lower than a (maximum) threshold 
level > 0i , and larger than a lower bound < 0iL , is 
assumed to be governed by a finite-dimensional dif- 
ferential equation of the form 

  ,1

d
if ,

d
i

i i i i i

x
f x L x

t
           (1) 

where t  is time, ix  is a finite-dimensional vector 
 ,1 ,, ,i i kx x  whose components are real variables that 
describe the instantaneous state of the cell i , and 

: k k
if     is a Lipschitz continuous function giving 

the velocity vector d dix t  of the changes in the state of 
the cell i , as a function of its instantaneous vectorial 
value  ix t . The function if  is the so called vector 
field in the phase space of the cell i . This space is as- 
sumed to be a finite dimensional compact manifold. 
The advantages of considering that  dim 1ix   (not 
necessarily 1) are, among others, the possibility of 
showing dynamical bifurcations between different 
rythms and oscillations that appear in some biological 
neurons [10], that would not appear if the mathe- 
matical model of all the neurons were necessarily one- 
dimensional. 

One of the components of the vectorial state variable 

ix  (which with no loss of generality we take as the first 
component ,1ix ) is the instantaneous membrane potential 

   ,1i ix t V t  of the cell i . 
In the sequel, we denote    11 lim t ti ix t x t


  and 

   11 .lim t ti ix t x t


  
In addition to the differential equation (1), it is 

assumed the following spiking condition [9]: If there 
exists an instant 1t  such that the potential 
   1 ,1 1i iV t x t   equals the  threshold level i , then 
 ,1 1 0ix t  . In brief, the following logic assertion holds, 

by hypothesis: 

   ,1 1 ,1 0.i i i ix t x t               (2) 

Here, 0  is the reset value. It is normalized to be zero 
after a change of variables, if necessary, that refers the 
difference of membrane potential of the cell i  to the 
reset value. A more realistic model would consider a 
positive relatively short time-delay 1t  between the 
instant 1t  when the membrane potential arrives to the 
threshold level i , and the instant 1 1t t   for which the 
potential takes its reset value 0 . During this short 
time-delay, the membrane potential shows an abrupt 
pulse of large amplitude, which is called spike of the 
neuron i . The impulsive simplified model approximates 
the spike to an abrupt discontinuity jump, by taking the 
time-delay 1t  equal to zero. Then, the spike becomes 

an instantaneous jump of the membrane potential  ,1ix t  
from the level 0i   to the reset value 0  which oc- 
curs at 1t t  according to condition (2). 

We denote by  ,1i ix  the Dirac delta supported on 

i . Namely    ,1d
ii itt

x   (via the abstract inte- 
gration theory with respect to the Dirac delta probability 
measure) denotes a discontinuity step i  that occurs 
on the potential  ,1ix t  at each instant 1t t  such that 

 ,1 1i ix t   . In other words: 

   ,1 1 ,1 1 ,i i ix t x t      

and so 

   ,1 1 ,1 1 0.i i i i ix t x t          

After the above notation is adopted, the dynamics of 
each cell i  (while isolated from the other cells of the 
network) is modelled by the following impulsive differ- 
ential equation: 

       ,1

d
,  where  .

d i

i
i i i i i i i i

x
F x F x f x x

t      (3) 

In the above equality  ,0, ,0i i   is the jump 
vector with dimension equal to the dimension of the state 
variable ix . Namely, at each spiking instant, only the 
first component ,1ix  (the membrane potential) is ab- 
ruptly reset, since the jump vector has all the other com- 
ponents equal to zero. 

Strictly talking, the Equation (3) is not a differential 
equation, but the hybrid between the differential equation 

 d di i ix t f x  plus a rule, denoted by 
 ,1d d

ii i ix t x  . This impulsive rule imposes a 
discontinuity jump of amplitude vector i  in the de- 
pendence of the state variable  ix t  on t . Therefore, 
 ix t  is not continuous, and thus it is not indeed dif- 

ferentiable. It is in fact discontinuous at each instant 

1t t  such that  ,1 1i ix t   , i.e. when the Dirac delta 
 ,1i ix  is not null. 

Nevertheless, the theory of impulsive differential equa- 
tions follows similar rules than the theory of ordinary 
differential equations. It was early initiated by Milman 
and Myshkis [14], cited in [15]. In particular, the exis- 
tence and uniqueness of solution for each initial con- 
dition, and theorems of stability, still hold for the im- 
pulsive differential Equation (3), as if it were an ordinary 
differential equation [14,15]. 

2.2. Model of the Synaptical Interactions among  
the Neurons 

The synaptical interactions are modelled by the following 
rule: If the membrane potential ,1ix  of some neuron i  
arrives to (or exceeds) its threshold level i  at instant 

1t , then the cell i  sends an action ,i j  to the other 
neurons j i . In particular ,i j  may be zero if no 
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synaptical connection exists from the cell i  to the cell 
j . This action produces a discontinuity jump in the 

membrane potential ,1jx . We denote by ,i j  the signed 
amplitude of the discontinuity jump on the membrane 
potential  ,1jx t  of the neuron j , which is produced 
by the synaptical action from the neuron i , when i  
spikes. The real value ,i j  may depend on the ins- 
tantaneous state jx  of the receiving neuron j  just be- 
fore the synaptic action from neuron i  arrives. For 
simplicity we do not explicitly write this dependence. 
Thus, the symbol ,i j  denotes a real function of jx , 
which we assume to be either identically null or with 
constant sign. 

We denote by  , , , 0, ,0i j i j Δ   the discontinuity 
jump vector, with dimension equal to the dimension of 
the variable state jx  of the cell j . In other words, the 
discontinuity jump in the instantaneous vector state jx  
of the cell j , that is produced when the cell i  spikes, 
is null on all the components of jx  except the first one 

,1jx , i.e. except on the membrane potential of the neuron 
j . In formulae: 

     ,1 1 ,1 1 ,1 1 ,i i j j i jx t x t x t        

   1 1 , .j j i jx t x t  Δ        (4) 

Thus, the dynamics of the whole neuronal network is 
modelled by the following system of impulsive differen- 
tial equations: 

   

   

   

   

1
1 1 ,1 ,1

1

2
2 1 ,2 ,1

2

, ,1

, ,1

d
,

d

d
,

d

d
,

d

d
,

d

i

i

i

i

i i
i

i i
i

j
j j i j i

i j

N
N N i N i

i N

x
F x x

t

x
F x x

t

x
F x x

t

x
F x x

t

























 

 

 

 













Δ

Δ

Δ

Δ

       (5) 

where N  is the number of cells in the network. 
Definition 1 (Excitatory, inhibitory and mixed 

neurons) The synapses from cell i  to j  is called 
excitatory if , > 0i j  and it is called inhibitory if 

, < 0i j . If , 0i j   then there does not exist synaptical 
action from the cell i  to the cell j . A neuron i  is 
called excitatory (resp. inhibitory) if , > 0i j  (resp. 

