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ABSTRACT

In this paper, we study the existence of solutions for 2| order (n x n) cooperative systems governed by Dirichlet and
Neumann problems involving hyperbolic operators with an infinite number of variables and with variable coefficients.
The necessary and sufficient conditions for optimality of the distributed control with constraints are obtained and the set
of inequalities that defining the optimal control of these systems are also obtained.
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1. Introduction

The optimality conditions for systems consisting of only
one equation and for n x n systems governed by different
types of partial differential equations defined on spaces
of functions of infinitely many variables have been dis-
cussed for example in [1-11].

In addition, optimal control problems for systems in-
volving operators with an infinite number of variables for
non-standard functional and time delay have been intro-
duced in [12,13].

Furthermore, time-optimal control of systems with an
infinite number of variables has been studied in [14-16].

Some applications of optimal control problem for sys-
tems involving Schrodinger operators are introduced for
example in [17-21].

Making use of the theory of Lions [22] and Berezan-
skii [23], we consider the optimal control problem of
distributed type for 2l order (n x n) cooperative systems
governed by Dirichlet and Neumann problems involving
hyperbolic operators with an infinite number of variables
and with variable coefficients. We first prove the exis-
tence and uniqueness of the state for these systems, then
we find the set of equations and inequalities that charac-
terize the optimal control of these systems. Finally, we
impose some constraints on the control. Necessary and
sufficient conditions for optimality with control con-
straints are derived.

This paper is organized as follows. In Section 1, we
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introduce spaces of functions of an infinite number of
variables. In Section 2, we discuss the distributed control
problem for these systems with Dirichlet conditions. In
Section 3, we consider the problem with Neumann con-
ditions.

2. Sobolev Spaces with an Infinite Number of
Variables

This section covers the basic notations, definitions, and
properties, which are necessary to present this work [24].
Let (p,(t ))Oi1 be a sequence of continuous positive
probability weights such that

0<p,(t)eC” (R )jpk t)dt=1,

with respect to it we introduce on the region
R” =R'xR'x---, the measure dp(X) by:

dp(x)=p, (% )dx ® p, (X, )dx, ®--,
(x=(xk )i, €R".X € Rl)
(

On R” we construct the space LZ(R°c dp X)) with

respect to this measure such that L (R dp X ) is the
space of all square integrable functions on R” i.e.

12
ol (mdp }«o-

We shall set L*(R*,dp(x))=L"(R").
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L’ (RW) is a Hilbert space for the scalar product
(U)o = [ U0V(x)0 (),
el
associated to the above norm.

We consider a Sobolev space in the case of an un-
bounded region. For functions which are continuously
differentiable | times up to the boundary I' of R* and
which vanish in a neighborhood of oo, we introduce the
scalar product

(u,v)W.(Rw) =y (D“u,D“v)Lz(Rx),

‘a‘sl
where D” is defined by

PE :
Jo| =Y,

[
XLt - X - =

and the differentiation is taken in the sense of generalized
function on R”, and after the completion, we obtain the
Sobolev space W'(R”), which is a Hilbert space and
dense in L’ (R‘”) . The space W' (R“’) forms a positive
space. We can construct the negative space W™ (Rw)
with respect to the zero space LZ(R°°53 and then we
have the following imbedding

()< () (7).
||y||w'(R°°) 2 "y"LZ(R”) 2 "y”\N"(Rw) :

Analogous to the above chain we have a chain of the
form

Wi (R7) U (R7) 2wy (7).
by = Wleee) = M e
where
W, (R”)={u/uew'(R") , D’u|. =0, |4 <11
with the scalar product

(U’V)wo'(rzw) = Z (Dau’ DaV)Lz(Rw)

Jo=!

and W, (R"”) is its dual.

L O,T;WOI (R°° denotes the space of measurable
function t — f(t) on open interval (0,T) for the Lebesgue
measure dt and such that

T , 12
"f (t)||L2(0,T;W'(R°°)) = (.(["f (t)|LN'(R°°) dt) <00,

endowed with the scalar product

(f (t)’ Y (t))Lz(o,T;w'(R*)) = :[( f (t)’ g (t))w'(R*) dt,

which is a Hilbert space.
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Analogously, we can define the spaces
L (0T;L°(R"))=L(Q) and L*(0,T:W ' (R7)),
then we have a chain in the form
L (0.Tsw' (R")) = * (0,757 (R”))
<L’ (0.Tw (R)),

where Q =R*x(0,T) with boundary ¥ =Tx(0,T).

