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ABSTRACT 

In this paper, we study the existence of solutions for 2l order (n  n) cooperative systems governed by Dirichlet and 
Neumann problems involving hyperbolic operators with an infinite number of variables and with variable coefficients. 
The necessary and sufficient conditions for optimality of the distributed control with constraints are obtained and the set 
of inequalities that defining the optimal control of these systems are also obtained. 
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1. Introduction 

The optimality conditions for systems consisting of only 
one equation and for n × n systems governed by different 
types of partial differential equations defined on spaces 
of functions of infinitely many variables have been dis- 
cussed for example in [1-11]. 

In addition, optimal control problems for systems in- 
volving operators with an infinite number of variables for 
non-standard functional and time delay have been intro- 
duced in [12,13]. 

Furthermore, time-optimal control of systems with an 
infinite number of variables has been studied in [14-16]. 

Some applications of optimal control problem for sys- 
tems involving Schrodinger operators are introduced for 
example in [17-21]. 

Making use of the theory of Lions [22] and Berezan- 
skiĭ [23], we consider the optimal control problem of 
distributed type for 2l order (n × n) cooperative systems 
governed by Dirichlet and Neumann problems involving 
hyperbolic operators with an infinite number of variables 
and with variable coefficients. We first prove the exis- 
tence and uniqueness of the state for these systems, then 
we find the set of equations and inequalities that charac- 
terize the optimal control of these systems. Finally, we 
impose some constraints on the control. Necessary and 
sufficient conditions for optimality with control con- 
straints are derived. 

This paper is organized as follows. In Section 1, we 

introduce spaces of functions of an infinite number of 
variables. In Section 2, we discuss the distributed control 
problem for these systems with Dirichlet conditions. In 
Section 3, we consider the problem with Neumann con- 
ditions. 

2. Sobolev Spaces with an Infinite Number of 
Variables 

This section covers the basic notations, definitions, and 
properties, which are necessary to present this work [24]. 
Let 

1k k
  p t




 be a sequence of continuous positive 

probability weights such that 

     
1

10 ,k k

R

p t C R p t t d 1,   

with respect to it we introduce on the region  
1 1R R R    , the measure d(x) by: 

     
  

1 1 1 2 2 2

1

1

d d d

, .k kk

x p x x p x x ,

x x R x R


 


  

  


 

On R  we construct the space   2 ,dL R x  with  

respect to this measure such that   ,dL R x
R

2   is the 
space of all square integrable functions on  i.e.  

    2

1 2

2

,d
d

L R x
R

u u x






 
   
 
  . 

We shall set    2 2,dL R x L R   . 
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2L R   is a Hilbert space for the scalar product 

         2, d
L R

R

u v u x v x x



  ,  

associated to the above norm. 
We consider a Sobolev space in the case of an un- 

bounded region. For functions which are continuously 
differentiable l times up to the boundary  of R  and 
which vanish in a neighborhood of , we introduce the 
scalar product 

       2
, ,lW R L R

l

u v D u D v 


 



  ,  

where D  is defined by 

1
11

, ,
n

i
in

D
x x




 
 






 
 


 

 

and the differentiation is taken in the sense of generalized 
function on , and after the completion, we obtain the 
Sobolev space , which is a Hilbert space and 
dense in . The space  forms a positive 
space. We can construct the negative space 

R

L R
 lW R

2  lW R

 lW R   
with respect to the zero space  and then we 
have the following imbedding 

2L R 
     2l lW R L R W R    , 

     2l lW R L R W R
y y y    



. 

Analogous to the above chain we have a chain of the 
form 

     2
0 0
l lW R L R W R    , 

     2
0 0
l lW R L R W R

y y y     , 

where 

   0  / , 0, 1  llW R u u W R D u l  
       

with the scalar product  

       20
, ,lW R L R

l

u v D u D v 


 



   

and  is its dual. 0
lW R 

2 l


 0L ,T;W R

0  denotes the space of measurable 
function t  f(t) on open interval (0,T) for the Lebesgue 
measure dt and such that 

        2

1 2
2

0, ;
0

dl l

T

L T W R W R
f t f t t 

 
  
 
  , 

endowed with the scalar product 

              2 0, ;
0

, ,l l

T

L T W R W R
df t g t f t g t t   , 

which is a Hilbert space. 