, < 0i j ) for all j  such that , 0i j  . The cell i  is 
called mixed if it is neither excitatory nor inhibitory. 
Dale’s Principle (which we do not assume a priori to 
hold) states that no neuron is mixed.  

Remark 2 It is not restrictive to assume that no cell i  
is indifferent, namely no cell i  sends null synaptical 

actions to all the other cells, i.e. 

  ,1, 2, ,   such that  0, .i ji m j i       

In fact, if there existed such a cell i , it would not 
send any action to the other cells of the network  . So, 
the global dynamics of the network is not modified 
(except for having one less variable) if we take out the 
cell i  from  . 

All along the paper we assume that the network   
has at least 2 neurons and no neuron is indifferent. 

2.3. The Refractory Rule 

To obtain a well defined deterministic dynamics from the 
system (5), other complementary assumptions are adopt- 
ed by the model. First, a refractory phenomenon (see 
for instance [16, page 725]) is considered as follows: If 
some fixed neuron j  spikes at instant 1t , then its po- 
tential ,1jx  is reset to zero becoming indifferent to the 
synaptical actions that it may receive (at the same instant 

1t ) from the other neurons. Second, if for some fixed 
neuron j  at some instant 1t , the sum  

 ,max 0, i ji j
  of the excitatory actions that j  si- 

multaneously receives from the other neurons of the 
network, is larger or equal than  ,1 1j jx t  , then j  
itself spikes at instant 1t , regardless whether 

 ,1 1j ix t    or not. In this case, at instant 1t  the cell 
j  sends synaptical actions ,j h  to the other neurons 
h  of the network, and then, the respective potentials 

,1hx  will suffer a jump ,j h  at instant 1t . This process 
may make new neurons h  to spike in an avalanche 
process (see [13]). This avalanche is produced instan- 
taneously, when some excitatory neuron spontaneously 
arrived to its threshold level. But due to the refractory 
rule, once each neuron spikes, its membrane potential 
refracts all the excitations or inhibitions that come at the 
same instant. So, the avalanche phenomenon is produced 
instantaneously, but includes each neuron i  at most 
once. Then, each interaction term  , ,1ii j ixΔ  in the 
sum at right of Equation (5) is added only once at each 
spiking instant 1t . 

3. First Step of the Proof (Graphs, Parts and  
Units) 

The purpose of this section is to prove Proposition 7 and 
to state the existence of an Inter-units Graph (Definition 
8). These are intermediate results (the first step) of the 
proof of Main Theorems 16 and 17. We will prove these 
intermediate results by logical deduction from several 
previous statements and hypothesis. So, we start by in- 
cluding the needed previous statements in the following 
series of mathematical definitions: 

Let   be a network of 2N   neurons, according 
to the model defined in Section 2.  
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Definition 3 (The Network’s Graph) We call a 
directed and weighted graph G  the graph of the 
network   if the vertices of G  are the cells 

 1, 2, ,i N   of  , each edge , ,i je i j  of G , 
corresponds to each nonzero synaptical action from the 
cell i  to the cell j  and conversely, and ,i je  has weight 

, 0i j  . (See the example of Figure 1.) 
To unify the notation, we agree: 

   denotes either the network or its graph; 
 i  is either a cell of   or a node of the graph; 
 ,i j  denotes either the synaptical action from i  to 

j , or the weight of the edge ,i je  in the graph, or this 
edge itself.  

Definition 4 (Structurally identical cells) Two dif- 
ferent cells i j  are structurally identical if i jF F  
in the respective differential Equations (3), 

, , 0i j j i    , and , ,h i h j    for all ,h i j . These 
conditions imply that the dynamical systems that governs 
neurons i  and j  are the same. So, their future dyna- 
mics may differ only because their initial states  0ix  
and  0jx  may be different. Note that, if i  and j  
are structurally identical, then by definition, the edges of 
the graph at the receiving nodes i  and j  (from any 
other fixed sending node h ) are respectively equally 
weighted by , ,h i h j   . Nevertheless, the edges from 
i  and j , as sending nodes of the network, are not 
necessarily identically weighted, i.e. ,i h  may be dif- 
ferent from ,j h . 

In Figure 1 we represent a graph G  with three 
mutually identical cells 1, 2 and 3 , provided that 

1 2 3F F F   in the Equation (3) and ,1 ,2 ,3h h h      
for 4,5h  . Besides, the graph G  has two other nodes, 
which corresponds to the neurons 4  and 5 . The cells 
4  and 5  are not mutually identical because the sy- 
naptical actions that they receive from the other cells are 
not equal. 

The above definitions and the following ones are just 
mathematical tools, with no other purpose than enabling 
us to prove Theorems 16 and 17. They are not aimed to 
explain physiological or functional roles of subsets of 
real biological neurons in the brain or in the nervous sys- 
tem. Nevertheless, it is rather surprising that the follow- 
ing abstract mathematical tools, which we include here 
just to prove Theorems 16 and 17, have indeed a resem- 
blance with concepts or phenomena that are studied by 
Neuroscience. In particular, the following Definitions 5 
and 6 of homogeneous part and synaptical unit of a neu- 
ronal network, are roughly analogous to the concepts of 
regions, subnetworks or groups of many similar neurons, 
characterized by a certain structure and a collective 
physiological role. For instance some subnetworks or 
layers of biological or artificial neurons are defined ac- 
cording to the role of their synaptical interactions with 
other subnetworks or layers [17]. 

Definition 5 (Homogeneous Part) An homogeneous 
part of the neuronal network is a maximal subset of cells 
of the network that are mutually pairwise identical (cf. 
Definition 4). As a particular case, we agree to say that 
an homogeneous part is composed by a single neuron i  
when no other neuron is structurally identical to i . In 
Figure 1 we draw the graph of a network composed by 
three homogeneous parts ,A B  and C . The homo- 
geneous part A  is composed by the three identical 
neurons 1, 2 and 3, provided that 1 2 3F F F   and 

,1 ,2 ,3h h h      for 4,5h  . The homogeneous parts 
 4B   and  5C   have a single neuron each be- 

cause ,4 ,5h h    for some h  (for instance for 
2h  ).  