By the Cartesian product, it is easy to construct the
following Sobolev spaces (W'(Rw))n with the norm
defined by

Il = 2l

where U=(U,,U,,---,u,) is a vector function and
u ew' (Rw), also we can construct the Cartesian prod-
uct for the above Hilbert spaces. Finally we have the fol-
lowing chain:

(1 (o.mw! (r" ))) (L (oL (R”)))n
g(B (0.1sw (R”’“)))n ,
(1 (0.mwg (R" ))) c(e(omr (Rm)))n

c (l_2 (0.T:w," (R” )))

n

where
(L2 (0.7T:w" (R°°)))n and (L2 (0.T:w," (Rw)))"

T e s, o (2o () o

3. Dirichlet Problem for 21 Order (n x n)
Cooperative Hyperbolic System with an
Infinite Number of Variables and with
Variable Coefficients

In this section, we study the existence and uniqueness of
solutions for 2l order (nx n) cooperative systems gov-
erned by Dirichlet problems involving hyperbolic opera-
tors with an infinite number of variables and with vari-
able coefficients, then we find the necessary and suffi-
cient conditions of the optimal control of distributed

type.
For 1<i<n, we have the following system:

MJf A(t)y; :Zn:aij (x) y; + f; (x.t) inQ,
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where yi,%e LZ(O,T;WO' (R“’)) , f=(f, fs )

is a given function, and a;(x) are bounded functions
such that
a; (x)>=0 foralli= j,forall x, 2)
a; =a; foralll<i,j<n. 3)
System (1) is called cooperative if (2) holds.

2
The operator B(t):st—+ A( ) in system (1) is 2l

order hyperbolic operator with an infinite number of
variables with

A(t)e L((WO' (R™))":(wy' (R™)) j

[23] is given by:
<><);2<>“mwmnwunmu>
’ )
k yl Xk ’ an \) Xk s yl

since q(X,t) is a real valued function in X which is
bounded and measurable on R, such that

q(x,t)>c,0<c<1,cisa constant. 5)

Definition 1:
For each t € (0,T), we define a bilinear form

n(t; y,l//) : (WO' (R°° ))n ><(W0I (R°° ))n —>R by
n(ty.y) :(S(t)y»'//)(,_z(Rx))" >

y:(ylv Yoo, yn), 4 =(l//1,l//2,---,l//n)e(W0' (Rw))n S

where
5(0)y, ()= £ 31Dy (0 +a(x) (1)
“2a (%0 =120
Then,
n(tyw) = (S (0o
w(tyw) =30 [ 33003 (110w (x)d0(x
LA ) ©
-3 [ 005 00w (0
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3.1. The Existence and Uniqueness of Solution
Lemma 1:
The bilinear form (6) is coercive on (WO' (R"0 ))n , that

is, there exists €, ¢; € R, such that:

n(LY,Y)+6 ||V(X)||2L2(R”))”

ey (0 65 >0 "
We have
n(ty.y)= Z;R l; D¢y, (X)[ dp(x)
+3: [l (0 de(x
-2 3,005, (990,
s,
()= | % 3oy (0] ao(x
+3: [a(eol (0 ae(x
-2 a0l 0 o)
-2 ] 2 (003 (), (x)90(x
From (2), (3), and (5), we deduce
n(ty,y)> ;J%;Dﬁy. X)| do(x)
w03 [ % (0 ap(x)-0 2 ][ (3 00
—mgimuwmowux
then,
w(63.9)2 2 [ 3300 (0 o)
32 O do(x)-263 [ 00, (40 )
>3 [ 3 300y (4] ap()
o Sy
AP
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n(ty,y)+c [Zn:" Y; (X)"L2 3 jz

then,
n(ty,y)+c, i"% (X)”zﬁ R”)
ZEQEI o) > 2 O

since 0 <

D¢y, (x|

, we have,

n(t; Y. y)+Cl Iy Oy = lly Ol

n
which proves the coerciveness condition on (WO' (R°° )) .