Analogously, we can define the spaces 

    2 2 20, ;  L T L R L Q   and   2 0, ; lL T W R  , 

then we have a chain in the form 

     
  

2 2 2

2

0, ; 0, ;

0, ; ,

l

l

L T W R L T L R

L T W R

 

 




 

where  0,Q R T   with boundary  0,T   . 

By the Cartesian product, it is easy to construct the  

following Sobolev spaces  with the norm    n
lW R 

defined by 

    
1

n
l l

n

iW R W R
i

u u 



  , 

where  1 2, , , nu u u u   is a vector function and 
 Rl

iu W  , also we can construct the Cartesian prod- 
uct for the above Hilbert spaces. Finally we have the fol- 
lowing chain: 

       
   

2 2 2

2

0, ; 0, ;

0, ; ,

n n
l

n
l

L T W R L T L R

L T W R

 

 





 

       
   

2 2 2
0

2
0

0, ; 0, ;

0, ;

n n
l

n
l

L T W R L T L R

L T W R

 

 





 

where  

   2 0, ;
n

lL T W R   and     2
00, ;

n
lL T W R 

n

are the dual spaces of  and    2 0, ; lL T W R

   2
00, ;

n
lL T W R  resp. 

3. Dirichlet Problem for 2l Order (n × n) 
Cooperative Hyperbolic System with an 
Infinite Number of Variables and with 
Variable Coefficients 

In this section, we study the existence and uniqueness of 
solutions for 2l order  n n  cooperative systems gov- 
erned by Dirichlet problems involving hyperbolic opera- 
tors with an infinite number of variables and with vari- 
able coefficients, then we find the necessary and suffi- 
cient conditions of the optimal control of distributed 
type. 

For 1 i n  , we have the following system: 

       

       

2

2
1

0, 1

, in

0, 1 ,

0
,0 , in ,

n
i

i ij j i
j

i

i
i i ,i

y x
,A t y a x y f x t Q

t

y i n

y x,
y x y x y x R

t








  


   


   



 (1) 
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where   2
0, 0, ; li

i

y
y L T W R

t





,   1 2, , , n f f f f    

is a given function, and  ija x  are bounded functions 
such that 

  0 for all , for all ,ija x i j x       (2) 

for all 1 , .ij jia a i j n              (3) 

System (1) is called cooperative if (2) holds. 

The operator    
2

2
B t A t

t


 


 in system (1) is 2l  

order hyperbolic operator with an infinite number of  
variables with  

       0 0;
n n

l lA t W R W R     
 

L , 

[23] is given by: 

           

 
 

   

2

1

1 ,

1
, ,

,

i k i
l k

k i k k i
kk k

iA t y x D y x q x t y x

D y x p x t y x
xp x t

 





 

  







 (4) 

since q(x,t) is a real valued function in x which is 
bounded and measurable on R , such that 

 , , 0 1, is a constanq x t c c c   t.      (5) 

Definition 1: 
For each t  (0,T), we define a bilinear form  

       0 0π ; , :
n n

l lt y W R W R R     by 

       

      
2

1 2 1 2 0

π ; , , ,

, , , , , , , ,

n
L R

n
l

n n

t y S t y

y y y y W R

 

   







   
 

where 

          

   

2

1

1

1 ,

, 1, 2, , .

i k i
l k

n

ij j
j

S t y x D y x q x t y x

a x y x i n

 





 



  

 



 

i

 

Then, 

      2

1

π ; , ,
n

i i L R
i

t y S t y  


  , 

       

       

     

1 1

1

, 1

π ; , d

, d

d

n

k i k i
i l kR

n

i i
i R

n

ij j i
i j R

t y D y x D x x

q x t y x x x

a x y x x

 


 

 

 









  











 

 

 

3.1. The Existence and Uniqueness of Solution 

Lemma 1: 

The bilinear form (6) is coercive on , that 

is, there exists c, c1  R, such that: 

  0

n
lW R

      
    

2

0

2

1

2

1

π ; ,

, , 0

n

n
l

L R

W R

t y y c y x

c y x c c







 
           (7) 

Proof: 
We have, 

     

     

       

2

1 1

2

1

, 1

π ; , d

, d

d ,

n

k i
i l kR

n

i
i R

n

ij i j
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t y y D y x x

q x t y x x

a x y x y x x


















  











 

 

 

 

thus, 

     