Definition 6 Synaptical Unit A synaptical unit is a 
subset U A  of an homogeneous part A  of a 
neuronal network such that: 
 For any neuron h A  there exists at most one 

neuron i U  such that , 0i h  . 
 A  is partitioned in a minimal number of sets U  

possessing the above property. 
In particular, a synaptical unit may be composed by a 

single neuron. This occurs, for instance, when for some 
neuron h A  and for any neuron i A  the synaptical 
interaction ,i h  from i  to h  is nonzero. In Figure 1 
we draw the graph of a network composed by three 
homogeneous parts A , B  and C  such that: A  is 
composed by three identical neurons 1, 2 and 3, that form 
two synaptical units  1 : 1U   and  2 3 : 2,3U U  . In 
fact, the cells 1  and 2  can not belong to the same unit 
because there exist nonzero actions departing from both 
of them to neuron 4 . One can also form the two 
synaptical units of A  by defining  1 3 : 1,3U U   and 

 2 : 2U  . The homogeneous part B  is composed by a 
single neuron 4 , and thus, it is a singe synaptical unit 

 4 4U B  . Analogously C  is composed by a single 
neuron 5 , and thus it is a single synaptical unit 

 5 : 5U C  . The total number of neurons of the 
network in Figure 1 is 5, the total number of synaptical 
units is 4, the total number of homogeneous parts is 3, 
the total number of nonzero synaptical interactions 
among the neurons is 9, but the total number of sy- 
naptical interactions among different homogeneous parts 
is only 5 (see Figure 2). 

When a synaptical unit U  has more neurons, the 
following quotient UQ  diminishes: UQ  is the number 
of synaptical connections departing from the cells of U  
divided by the total number of neurons of U . In fact, by 
Definition 6, for each synaptical unit U  there exists at 
most one nonzero synaptical action to any other fixed 
neuron h  of the network, regardless how many cells 
compose U . So, if we enlarge the number of cells in 
U , the number of nonzero synaptical actions departing 
from the cells of U  remains constant. Thus, the 
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quotient UQ  diminishes. Although this quotient UQ  
becomes smaller when the number of neurons of the 
synaptical unit U  enlarges, in Theorem 15 we will ri- 
gourously prove the following result: 

The dynamical system governing a neuronal network 
  with the maximum number of neurons in each of its 
synaptical units, is the richest one, i.e.   will exhibit 
the largest set of different orbits in the future, and so it 
will be theoretically capable to perform the most diverse 
set of processes.  

The following result proves that any neuronal network, 
according to the mathematical model of Section 2, is 
decomposed as the union of at least two homogeneous 
parts, and each of these parts is decomposed into pair- 
wise disjoint synaptical units. It also states the existence 
of an upper bound for the number of neurons that any 
synaptical unit can have. 

Proposition 7 (Intermediate result in the proof of 
Main Theorems 16 and 17) 

Let   be any network according to the mathe- 
matical model defined in Section 2. Then: 

1) The set of neurons of   is the union of exactly 
2l   pairwise disjoint homogeneous parts. 

2) Each homogeneous part A  is the union of a 
positive finite number of pairwise disjoint synaptical 
units. 

3) The total number of neurons of each synaptical unit 
is at least one and at most 1l  . 

4) For each synaptical unit U  and for each ho- 
mogeneous part B  there exists a unique real number 

,U B  that satisfies the following properties: 

, 0U B   if and only if , 0i h   for all i U  and 
for all h B . In particular , 0U A   if U A . 

, 0U B   if and only if , ,i h U B    for one and only 
one neuron i U  and for all h B , and , 0j h   for 
all h B  and all j U  such that j i . 

Proof: 1) We denote i j  if the cells i  and j  are 
structurally identical according to Definition 4. We add 
the rule i i  for any cell i . Thus,   is an equi- 
valence relation. From Definition 5 the   classes of 
neurons are the homogeneous parts of the network. 

Since the equivalence classes of any equivalence 
relation in any set determine a partition of this set, then 
the network, as a set of neurons, is the union of its 
pairwise disjoint homogeneous parts. Denote by 1l   
the total number of different homogeneous parts that 
compose the network. Let us prove that 2l  . In fact, if 
l  were equal to 1, then, by Definition 4, , 0i j   for 
any pair of cells, contradicting the assumption that no 
cell is indifferent (see the end of Remark 2). We have 
proved Assertion 1). 

2) Fix an homogeneous part A , and fix some neuron 
i A . Consider the set of neurons  ,: : 0i i hS h   . 
The set iS  is nonempty because the cell i  is not 

indifferent (see Remark 2). Choose and fix a neuron 

ih S . We discuss two cases: either jh S  for all 
j A , or the set  : jj A h S   is nonempty. 

In the first case, for each neuron j A  the singleton 
 j  (formed by the single element j ), satisfies De- 
finition 6. Thus,  j  is a synaptical unit for all j A  
and assertion 2) is proved. 

In the second case, consider the set  
     : : jA i j A h S i     . Consider also (if they 

exist) all the singletons  j  where j A  is such that 

jh S . These latter sets  j  satisfy Definition 6 and, 
thus, they are pairwise disjoint synaptical units, which 
are also disjoint with A . Besides, their union with A  
compose A . So, it is now enough to prove that A  is 
also the union of pairwise disjoint synaptical units. 

Now, we choose and fix a neuron i A   such that 
i i  . (Such a neuron exists because  A i  ). By 
construction of the set A , we have ih S  . But, since 
the neuron i  is not indifferent, there exists ih S  . So, 
we can repeat the above argument putting i  in the role 
of i , h  in the role of h , and A  in the role of A . 

Since the number of neurons is finite, after a finite 
number of steps (repeating the above argument at each 
step), we obtain a decomposition of A  into a finite 
number of pairwise disjoint sets that are synaptical units, 
ending the proof of Assertion 2). 