Under all the a bove consideration, theorems of Lions
[22] and using the Lax-Milgram lemma we have proved
the following theorem.

Theorem 1:

Under the hypotheses (2), (3) and (7), if

f=(f.f,f), Yo:(X) and y,;(x) are given in
(12 (oTw! (R°°)))n . W) (R") and L*(R”) resp.
then there exists a unique solution
y :(yls Yoo, yn)e (L2 (O,T,WOI (Rw)))n

for system (1).
Proof:
Let ¥ — L(w) be a continuous linear form defined

n (L (07w (R ))) by

M:

L(y) =2 f(x )y (x)dp(x)dt

1

T M3

.[o X)w; (x,0)dp(x),

Vl// :(l//lol//za"'ﬂl//n)e (L2 (07T9W0| (Rw))) >
then by Lax-Milgram lemma, there exists a unique ele-

ment Yy :(yl,yz,...,yn)e(L2 (O,T;WOI (Rw)))n such that

[%,w]+ﬁ(t;y,w)=L(W)

Yy :(l/,“l/,z’...,l//n)e(L2 (O,T;WOI (Rw)))n.

)

Now, let us multiply both sides of first equation of
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system (1) by v, (X) , then integration over Q, we have:

JFMU + 3 (1) Dy, () +a(xt) v, (x)

Q <l k=1

by applying Green’s formula

[ 7200001 5 S0ty (905 (0

Q <l k=1

+«mmumuyi%wwumuﬁwwm

j=1

-[w (x,O)de—jyxi (jy—‘dz

e t z Va
= [ fi(xt)y; (x)dp(x)dt.

by entering the summation on the both sides, we have

v, (X)+ 3 Y DL, (x) D (x)

2
ot |aJ<l kot

by comparing the summation with (6), (8) and (9) we
obtain:
n (X, n :
3 wi(x,o)% ()+ 3 [v Deaz
z

=1 g i=1 OVy

Zn:I (x,0)y,; (x)dp(x),

i=l p

then we deduce that:
Yil, =0, 1<i<n

9, (x,0)

ot — = yl,i (X)
which completes the proof.
3.2. Formulation of Dirichlet Problem

The space (L2 (Q))n being the space of controls. For a

control U=(U,,U,,--,U,) e (LZ(Q))n,the state
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y(u)=(y, (u),y, (u),-,y, (u))
c (L2 CRA (F<°°)))n

of system (1) is given by the solution of

2y, (u) {zi(—l)” DI +Q(XJ)J ¥ (u)

ot Je<l k=1

:Zn:aij(x)yj(u)+ f.+u, in Q,
j=1

y; (x,0,u)
—a Yii (%)

Vi (), =0, ¥, (x0,u) =y, (%),

xeR”,

1<i<n,

(10)
yi (u) ,Wia—gu)e L (0.,T:w (R)).
The observation equation is given by
Z(u) =(Zl (u)azz (u),~~-,Zn (u))
= y(u):(yl (u)’ Y, (u)"”

N is given as

N=(N NN < (@) (1 Q)

such that,

Ya (0)

(Nu,u)(Lz(Q))n 2;/||u||2L y=0.

GO
24,)€(L2(Q)) . the

For a given zy =(2y,24,, ",

cost function is given by

V) = iZ;")ﬁ (V) —Zy ||2|_2(Q)

+(NV,V)(L2(Q))n .31

Control Constraints
The set of admissible controls U.q is a closed convex
subset of U = (L2 (Q)) Then the control problem is to
find inf J(v) over Ug,.

Then using the general theory of Lions [22], there ex-

n
i=1

this inequality can be written as

|

(P-BY)(iz(q 5il( al

™=

Now, since

i=1
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S (30 0)= 2034 (0)= 4 (1)) g, + (Nt -

ly. — 24, Y; (V) -y (u ))Lz( )dt (N;u;, Vv, -

Zi( 1) Dkz"yi+Q(X,t)yi—Zn;ai,-yj] dt

ists a unique optimal control U € U,qg such that J(u) = inf
J(v) for all v € Uy. Moreover, we have the following
theorem which gives the necessary and sufficient condi-
tions of optimality.