     

     

       

2

1 1

2

1

2

1

π ; , d

, d

d

d .

n

k i
i l kR

n

i
i R

n

ii i
i R

n

ij i j
i j R

t y y D y x x

q x t y x x

a x y x x

a x y x y x x






















  















 

 

 

 

 

From (2), (3), and (5), we deduce 

     

       

     

2

1 1

2 2

1
1 1

1
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d d

2 d ,
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c y x x c y x x

c y x y x x






 





 





  

 



 



 

  

 


 

then, 



  (6) 
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n
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1 1
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i

n

k i
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t y y c y x

D y x x












  

   
 





 
 

then, 

     

       

2

2
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1 1 1
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i L R
i

n n

k i i W RL R
i l k i

t y y c y x
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since 0  c  1, we have, 

           2
0

2 2

1π ; , ,n n
lL R W R

t y y c y x c y x    

which proves the coerciveness condition on .   0

n
lW R

Under all the a bove consideration, theorems of Lions 
[22] and using the Lax-Milgram lemma we have proved 
the following theorem. 

Theorem 1: 
Under the hypotheses (2), (3) and (7), if  

 1 2, , , n f f f f  ,  0 ,iy x  and  1,iy x  are given in  

  2
00, ;

n
lL T W R    0

lW R,   and  resp., 

then there exists a unique solution  

 2L R

     2
1 2 0, , , 0, ;

n
l

ny y y y L T W R   

for system (1). 
Proof: 
Let  L 

2
00, ; lL T W

 be a continuous linear form defined 

on  by    n

R

       

     

    

1

1,
1

2
1 2 0

, d d

,0 d ,

, , , 0, ; ,

n

i i
i Q

n

i i
i R

n
l

n

L f x t x x t

y x x x

L T W R

  

 

   













  



 

 

 

then by Lax-Milgram lemma, there exists a unique ele- 

ment      2
1 2 0, , , 0, ;

n
l

ny y y y L T W R   such that 

   

    

2

2

2
1 2 0

, ; ,

, , , 0, ; .
n

l
n

y
t y L

t

L T W R

   

    

 
   

   
   (9) 

Now, let us multiply both sides of first equation of 

system (1) by  i x , then integration over Q, we have: 

        

       

     

2
2

2
1

1

1 ,

d d

, d d ,

i
k i i
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n

ij j i
j

i i
Q
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t
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by applying Green’s formula 

       

             

   

     

2

2
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1
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,0 d d
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i
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j
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d
 

by entering the summation on the both sides, we have 
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2
1 1

1
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1
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, d

,0
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, d d ,

n
i
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i i

i i
i i AR

n

i i
i Q

y x
x D y x D x
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by comparing the summation with (6), (8) and (9) we 
obtain: 

     

     

1 1

1,
1

,0
,0 d d

,0 d ,

n n
i i

i i
i i AR

n

i i
i R

y x y
x x

t

x y x x

  


 





  



 
 

 



  

 
 

then we deduce that: 

 1

0, 1 ,

( 0)
 in ,

i

i
,i

y i n

 y x,
y x R

t





  






 

which completes the proof. 

3.2. Formulation of Dirichlet Problem 

The space  being the space of controls. For a   2 n
L Q

1 2, ,u u u 


control , the state      2,

n

nu L Q 
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1 2

2
0

, , ,

0, ;
n

l

y u y u y u

L T W R






 

 ny u ists a unique optimal control u  Uad such that J(u) = inf 
J(v) for all v  Uad. Moreover, we have the following 
theorem which gives the necessary and sufficient condi- 
tions of optimality. 

of system (1) is given by the solution of Theorem 2: 

       

   

         

2

1

1

0, 1

, in ,

0,
0, ,0, , ,

, 1 ,

i
l k

n

ij j i i
j

i
i i i ,i

y u
t

a x y u f u Q

y x, u

2
2

1 ,i
k

y u
D I q x t

y u y x u y x y x
t

x R i n

  








  


   



    


  



 (10) 

 
 

    
Assume that (7) holds and the cost function is given by 

(11). The necessary and sufficient conditions for  

    2
1 2, , ,

n

nu u u u L Q   

to be an optimal control are the following equations and 
inequalities: 

      2
0, 0, ;i l

i

y u
y u L T W R

t





. 