3) Let U  be a synaptical unit. By Definition 6, 
U A  where A  is an homogeneous part of the set of 
neurons. By Assertion 1) there are exactly 1 1l    
other homogeneous parts B A . From Definitions 4 
and 5, for any fixed , ,: i h i hi U      for all ,h h B . 
So, for each B  we denote 

, ,: , .i B i h h B      

Since any neuron i U A   is not indifferent, there 
exists at least one homogeneous part B A  such that 

, 0i B  . Besides, applying Definition 6, for each 
homogeneous part B A , there exists at most one 
neuron i U  such that , 0i B  . The last two as- 
sertions imply that there is a one-to-one correspondence 
(which is not necessarily surjective) from the set of 
neurons in U  to the set of homogeneous parts that are 
different from A . Then, the number of neurons in U  
is not larger than the number of existing homogeneous 
parts B A , i.e. it is not larger than 1l  . We have 
proved Assertion 3). 

4) Fix an arbitrary synaptical unit U A  (where A  
is the homogeneous part that contains U ) and an 
arbitrary homogeneous part B  (in particular, B  may 
be A ). As in the above proof of Assertion 3), for each 
neuron i U  it is defined ,i B  such that , ,i h i B    
for all h B . By Definition 6, either , 0i B   for all 
i U , or , 0i B   for one and only one cell i U . In 
the first case we define , 0U B   and in the second case 
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we define , ,U B i B   . By construction, Assertion (iv) 
holds: in particular, from Definitions 4 and 5, we have 

, 0i h   for all i U A   and for all h A . So, 

, 0U A   if U A .□ 
Definition 8 (Inter-units graph—Intermediate re- 

sult in the proof of Theorems 16 and 17) As a con- 
sequence of Proposition 7 the graph of a neuronal 
network   can be represented by a simpler one, which 
we call the inter-units graph. This is, by definition, the 
graph whose nodes are not the cells but the synaptical 
units. Each directed and weighted edge in the inter-units 
graph, links a synaptical unit U A  with the synaptical 
unit V B   A B . It is weighted by the synaptical 
action , 0U B  . For instance, the network   of 
Figure 1 is represented by the inter-units graph of Fig- 
ure 2. 

Interpretation: The inter-units graph of a neuronal 
network, according to Definition 8, recovers the essential 
anatomy of the spatial distribution of the synaptical 
connections of the network, among groups of mutually 
identical cells (the so called synaptical units). This des- 
cription, by means of the inter-units graph, recalls ex- 
perimental studies on the synaptical activity of some 
neuronal subnetworks of the brain. For instance, in [17], 
Megas et al. study the spatial distribution of inhibitory 
and excitatory synapses inside the hippocampus. 

Each synaptical unit acts, in the inter-units graph, as if 
it were a single neuron. The spatial statical structure of 
groups of synaptical connections is the only observed 
object by this graph. Besides, the inter-units graph does 
not change if the number of neurons composing each of 
the many synaptical units, change. In the following 
section, we will condition the study of the networks to 
those that have mutually isomorphic inter-units graphs, 
i.e. they have the same statical structure of synaptical 
connections among groups of identical cells. 

In Section 5, we will look on the dynamical responses 
of the network that have the same (statical) inter-units 
graph of synaptical connections. Any change in the 
number of neurons will change the space of possible 
initial states, and so the space of possible orbits and the 
global dynamics. So, among all the networks that have 
isomorphic inter-units graphs, the network with more 
neurons should, a priori, exhibit a larger diversity of 
theoretic possible dynamical responses to external sti- 
mulus. 

For instance, two identical neurons 1  and 2  in a 
synaptical unit U  define a space of initial states (and so 
of orbits) that is composed by all the pairs 

    1 20 , 0x x  of vectors in the phase space of each 
neuron. But three identical neurons 1 , 2  and 3  in 
U , define a space of initial states composed by all the 
triples       1 2 30 , 0 , 0x x x  of vectors. So, the di- 
versity of orbits that a neuronal network can exhibit, 

enlarges if the number of neurons of each synaptical unit 
enlarges. In Section 5, we will study the theoretical 
optimum in the dynamical response of a family of 
networks that are synaptical equivalent. We will prove 
that this optimum exists and that it is achieved when the 
network has the maximum number of cells (Theorem 
15). 

4. Second Step of the Proof (Synaptical  
Equivalence between Networks) 

The purpose of this section is to prove the existence of an 
equivalence relation (Definition 9) in the space of all the 
neuronal networks modelled by the mathematical hy- 
pothesis of Section 2. This is the intermediate result in 
the second step of the proof of Main Theorems 16 and 17. 
We will deduce this intermediate result from the previous 
ones obtained in Section 3. 

Let   and   be two neuronal networks ac- 
cording to the model defined in Section 2. Denote: 

N  and N   the numbers of neurons of   and 
  respectively, 
i  and i  a (general) neuron of   and   res- 

pectively, 
l  and l  the respective numbers of homogeneous 

parts of   and  , according to Definition 5. 
s  and s  the respective numbers of synaptical units 

according to Definition 6. 
B  and B  a (general) homogeneous part of   

and   respectively. 
U  and U   a (general) synaptical unit of   and 
  respectively. 

, ,,U B U B    the synaptical weights, according to part 
(iv) of Proposition 7, of   and   respectively. 

Definition 9 (Synaptically equivalent networks— 
Intermediate result in the proof of Main Theorems 16 
and 17) 

We say that   and   are synaptically equivalent 
if: 
 ,l l s s   , according to the above notation. 
 There exists a one-to-one and surjective corres- 

pondence   from the set of synaptical units U  of 
  and the set of synaptical units  U U   of 
  such that 

 , , , , ,U B U B U B      

where  B B   is the homogeneous part of the net- 
work   whose synaptical units are the images by   
of the synaptical units that compose B . 
 For any synaptical unit U  of   

 , , ,i iF F i U i U U         

where iF  and iF   are the second terms of the im- 
pulsive differential Equations (3) that govern the dy- 
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namics of the neurons i  and i , respectively. 
In other words, the networks   and   are sy- 

naptically equivalent, if there exists an isomorphism   
between their respective inter-units graphs such that all 
the neurons in the unit U  of the network   are struc- 
turally identical to all the neurons in the unit  U  of 
the network  . 
For example, let us consider the network   of 

Figure 3. Assume that 1 2 3F F F  , 5 6F F  in the 
respective impulsive differential equations (3). Also 
assume that ,1 ,2 ,3h h h        for 4,5h   and 