Theorem 2:

Assume that (7) holds and the cost function is given by
(11). The necessary and sufficient conditions for

u :(ul,uz,...,un)e(Lz (Q))n

to be an optimal control are the following equations and
inequalities:

Gl (”)+(Z > (-1 D +q(xat)] pi (u)

ot Jof<l k=1

Sa(0p)=u )z 0y

j=1

pi (U)L: :09 pi (X,T,U):O,

forall1<i<n,

apiagu)(x,T,u):O,

xeR”
with
i (u), pi(u)e L (0.Tsw, (R7)),

@gu)’ap%“)e L (O,T;Wo' (Rw))’

(p(u)+ Nu,v—u)(Lz(Q))n >0

(13)

YV =(V, V0V, ) €U,

together with (10), where

p(u) :(pl (u)’ P, (u)""

is the adjoint state.
Proof: ;
The optimal control u=(u,,uU,,---,U,)e (L2 (Q)) is
characterized by [23]:

. Pa (U))

n
2 (U) (v —u) 209V = (v, ) €Uy,
i=1
that is
u; )LZ(QJZO
u, )0@)}20' (14)

2 (r7)
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by using Green’s formula, (3) and (10), we have

DTl A2 N
(p,By)(Lz(Q))_i_lMa atz( ) %;( 1 D2 p, +q(xt) pi—J_Z_;aupj,yi]Lz(Rw)dt=(B*p,y)(Lz(Q))n-
Then
B'p, o’p () ;2( 1)aDf“DﬁQ(X:t)pi—jZ:,aijpj» i=1,2,---,n,
and
S'p, =Z,|§,(—1)a DkzapﬁQ(X:t)pi_jZn_l:aij P, 1=L200m, (15)

Since the adjoint equation for hyperbolic systems in Lions [22] takes the following form: azgziu) +S*p (u)
= y(u)— Z,, then, from (15) we obtain the first equation in (12), and from theoreml, system (12) admits a unique solu-
tion which satisfies p; (u), P ( T (0.7:w; (R)).

Now, we transform (14) by using (12) as follows:

z[[ e ZE o s | -an - )|

i=l o <l k=1

dt+(Nu,v—u)( r >0,

2
Q
() )

using Green’s formula, (10) and (12), we obtain

il{pi(w[ £ (- )“D;au+q(x»t)}yi<V>—yi<“>—iau(yl() h ))j

i=1 ef<l k=1 J=

0 >0,

dt+(NU,V—U)(L2(Q)) 2

v (®)

using (10), we have

.
ZL[ )RV dt+(N,u,,v -u )LZ(Q)}ZO,

i=1
which is equivalent to ( p(u)+Nu,v— u)(Lz(Q))n >0.

Thus the proof is complete.

4. Neumann Problem for 2l Order (n x n) Cooperative Hyperbolic System with an Infinite
Number of Variables and with Variable Coefficients

In this section, we discuss the optimal control for 2| order (nx n) cooperative non-homogenous Neumann systems
involving hyperbolic operators with an infinite number of variables and with variable coefficients.

0 2/1[2()()+D(t)yi :Zn:aij(x)yj +f(xt) inQ,

j=1
W) g i<i<n, (16)
ov s

0Y;(x,0)

yi(xvo):yo,i(x)’ T:yl,i(x) in R”,

where yi,%e L (O,T;W'(Rw)),forall 1<i<n, 9g=(9,,9,,-,0,) is a given function in L2<O,T;W"/2 (F)) and

2
the operator 6_2+ D(t) in system (16) is 2| order hyperbolic operator with an infinite number of variables with
ot

Copyright © 2013 SciRes. APM
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D(t)y, (x) = X 2 (-1 Dy, () +a(xt) i (%),

since g(X,t) is defined as in (5). . .
For each t € (0,T), we define a bilinear form 7 (t;y,y): (W' (R"O )) X(W' (R°° )) — R asin (6).

4.1. The Existence and Uniqueness of Solution

Lemma 2:
The bilinear form 7r(t; y,l//) is also coercive on (W' (R°° )) , that is, there exists C, ;€ R, such that:

699 YO 2l Ol 6520 an

Proof:
Since (WO' (R‘” )) is everywhere dense in (W' (Rw )) with topological inclusion, then we have

Wi > W - )
By using (18) in (7), we obtain

ﬁ(t§ Y, Y)+ C ||y(x)||(2L2(R°°))" 2 C||y(x)"(2w'(R°°)

which proves the coerciveness condition on (W' (R“c

By the Lax-Milgram lemma, we shall introduce the following theorem which gives the existence and uniqueness of
the state for system (16).