The observation equation is give  n by

        1 2 n

        1 2

, , ,

, , , n

z u z u z u z u

y u y u y u y u
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2
2

2
1

1

1 ,
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0, , , 0, , , 0,

for all 1 ,

i
k i

l k

n

ij j i di
j

i
i i
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D I q x t p u

t

a x p u y u z Q

p u
p u p x T u x T u

t

x R i n

 





 







  
       


   



    


  



  (12) 



with 

      2
0,  0, ; l

i iy u p u L T W R , N is given as  

        2 2, , ,
n n

nN L Q L Q L        2
0, 0, ;i i ly u p u

L T W R
t t

 


 
, 1 2,N N N

such that, 
     
 

2

1 2

, 0

, , , ,

n
L Q

n ad

p u Nu v u

v v v v U

  

  
         (13)        2

2

2
, ,n

nL Q L Q
Nu u u   . 0

For a given , the 

cost function is given by 

    2
1 2, , ,

n

d d d dnz z z z L Q 

   

together with (10), where  

        1 2, , , np u p u p u p u   

      22

2

1

, n

n

iJ v y v


  is the adjoint state. 
di L QL Q

i

z Nv v .   (11) 

Control Constraints 
The set of admissible controls Uad is a closed convex 

 , Then the control problem is to 

ing the genera

Proof: 
The optimal control  is 

characterized by [23]: 
    2

1 2, , ,
n

nu u u u L Q 

    1 2
1

0 , , ,
n

i i n ad
i

J u v u v v v v U


      subset of   2U L Q
n

find inf J(v) over Uad. 
Then us l theory of Lions [22], there ex- 

,

0 

this inequality can be written as 

0.                 (14) 

Now, since 

 

that is 
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n

i di i iy u z y v y u         22

1

,i i i i L QL Q
i

N u v u


   

            22

1 0
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T

i di i i i i i i L QL R
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2
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by using Green’s formula, (3) and (10), we have 

    
     

    2
2

2

2
2 *

2
1 10i l kt    1

, 1 , , d ( , ) .n
n

Tn n
i

k i i ij j iL Q L Qj
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Then 

     
2

2
2

1 1

1 , , 1,2
n

i
i k i i ij j
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     , , ,

and 

   2

1 1

1 , , 1, 2
n

i k i i ij j
l k j

S p D p q x t p a p i n
 






  

        , , ,                       (15) 

Since the adjoint equation for hyperbolic systems in Lions [22] takes the following form: 
   

2

2
S p u

t



  

p u 

  dy u z  , then, from (15) we obtain the first equation in (12), and from theorem1, system (12) admits a unique solu-  

tion which satisfies       2
0, 0, ;ip u L T W R

t



. i lp u 

Now, we transform (14) by using (12) as follows: 
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2
2

2
1 10i l k     1

( 1) , , d , 0,n
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D I q x t p a p y v y u t Nu v u
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using Green’s formula, (10) and (12), we obtain 

Tn n  
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2

2
2

2
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, 1 , d , 0,n
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using (10), we have 

0        22

1 0

, d ,
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i i i i i i i L QL Q
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  , 

      2, 0n
L Q

p u Nu v u   . 
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which is equivalent to
Thus the proof is com

4. Neumann Problem for 2l Order (n × n) Cooperative Hyperbolic System with an Infinite 
ables and with Variable Coefficients 

In t mal control for 2l order 

Number of Vari

 n n  cooperative non-homogenous Neumann systems his section, we discuss the opti
involving hyperbolic operators with an infinite number of variables and with variable coefficients. 
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( 0)
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i
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                           (16) 

where 

2 n
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2
1

, in ,i ij
j

D t y a x x t Q
t
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i

y
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is a given function in   2 20, ; lL T W  , for all 1  i  n,  1 2, , , ng g g g    and 

the operator  
2

2
D t

t





 in system (16) is 2l or ator with an infinite number of variables with  der hyperbolic oper
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l lD t W R W R     
 

L  

          2 1 ,D t y x D y x q x t y x
    , 

since q(x,t) is defined as in (5). 
For each t  (0,T), we define a bilinear form 

1
i k i i

l k



 

       ; , :
n n

l lt y W R W R R      as in (6). 