3,5 3,6    . Then, the network   has 3  homogeneous 
parts      1,2,3 , 4 , 5,6 .A B C     Analogously to 
the example of Figure 1, the part A  of the network 

  is composed by two synaptical units 
 1 3 1,3U U    and  2 2U   , and the part B  is 

composed by a single synaptical unit  4 4U   . Finally, 
the part C  of the network of Figure 3 is composed by 
a single synaptical unit  5 6 5,6U U   . 
Assume that the interactions ,i j  and ,i j  of the net- 

works   and   of Figures 1 and 3 respectively, 
satisfy the following properties: 

, ,i j i j    for all  , 1, 2,3,4i j  such that i j , 

5, 5,j j    for all  1,2,3 ,j  

3,5 3,5 3,6      , 

5,4 6,4   . 
Then, the inter-units graph of Figure 2 also corresponds 

to the network  . So, the networks   and   of Fig- 
ures 1 and 3 are synaptically equivalent. 
We note that, for synaptically equivalent networks, the 

number of neurons, and also the number of nonzero 
synaptical interactions, may vary. For instance, the net- 
works of Figures 1 and 3 are synaptically equivalent, but 
their respective total numbers of of neurons and of 
synaptical interactions are mutually different. 
Comments: The equivalence relation between networks 
  and  , according to Definition 9, implies that 
both   and   will have exactly the same dyna- 
mical response (i.e. they will follow the same orbit), 
provided that, for any dynamical unit U  of  , the 
initial states of all the neurons in U  are mutually equal 
and also equal to the initial states of all the neurons in 
the dynamical unit  U U   of the other network. In 
fact, since the impulsive differential Equations (3) that 
govern the dynamics of all those neurons coincide, and 
since the synaptical jumps that each of those neurons 
receive from the other neurons of its respective network 
also coincide, their respective deterministic orbits in the 
future must coincide if the initial states are all the same. 
Nevertheless, if not all those initial states are mutually 

equal, for instance if some external signal changes the 
instantaneous states of some but not all the neurons in a 
synaptical unit, then their respective orbits will differ, 
during at least some finite interval of time. In this sense, 

each synaptical unit with more than one neuron, is a 
group of identical cells that distributes the dynamical 
process among its cells, i.e. it has the capability of dy- 
namically distributing the information.  

In brief, two synaptically equivalent networks have, as 
a common feature, the same statical configuration or 
anatomy of the synaptical interactions between their units 
(i.e. between groups of identical cells, equally synap- 
tically connected). Then, both networks would evolve 
equally, under the hypothetical assumption that all the 
initial states of the neurons of their respective synaptical 
units coincided. But the two networks may exhibit qua- 
litatively different dynamical responses to external per- 
turbations or signals, if these signals make different the 
instantaneous states of different neurons in some sy- 
naptical unit. Such a difference produces a diverse dis- 
tribution of the dynamical response among the cells. 

5. Third Step of the Proof (Dynamically  
Optimal Networks) 

The purpose of this section is to prove Proposition 13 
and Theorem 15. These are intermediate results (the third 
step) of the proof of Main Theorems 16 and 17. We will 
prove these intermediate results by logical deduction 
from several previous statements and hypothesis. So, we 
start by including the needed previous statements in the 
following series of mathematical definitions, remarks and 
notation agreements: 

We condition the study to the networks of any fixed 
single class, which we denote by  , of synaptically equi- 
valent networks according to Definition 9. In this section 
we search for networks exhibiting an optimum dynamics 
conditioned to  . 

Notation: 
We consider the mathematical model of a general 

neuronal network   , given by the system (5) of 
impulsive differential equations. We denote by 

        1 2, , , NX t x t x t x t   

the instantaneous state of the network   at instant t , 
where 2N   is the number of neurons of the network, 
and i ix M  is the instantaneous state of the neuron 

 1,2, ,i N  . Since by hypothesis ix  evolves on a 
finite-dimensional compact manifold iM , the state X  
of the network evolves on the finite-dimensional com- 
pact product manifold M , defined by the following 
equality: 

1 2: .NM M M M     

In other words, M  is the cartessian product of the 
manifolds  1i i N

M
 

. Then 

   
1

dim dim
N

i
i

M M


             (6) 
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Definition 10 (Dynamics of the network) Consider 
any initial state 

        0 1 20 0 , 0 , , 0NX X x x x M    

of the network  , i.e.  0i ix M  is the state of the 
neuron i  at the instant 0t  . 

The solution   , 0X t t   of the system (5) of im- 
pulsive differential equations that govern the dynamics of 
 , exists and is unique, provided that the initial 
condition   00X X M   is given (see for instance 
[14], cited in [15]). We denote: 

     0 0, : such that 0 ,X t X t X X    

and call   the (deterministic) dynamical system (or, in 
brief, the dynamics) associated to the network  . It is 
an autonomous deterministic dynamical system. 

For any autonomous deterministic dynamical system 
(also if it were not modelled by differential equations), 
we have the following properties: 

 0 0,0 ,X X   

    0 0, , ,X t s X t s      

0 , , 0.X M t s     

So, for any fixed instant > 0T  the state  0 ,X T  
plays the role of a new initial state, from which the orbit  

   0 0
, ,

s
X T s


   evolves for time 0s  . This orbit 

coincides with the piece of orbit   0 ,
T s T

X T s
 

   

(for time T ) that had the initial state 0X . 

Definition 11 (Partial Order in  ) 
Let   and   be two networks in   and denote 

by   and   the dynamics of   and   res- 
pectively. Denote by M  and M   the compact ma- 
nifolds where   and   respectively evolve. 

We say that   is dynamically richer than  , and 
write 

,   

if there exists a continuous and one-to-one (non neces- 
sarily surjective) mapping 

: M M   

such that 

     0 0, , , 0,X t X t t              (7) 

for any initial state 0X M  . 
In other words,    if and only if the dy- 

namical system   of   is a subsystem of the dy- 
namical system   of  , up to the continuous change 
  of the state variables. 

From Definition 11 it is immediately deduced the 
following assertion: 

   and    if and only if their res- 
pective dynamical systems   and   are topolo- 
gically conjugated.  

This means that the dynamics of   and   are 
the same topological dynamical system, up to an ho- 
meomorphic change in their variables which is called a 
conjugacy. So, we deduce: 

  is a partial order in the class   of synaptically 
equivalent networks up to conjugacies.  

As an example, assume that the numbers N  and N   
of neurons of   and   satisfy 2N N  . Then 

      0 1 2 20 , 0 , , 0NX x x x   ,  
      0 1 20 , 0 , , 0NX x x x     . Define the function   

by: 

   
 

0 1 2

1 1 2 2 0

, , ,

, , , , , , .