Theorem 3:

Under the hypotheses (2), (3) and (17), if f =(f, f,,---, f,), y;(X) and y,;(X) are given in (L2 (O,T;W - (R°° )))n,

w' (R”) and L (Rw) resp., then there exists a unique solution y =(Y,,Y,, -, Y,)€ (L2 (O,T;WI (R"o )))n for system

(16).
Proof: N
Let 7 — L(w) be a continuous linear form defined on (L O T; W )) by
L(w) Z_[ xt)w; (X)dp(X) dt+z_[g +ij Jwi (x,0)dp(x), (19)
i=l Q i=ly i=1l R®

Y = (v, ) e (L (0TW! (Rw)))n’

n
then by Lax-Milgram lemma, there exists a unique element Yy = (y1 Yo Ya ) € (L2 (O,T;WI (Rw ))) such that (9) is
satisfied.

[{EA0D 50 i (0 a0 )58, (519, 0o (R1ap (0= 6 (x) (0,
by applying Green’s formula

I{azgitz( Ly, (x)+ 3300y, (x )Dk"!//i(x)+q(x,t)yi(x)y/i(x)—zn:a".(x)yj(x),/,i(x)}dp(x)dt

Q lf<l k=1 j=1

“Iw (x,o)wdx_iwisy_idzzi (), (X)do(x)dt,

et Va

Copyright © 2013 SciRes. APM
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by entering the summation on the both sides, we have

{‘W Ly (0)+ 3 3 0y, (x )Dswi(x)+q(x,t)yi(x)wi(x)—iau(x)y,-(xwi(x)}dp(x)dt

2
ot lef<l k=1 j=1

_Zn:-[(//i(x’o)ayi(x if ¥, dz zjf (xt)w; (x)dp(x)dt,

IIQ

by comparing the summation with (6), (8) and (9) we obtain:

5 [ 002014 3 2oz =3 v (1.0}, (08004,

i=l g ot i=l 3 i=l g
then we deduce that:

~ dY;(x,0)
ov |. O N ot

=y,;(x) inR”,

which completes the proof.
4.2. Formulation of Neumann Problem

The space (L2 (Q))n is the space of controls. The state y(u):(yl(u),y2(u),...,yn(u))e(LZ(O,T;W'(R°‘°)))n of

system (16) is given by the solution of

%y n
;;:Z(U)+D(t)y|(u)zzaij(X)yj( )+f +U 1 Q
j=1
. (u) =g, I<i<n, 20)
ov .
yI(X’O’u):yO|(X)7 ayl(:;’:o’U)_ II(X) IHROO,

ayi 2 . | )
yo el (o,T,W (R )) :
The observation equation is given by

2(u)= (2 (1), 25 (u)sr+ 2 (0)) = Y (u) = (¥ (U). Yo (U)o Yo (W) -

Foragiven zy =(Zy, 245,24, ) € (L2 (Q))n , the cost function is given by

i"y' Zdl i( i |) (21)

where M is a positive constant.
The control problem then is to find inf J(v) over U,y with the same control constraints in Section II.
Then as in Section II, there exists a unique optimal control U € U,q such that

J(u)=infJ(v)forallveU,. (22)

Under the given considerations, we may apply theorems of Lions [22] as in Section II to obtain the following theorem:

Theorem 4:
The necessary and sufficient conditions for optimality of the control problem (20), (21) and (22) are given by the fol-
lowing equations and inequalities:

Copyright © 2013 SciRes. APM
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azgiﬁ(u)*D(‘)pi(“)—iau(x) p; (u)=yi(u) =24 inQ.
" forall 1<i<n, (23)
5pai_$/u)2 =0, p;(x,T,u)=0, apiT(u)(x,T,u):o,XE R
with y,(u),p (u)el’(0.T:W' (R")), ayiaiu),ﬁpéiu)ELZ(O,T;W'(R“’)), (P(u)+ NUV=U) 0 20 F=