4.1. The Existence and Uniqueness of Solution 

Lemma 2: 
  n

lW RThe bilinear form  ; ,t y   is also coercive , that is, there exists c, c1 at:  R, such th on 
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 shall in llowing theorem which gives the existence and uniqueness of 

the state for system (16). 
Theorem 3: 
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hich proves the coerciveness con
By the Lax-Milgram lemma, we
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t
     

        
    

 Green’s formula 

                     

         

2

2
1 1

, d d

d d , d d ,

n
i

i k i k i i i ij j i
l k jQ

i
i i i i

A QR

y x
x

,0
,0 i

D y x D x q x t y x x a x y x x x t
t

y
f x t x x t

t

 


    

 




  



      


 

 

 

  

 
y x

x x 
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by entering the summation on the both sides, we have 

                     

           

2

2
1 1 1

1 1
i i

i i AR 1

, d d

,0
,0 d d , d d ,

n n
i

i k i k i i i ij j i
i l k jQ

n n n
i i

i i
i Q

y x
x D y x D x q x t y x x a x y x x x

t

y x y
x x f x t x x t

 


    

    



   



     
 

 
   

  

    

 

by comparing the summation with (6), (8) and (9) we obtain: 

t

t    

           1,
1 1 1

,0
,0 d d ,0 d ,

n n n
i i

i i i
i i iAR R

y x y
ix x x

t
   

   

 
  

       y x x

then we deduce that: 

     1

0
, 1 ,iy x  y x

in ,i
i ,i

,
g i n y x R

t





 

 

which completes the proof. 

f Neumann Problem 

The space is the space of controls. The state 

 
  

4.2. Formulation o

   2 n
L Q              2

1 2, , , 0, ;
n

l
ny u y u y u u L T W R  y  of  

system (16) is given by the solution of 

         

 

       

2

1

0 1

in ,

,

0;
0; ,       in ,

n

i ij j i i
j

i
i ,i ,i

y u
y u a x y u f u Q

y x, u
y x, u y x y x  R

t








  



  
 



                     (

2

i D t
t




, 1i
i

y u
g i n


   


20) 



  2, 0, ; li
i

y
y L T W R

t





. 

The observation equation is given by 

                 1 2 1 2, , , , , ,n nz u z u z u z u y u y u y u y u    . 

For a given , the cost fu tion is given by     2
1 2, , ,

n

d d d dnz z z z L Q  nc

       22

2

1 1

, ,
n n

i di i i L QL Q
i i

 J v y  v z M v v
 

                                    (21) 

where M is a positive constant. 
problem then is to find inf J(v) ove n Section II. 
ection II, there exists a unique op

The control r Uad with the same control constraints i
Then as in S timal control u  Uad such that 

   inf for all adJ u J v v U .

Under the given considerations, we may apply theorems of Lions [22] as in Section II to obtain the following theorem: 

given by the fol-
lo

                                 (22) 

Theorem 4: 
The necessary and sufficient conditions for optimality of the control problem (20), (21) and (22) are 
wing equations and inequalities: 
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2

2
1

for all 1 ,
jt

i n


in ,Q

0, , , 0, , , 0,ip x T u x T u x R
t



n
i

i ij j i di

i i

p u
D t p u a x p u y u z

p u p u


   

                 (23
 


) 

w i t h  ,  

     

      2, 0, ; l
i iy u p u L T W R

      2, 0, ;i i ly u p u
L T W R

t t
 


 

,       2, 0n
L Q

p u Nu v u    v    

d  together with (16). 
traints on the control: 

In the case of no constraints on the control, i.e. , the condition (13) reduces to 

 1 2, , , ,n av v v U
The case of no cons

  2 n

adU L Q   0,i i ip u N u   
,x Q  hence  

ple 1: 
 take n = 2 in Dirichlet problem (1) with the same conditions of coefficients (2) and (3), then the space f con

trols is , the state   

of

  1
i i iu N p u  .

Exam
If we  o -  

          2
2

1 2 0, 0, ; ly u y u y u L T W R   2 2L Q L Q . For a control u     2

2 2,u u L Q 1

 the system is given by the solution of 

             

            

   

       

       

2
1

2 21 1 2 2

1
1 0 1 1 1

2
2 0 2 1 2

in ,

in ,

0,

0;
0; ,          in ,

0;
0; ,         in .