N

N N

X x x x

x x x x x x X

  

 

  

      




 

If this function   satisfies Equality (7), then each 
orbit   0 0

,
t

X t


   of the dynamical system of  , is 
identified with one orbit  0 ,X t  of the dynamics of 
 . Along this orbit  0 ,X t , each two consecutive 
identical neurons have the same initial states, and thus 
also have coincident instantaneous states for all 0t  . 
Nevertheless, the whole dynamics   of the network 
  also includes many other different orbits, which are 
obtained if the initial states of some pair of consecutive 
identical neurons of   are mutually different. 

Remark 12 From Definition 11, since : M M   
is continuous and one-to-one, we deduce that the image 
 M   is a submanifold of M  which is homeo- 

morphic to M  . This is a direct application of the Do- 
main Invariance Theorem (see for instance [18]). There- 
fore: 

    dim dim .M M    

Besides,  M M   . So, M  contains the subma- 
nifold  M   that has the same dimension than M  . 
We deduce the following statement: 

   dim dim .M M            (8) 

In extensum: 
If the dynamics of   is richer than the dynamics of 
 , then the dimension of the manifold M  where the 

dynamics of   evolves, is larger or equal than the 
dimension of the manifold M   where the dynamics of 

  evolves.  
From the above remark we deduce the following re- 

sult: 
Proposition 13 (Intermediate result in the proof of 

Main Theorems 16 and 17) 
If   and   are synaptically equivalent and if 
  , then the number of neurons of   is larger 

or equal than the number of neurons of  .  
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Proof: Both networks are synaptically equivalent; so, 
each neuron i  of   is structurally identical to some 
neuron (which we still call i ) of  . This implies that 
the finite dimension of the variable i ix M  in the 
network   is equal to the finite dimension of the 
corresponding variable i ix M   in the network  . 
Thus, 

   dim dim .i iM M             (9) 

After Equality (6) applied to the networks   and 
  respectively, we obtain: 

   
1

dim dim ,
N

i
i

M M


            (10) 

   
1

dim dim ,
N

i
i

M M




            (11) 

where N  and N   are the number of neurons of   
and   respectively. From Inequality (8) we have: 

   dim dim ,M M   

Finally, substituting (10) and (11), we obtain: 

   
1 1

dim dim ,
N N

i i
i i

M M


 

    

and joining with (9) we conclude N N  , as wanted. 
Definition 14 (Dynamically optimal networks) We 

say that a network    is a dynamical optimum 
conditioned to the synaptical equivalence class   (i.e. 
within the class  ) if    for all   . 

Theorem 15 (Existence of the dynamical optimum 
Intermediate result in the proof of Main Theorems 16 
and 17) 

For any class   of synaptically equivalent neuronal 
networks there exists a dynamical optimum network 
conditioned to  . This optimal network has the ma- 
ximum number of cells among all the networks of the 
class  .  

Proof: The class   of synaptically equivalent net- 
works is characterized by the numbers l  and s  of 
homogeneous parts and synaptical units respectively, and 
by the real values ,U B  of the synaptical connections 
between the dynamical units U  and the homogeneous 
classes B U . 

For each dynamical unit U , we denote by 1Ul l   
the number of homogeneous classes B U  such that 

, 0U B  . Thus, 1Ul   because each cell i U  is not 
indifferent, and so, there exists at least one nonzero 
synaptical action departing from i . (Recall that by 
Definitions 4 and 5, the nonzero synaptical actions only 
exist between cells belonging to different homogeneous 
parts.) 

Construct a network   as follows: 
First, compose each dynamical unit U  with exactly 

Ul  cells. Then, there exists a surjective one-to-one 
correspondence U  between the set of cells i U  and 
the set of homogeneous parts B U  satisfying  

, 0U B  . 
Second, define the synaptical connections departing 

from each cell i  of each dynamical unit U , by the 
following equalities: 

 , ,: 0   if  ,i j U B Uj B B i       ，      (12) 

 , ,: 0   if  ,i j U B Uj B B i       ，      (13) 

We will prove that the network   such constructed 
is dynamically optimal within the class  : 

Fix any network   . Consider the dynamical 
systems   and   corresponding to the networks 
  and   respectively. Denote by M  and M   
the compact manifolds where   and   respectively 
evolve. According to Definition 11, to prove that 

   it is enough to construct a continuous one- 
to-one mapping : M M   satisfying Equality (7). 

Let 0X M  . For any cell i  , the initial state 
 0ix   is a component of 0X  . Let us define 

 0 0X X M    satisfying Equality (7). To do so, we 
must define the initial state  0ix  of any cell i  of the 
network  . 

So, fix i . Denote by U  the synaptical unit to 
which i  belongs, and denote by  UB i   the uni- 
que homogeneous class of the network   satisfying 
(12). We denote 

, , ,: 0, ,i B i j U B j B                 (14) 

where i U  and  .UB i   
Since   is synaptical equivalent to   (because 

both networks   and   belong to the same class 
 ), we apply Definition 9 to deduce the following 
equalities: 

0,== ,,,   BiBUBU           (15) 

   where , .U U B B     

From Definition 6, there exists a unique cell i U   
such that 

, , 0.i B U B                    (16) 

Summarizing, for any fixed neuron i U    we 
have constructed a unique cell  i U U       
such that Equalities (14), (15) and (16) hold. In other 
words, we have constructed a mapping  : i i   , 
defined from the synaptical equivalence between the net- 
works   and  , such that: 

    ,, 0, ,i Bi B i               (17) 

where  UB i   is the unique homogeneous class in 
  satisfying (12). 
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Assertion A: The mapping   transforms each cell 
i  of the network   into the cell  i i    in the 
network  , which is structurally identical to i .  

In fact, assertion A follows from the fact that   and 
  are synaptically equivalent (cf. Definition 9) and 

from Equality (17). 
Let us prove that   is surjective. In fact, for each 

i  , there exists at least one homogeneous part B  
such that , 0i B   , because i  is not indifferent. By 
Definition 9,  B B   where   is a one-to-one and 
surjective transformation between the homogeneous parts 
of   and  . Therefore, there exists a unique 
homogeneous part B  of   such that 

, , 0i B U B     , where  1B B  ,  1U U   
and i U  . By construction of the network  , if 

, 0U B  , then there exists a unique i U  such that 

, ,U B i B   . Then, we deduce that   ,, 0i Bi B    . 
Joining with (17), and recalling that for each synaptical 
unit U   there exists at most one cell i U   such that 

, 0i B   , we deduce  i i   . This proves that   is 
surjective. 