(V;,V,,-,V, ) €U,q, together with (16).
The case of no constraints on the control: )
In the case of no constraints on the control, i.e. U, = (L2 (Q)) , the condition (13) reduces to p; (u)+N;u; =0,
xeQ, hence u; =—N;"p,(u).
Example 1:
If we take n = 2 in Dirichlet problem (1) with the same conditions of coefficients (2) and (3), then the space of con-

trols is L*(Q)xL*(Q). For a control u=(u,,u,)e(L, (Q))2 , the state y(u)=(y,(u),y,(u))e (L2 (O,T;WOI (Rw )))2

of the system is given by the solution of

TI) Ay, ()= (), (0)+20 ()3: (0) 0, in Q,

L) A1)y ()= 00, (0)+ 2 (3, (0) ¢ -0 Q.

Vi(u), =0 ya(u), =0, (24)
0 (x00) =y (9, 2By () e

Y, (%.0:u) =y, (X), %t,o;u): Yi.(x) inR”.

v, (u), Y, (u)’ay,T(u)’ay;fEu)e L (0,T:w; (R)).

The necessary and sufficient conditions for the optimality are the following equations and inequalities:

o*p, (u) At B .
Pe +A(t)p (u)—a, (x) p (u)—a, (x) p,(u)=y,(u)-z, inQ,
o’p,(u .
P ) A1) (0) -2 ()P ()20 () P (0)= s () 250
p,(u)], =0, p,(u), =0. (25)
pl(x,T,u):O,8plaiu)(x,T,u):0, xeR”,
0
p, (x,T,u)=0, pz(u)(x,T,u):O, X eR”,
oy, (u) oy, (u) W (R op, (u) 9p, (u) w! (R*
yl’y29lT’g—t€L2(09T’W0<R ))a pl’ pQ’IT:2TE LZ(O,T,W()(R ))s
(pl(u)+Nlul,vl—ul)Lz(Q)Jr(pz(u)+N2u2,vz—u2)Lz(Q)20 W =(v,,v,) Uy, (26)
together with (24), where p(u)= ( P, (u), p,(u)) is the adjoint state.
Example 2:
If we take

Copyright © 2013 SciRes. APM
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U, = {u /u, arbitrary in L’ (Q), U, > 0 a.e.in Q} .

Thus there are no constraints on U,

p,(u)+Nu, =0,

P, (u)+N,u, >0,

27)

then the inequality (26) is equivalent to

u, >0, (28)

U, (p, (u)+N,u,)=0.

Thus the optimal control is given by the solution of the following set of equations and inequalities

2
0 ;;SU)"'
2
0 éiz(ll)+
o’p, (u)+

ot?

At): (u)-
A(t) Y, (u)-

A(t) py (u)-
pz( ) (u)

BN, {
e

a, (X) Yy (u)_alz
2, (x)y, (u)-

2 (X) Py (u)-

Y (u)|z
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o u) (u)(x,T,u) _op () (u)(x,T,u) =0, xeR”,
ot ot

Further

0%y, (u)

U1=N;lp1(u)s u,= a2

5. Conclusions

The main result of this paper finds the necessary and
sufficient conditions of optimality of distributed control
for 21 order (n x n) cooperative systems governed by
Dirichlet and Neumann problems involving hyperbolic
operators with an infinite number of variables and with
variable coefficients that give the characterization of op-
timal control (Theorem 2, 4).

Copyright © 2013 SciRes.

+A(t)y, (u)-

a, (X) Y, (u)-

in Q,
in Q,
y, (u)=-2z, in Q,

in Q,

A (0)-2, (4% (o) (1) )
{pz+N{"”Zggf“%A(t)yz(u)—az,<x>y]<u)—a2z<x>yz<u>—fzj}o,

u)|z =0, P, (u)|2 =0,

=Y (X)

in R”,

29

(30

azz(x) Y, (U)_ fz

Also it is evident that by modifying:
the boundary conditions (Dirichlet, Neumann, mixed)
the nature of the control (distributed, boundary),
the nature of the observation (distributed, boundary),
the initial differential system,
the number of variables,
the type of equation (elliptic, parabolic and hyper-
bolic),
the type of coefficients (constant, variable),
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o the type of system (non-cooperative, cooperative),

o the order of equation, many of variations on the above
problems are possible to study with the help of Lions
formalism.
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