, ,

, ,

y u
1 11 1 12 2 1 12

2

A t y u a x y u a x y u f u Q
t

2
22 22

y u
A t y x y u

t






1 20,

u a x y u a f u Q

u

y x, u
y x, u y x y x  R

t
y x, u

y x, u y x y x  R
t

 






    

   





   


   

                  (24) 




y u y
 

          1 2 2
1 2 0, , , 0, ; ly u y u

y u y u L T W R
t t

 


 
. 

The necessary and sufficient conditions for the optimality are the following equations and inequalities: 

               

               

   

     

     

2
1

1 11 1 12 2 1 12

2
2

2 21 1 22 2 2 22

1
1

2
2

in ,

in ,

, , 0, , , 0, ,

, , 0, , , 0, ,

d

d

p u
A t p u a x p u a x p u y u z Q

t

p u
A

1 20, 0,

t p u a x p u a x p u u z Q
t

p u
p x T u x T u x R

t
p u

p x T u x T u x R
t

 






    




    



    


    

       (25) 

y

p u p u
               

             1 2 1 22 2
1 2 0 1 2 0, , , 0, ; , , , , 0, ; ,l ly u y u p u p u

y y L T W R p p L T W R
t t t t

    
 

   
 

           2 21 1 1 1 1 2 2 2 2 2 1 2, , 0 adL Q L Q
p u N u v u p u N u v u v v v U          , ,                (26) 

together with (24), where is the adjoint state. 
Example 2: 
If we take 

      1 2,p u p u p u  
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  2
1 2/ arbitrary in , 0 a.e. inadU u u L Q u Q  .                          (27) 

Thus there are no constraints on then the inequality (26) is equivalent to 1u  

 


  

1 1 1

2 2 2 2

2 2 2 2

0,

0.

p u N u

p

u p u N u

  
  0, 0,u N u u  


 

                                  (28) 

Thus the optimal control is given by the solution of the following set of equations and inequalities 

              

             

               

               

         

1 11 1 12 2 1 1 12

2
2

2 21 1 22 2 22

2
1

2
2 21 1 22 2 2 22

2
2

2 2 2 21 1 22

in ,

in ,

in ,d

f Q
t

y u
A t y u a x y u a x y u f

t

p u

2
1 1y u

A t y u a x y u a x y u N p u

1 11 1 12 2 1 12

2

d

0 in ,Q

A t p u a x p u a x p u y u z Q

p u

t

A t p u a x p u a x p u y u z Q
t

y u
p N A t y u a x y u a

t





   




     


     




   


   

 


   





           

           

       

       

2 2 2

2
2

2 21 1 22 2 22

2
2

2 2 2 21 1 22 2 22

1 2 1 2

1
1 0 1 1 1

2

0,

( )
0,

0, 0, 0 , 0,

0;
0; ,          in ,

0

, ,

x y u f

y u
A t y u a x y u a x y u f

t

y u
p N A t y u a x y u a x y u f

t

y u y u p u p u

y x, u
y x, u y x y x   R

t

y x,

   



    
  

 
      

  
           

   


 



       2
0 2 1 2

0;
; ,          in ,, ,

y x, u
u y x y x  R

t



























   
 

                 (29) 







   
       

1 2

1 2

, , , , 0, ,

, , , , 0, ,

p x T u p x T u x R

p u p u
x T u x T u x R

t t





  

 
 

 

 


Further 

               
2

21
1 1 1 2 2 21 1 22 22

,
y u

u N p u u A t y u a x y u a x y u f
t

 
    


 2                   (30) 

 
5. Conclusions 

The main result of this paper finds the necessary and 
sufficient conditions of optimality of distributed control 
fo r (n  n) cooperative systems governed by 
Dirichlet and Neumann problems involving hyperbolic 
operators with an infinite number of variables and with 

ariable coefficients that give the characterization of op- 
mal control (Theorem 2, 4). 

Also it is evident that by modifying: 
the boundary conditions (Dirichlet, Neumann, mixed) 

 the nature of the control (distributed, boundary), 
 the nature of the observation (distributed, boundary), 
 the initial differential system, 
 the number of variables, 
 the type of equation (el

bolic), 
 the type of coefficients (constant, variable), 

 

r 2l orde

liptic, parabolic and hyper- 
v
ti
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 the type of system (non-cooperative, cooperative), 
tion, many of variations on the above

ssible to study with the help of Lions

008, pp. 37-48. 

 the order of equa
problems are po

 
 

formalism. 
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