We define the initial state  0ix  of the cell i  
by 

     0 : 0 ,i ix x  

and the mapping : M M   by 

       0 0   such that  0 0 , .i iX X x x i        (18) 

The mapping   is continuous because the com- 
ponents  0ix  of  0X   are components  0ix  of 

0X  . Thus, small increments in the components  0ix   
of 0X   imply small increments in the components 
 0ix  of  0 0X X  . Besides, the mapping   is 

one-to-one (but non necessarily surjective). In fact, if 

0 0X Y   then, at least one component  0ix   of 0X   
differs from the respective component  0iy   of 0Y  . 
Since   is surjective, there exists i  such that 

 i i   . So, applying Equality (18) we obtain 
   0 0i ix y , where      0 0i iy y . Thus 
   0 0X Y     proving that   is one-to-one. 
To end the proof of the first part of Theorem 15, it is 

now enough to check that the mapping   satisfies 
Equality (7): 

From Equality (18) and from the surjectiveness of  , 
for each initial state 0X   of the network  , and for 
each neuron i  , the corresponding set of neurons 

 1i i     have initial states  0ix  which equal 
 0ix  . Besides, from Assertion A,  1i i   and i  

are structurally identical. Now, we consider Equalities 
(14), (15) and (17), applied to any neuron j  and 

 j j    , in the respective roles of i  and 
 i i   . We deduce that the synaptical interaction 

jumps ,j i   that i  receives from any other neuron 
j   coincides with the synaptical interaction jumps 

,j i  that  1i i   receives from  1j j   in 
the network  . Therefore, both i  and  1 i   
satisfy the same impulsive differential equation (5). 
Besides, their respective initial conditions  0ix   and 

   1 0
i

x  
 coincide, due to Equality (18). Since the 

solution of the impulsive differential Equation (5) that 
satisfies a specified initial condition is unique, we deduce 
the following statement: 

For any instant 0t   the state  ix t  coincides with 
the instantaneous state  ix t , where  1i i  .  

Recalling Definition 10 of the dynamics   and   
of the networks   and   respectively, we deduce: 

       , , : 0 , ,iX t x t X t     

         , , : 0 , .iX t x t X t        

Applying again Equality (18), which defines the 
mapping   for each fixed instant 0t   as the new 
initial state, we conclude 

     0 0, , ,X t X t       

proving Equality (7), as wanted. 
We have proved that    for all   . Thus, 

in each synaptical equivalence class   there exists a 
network   that is the dynamical optimum conditioned 
to  . 

Now, let us prove the second part of Theorem 15. We 
have to show that the number N  of neurons in   is 
the maximum number of neurons of all the networks in 
the class  . In fact, since   , after Proposition 
13 we get N N  , where N   is the number of neurons 
of  , for all   . 

6. End of the Proof of Dale’s Principle 

Let   be the set of all the neuronal networks according 
to the mathematical model defined in Section 2. Let 
  be a fixed class of synaptically equivalent net- 

works. The purpose of this section is to end the proof of 
the following Main Theorem of the paper: 

Theorem 16 (Dale’s Principle is necessary for the 
dynamical optimization) 

If   is the dynamical optimum network conditioned 
to  , then all the neurons of   satisfy Dale’s Prin- 
ciple. 

Namely, any neuron of   is either inhibitory or ex- 
citatory.  

End of the proof of Theorem 16: Let   be the 
dynamical optimum among the networks in  . There- 
fore, 

, .       

Thus, applying Proposition 13, the numbers N  and 
N   of neurons in   and   respectively, satisfy 
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.N N                  (19) 

Denote by ,j h  the synaptical action from the neuron 
j  to the neuron h j  in  , for any  1, , .j N   

Assume by contradiction that there exists a neuron 
i  which is mixed, according to Definition 1. Let us 
fix such a value of i . Now, we construct a new network 

   as follows: 
First, include in   all the neurons j , in 

particular j i . Define in   the synaptical inter- 
actions ,j h  as follows: 

, ,: ,    if  .j h j h h j j i       

 , ,: max 0, , .i h i h h i      

Second, add one more neuron in  , say the 1N - 
th. neuron, which we make, by construction, structurally 
identical to the i -th. neuron. Define 

 1, ,: min ,0N h i h    

 1,2, ,   such  that  ,h N h i    

1, , 1: 0,   : 0.N i i N       

The new neuron 1N   is not indifferent in the net- 
work   because i  is mixed in  . (So, there exists 
h i  such that , < 0i h .) 

It is immediate to check that   is synaptically 
equivalent to  . In fact, all the neurons, except the 
added one 1N  -th. cell in  , are respectively 
structurally identical in the networks   and  . 
Besides, all the synaptical interactions, except those that 
depart from i  and 1N  , are the same in both 
networks. Finally, also the nonzero synaptical inter- 
actions that depart from i  in the network  , are 
equal, either to the synaptical interactions that depart 
from i  in   (if positive), or to those that depart 
from the new neuron 1N   in   (if negative). So, 

  is synaptically equivalent to  . In other words, 
  . To end the proof, we note that the number N   

of neurons of   is 1N N N    , contradicting 
Inequality (19).□ 

7. Counter Example 

The purpose of this section is to exhibit a counter-ex- 
ample that shows that the converse of Main Theorem 16 
is false (Theorem 17). 

Theorem 17 is the second Main Theorem of the paper. 
Its proof is deduced from the intermediate results that 
were previously obtained along the paper, and is ended 
by showing the explicit counter-example from Figures 
1-3. 

Theorem 17 (Dale’s Principle is not sufficient for 
the dynamical optimization) 

There exist neuronal networks according to the 

mathematical model of Section 2 that satisfy Dale’s 
Principle and are not dynamically optimal conditioned to 
their respective synaptical equivalence classes.  

End of the proof of Theorem 17: We will show an 
explicit example of a dynamical suboptimal network   
within a synaptical equivalence class  , such that   
satisfies Dale’s Principle. We will exhibit such an ex- 
ample with 5N   neurons, but it can be repeated (after 
obvious adaptations) with any arbitrarily chosen number 

3N  . 
Consider the network   of Figure 1. Assume, for 

instance, the following signs for the nonzero synaptical 
interactions: 

4, > 0  for  1,2,3,i i   

5, < 0  for  1,2,3, 4i i   

1,4 2,4 3,5< 0,   > 0,   < 0.    

Then, the neurons 2  and 4  are excitatory and the 
neurons 1, 3 and 5  are inhibitory. Thus, all the neurons 
of the network   satisfy Dale’s Principle. 

As shown in Section 4, the network   of Figure 3 
is synaptically equivalent to the network   of Figure 
1. In other words, both networks   and   belong 
to the same equivalence class  . Since   has 
exactly 6 neurons and   has 5 neurons, applying Pro- 
position 13 we deduce that    . Thus   is not 
the optimal network of its class  . 

8. Final Comments 

In Section 2 we posed the mathematical simplified (but 
general) model of biological neuronal networks, by a 
system (5) of deterministic impulsive differential equa- 
tions. In its essence, this model was taken from [11] 
(some particular conditions of the model were also taken 
from [8-10,12,13] and from the bibliography therein). 

On the one hand, the mathematical model is an 
idealized simplification of the network, because the spik- 
ing of each neuron is reduced to an instantaneous reset, 
without delay, of its membrane potential. Also the synap- 
tical actions are assumed to be instantaneous and have no 
delay. 

On the other hand, the abstract mathematical model is 
general, since we require neither particular formulae, nor 
numerical specification, nor computational algorithms 
for the functions if , 1F  and ,i j  of Equations (1), (3) 
and (5), nor specific values for the parameters. 

In Section 3 we defined the homogeneous parts of the 
network, composed by mutually identical cells. The 
groups of neurons, which we call synaptical units, are 
formed by structurally identical and synaptically repre- 
sentative neurons. In Proposition 7 we proved that any 
neuronal network, according to the mathematical model 
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described in Section 2, is decomposable in more than one 
homogeneous part, and that each homogeneous part is 
decomposable into pairwise disjoint dynamical units. 
Then, a simplified graph, which we called inter-units 
graph mathematically represents the statical structure of 
the synaptical connections among the groups of neurons 
in the network. This theoretical approach have rough 
similitudes with empirical research in Neuroscience [17], 
for which the structure of synaptical connections among 
groups of neurons or regions in the brain is studied, 
regardless how many neurons exactly compose each 
region. 

In Section 4 we conditioned the study to a fixed family 
of networks that are mutually synaptically equivalent. 
We denote this family by  , and call it a class. Even if 
this condition may appear as a restriction, it is not. In fact, 
first, any neuronal network (provided that it is ma- 
thematically modelled by the equations of Section 2), 
belongs to one such a class  . Second, all the results 
that we proved along the paper stand for any arbitrarily 
chosen class   of synpatically equivalent networks. 

Each class   of synaptically equivalent networks 
gives a particular specification for the number of sy- 
naptical units and for the inter-units graph. This spe- 
cification implies a particular statical anatomy in the 
synaptical structure of the network, described by the 
different groups of mutually identical neurons (and not 
by the neurons themselves). Each group of neurons is a 
synaptical unit that has a characteristic functional role in 
the complex synaptical structure of the network. 

Roughly speaking, a class   of mutually synap- 
tically equivalent neuronal networks works as an abs- 
traction of the following analogous example: When a 
Neuroscientist studies the nervous system of certain spe- 
cies of animals, he is investigating a class of neuronal 
networks composed by a relatively large amount of 
particular cases that are indeed different networks (one 
particular case for each individual of the same species). 
But all the neuronal networks in that class share a certain 
structure, which is given, for instance, by the genetic 
neurological characteristics of the species. Some type of 
synaptical connections between particular groups of 
neurons with specific physiological roles, is shared by all 
the healthy individuals of the species. However, the exact 
number of neurons, and the exact number and weight of 
synaptical connections between particular neurons, may 
vary from one individual to another of the same species, 
or from an early age to a mature age of the same in- 
dividual. 

In Section 5 we studied the abstract dynamical system 
of any neuronal network defined by the mathematical 
model of Section 2, and conditioned to a certain fixed 
class   of mutually synaptically equivalent networks. 
In Theorem 15 we proved that (theoretically) a dy- 

namically optimal network exists in each class  . 
The proof of Theorem 15 is constructive: first, we 

defined a particular network   , and second, we 
proved that   is the richest network of its class. This 
means that   would potentially exhibit the most 
diverse set of dynamical responses (orbits in the future) 
when external signals change the instantaneous state of 
some of its neurons. 

Since the system is assumed to be deterministic, any 
network according to this model will reproduce a unique 
response if the same instantaneous state occurs for all its 
neurons. So, the space of responses is represented by the 
space of instantaneous states (or initial states, if time T  
is translated to become 0). Nevertheless, this space may 
change from one network to another of the same sy- 
naptical equivalence class  . If we assumed that the 
natural pursued aim in the development of a biological 
neuronal network were to optimize the space of dy- 
namical responses under stimulus, preserving the same 
characteristic and functional structure between groups of 
cells, then, theoretically, the final (but maybe never 
arrived) network would be  , constructed in the proof 
of Theorem 15. 

In Section 6 we proved Theorem 16, which is one of 
the main results of the paper. It states that the dy- 
namically optimal network   in the class   must sa- 
tisfy Dale’s Principle (i.e. all its neurons are either 
excitatory or inhibitory but not mixed). So, if the natural 
pursued aim in the development of the neuronal network 
were to optimize the space of possible dynamical res- 
ponses, the tendency of the network during its plastic 
phases will provoke as many neurons as possible to 
satisfy Dale’s Principle. From this point of view, Theo- 
rem 16 shows that Dale’s Principle is a consequence of 
an optimization process. So, it gives a mathematically 
possible answer to the following epistemological ques- 
tion: 

Why does Dale’s Principle hold for most neurons of 
most biological neuronal networks?  

Mathematical answer: Because maybe biological net- 
works evolve pursuing the theoretical optimum or richest 
dynamics, conditioned to preserve the synaptical con- 
nections among its different homogeneous groups of 
neurons. 

Finally, in Theorem 17 we proved that Dale’s Prin- 
ciple is not enough for the neuronal network to be a 
dynamical optimum within its synaptically equivalence 
class. In other words, Dale’s Principle would be just a 
stage of a plastic optimization process of the neuronal 
network, but its validity does not ensure that the end of 
hypothetical process of optimization has been arrived. 
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