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ABSTRACT

Closed .- and basic closed C*p-filters are used in a process similar to Wallman method for compactifications of the
topological spaces Y, of which, there is a subset D of C*(Y) containing a non-constant function, where C*(Y)

is the set of bounded real continuous functions on Y. An arbitrary Hausdorff compactification (Z ,h) of a Tychonoff
space X can be obtained by using basic closed C*p-filters from D:{° feh|°fe°D=C(Z )} in a similar way,

where C (Z ) is the set of real continuous functions on Z.

Keywords: Closed g ,-Filter; Open agd Closed C*p-Filter Bases; Basic Open and Closed C*p-Filters;
Compactification; Stone-Cech and Wallman Compactifications

1. Introduction K and V are called a closed C*p-filter base and an
open C*p-filter base on Y, respectively. A closed filter
(or an open filter) on Y generated by a K (or a V) is
called a basic closed C*p-filter (or a basic open C*p-
filter), denoted by € (or A). If r, = f(x) for all fin
D atsomexinY, then K, V, € and A are denoted by K,,
V, & and A, respectively. Let Y be a topological space,
of which, there is a subset D of C*(Y) containing a
non-constant function. A compactification (Y W,S) of Y
is obtained by using closed g, and basic closed
C*p-filters in a process similar to the Wallman method,

Throughout this paper, [7]™ will denote the collection
of all finite subsets of the set 7 . For the other notations
and the terminologies in general topology which are not
explicitly defined in this paper, the readers will be re-
ferred to the reference [1].

Let C*(Y) be the set of bounded real continuous
functions on a topological space Y. For any subset D
of C*(Y), we will show in Section 2 that there exists a
unique ryin CI(f(Y)) foreach/fin D so that for any

H e[D]w,g >0,¢¢mf€Hf’l((r/ —&,r, +5)) where Y" =Y, UY,, Y, is the set {N,N, is a closed
. ' ¢, -filter, x is in Y}, Y. is the set of all basic closed
<O f ([”f —& 1y +‘9J)- C*p-filter that does not converge in Y, J is the topol-

ogy induced by the base 7 = {F*|F is a nonempty closed

Let K be the set set in Y} for the closed sets of Y™ and F* is the set of

{mfer’l ([”, —&,r, +5J)| all € in Y" such that FNT#¢ for all T in €. Si-
milarly, an arbitrary Hausdorff compactification (Z,h) of
oy ([Vf —&,r; +8]) # ¢ a Tychonoff space X can be obtained by using the basic
" closed C*p-filters on X from D={°foh|°f e°D},

forany H [D]" & >0} where °D is the set C*(Z).

and let V be the set . .
2. Open and Closed C*p-Filter Bases, Basic

(et ((r=eury +8)) |0y S (g —r, ) % ¢ Open and Closed C*p-Filters
forany H e [D]<m ;€ > 0} For an arbitrary topological space Y, let D be a subset
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of C*(Y).
Theorem 2.1 Let F be a filter on Y. For each fin D
there exists arpin CI(f(Y)) such that

f—l ((V/ —
for any F in & and any &£>0 (See Thm. 2.1 in [2,
p.1164]).

Proof. If the conclusion is not true, then there is an f'in
D such that for each 7 in Cl(f (Y)) there exist an

t

F, in & and an ¢, > 0 such that
Enf ' ((n-¢.n+¢))=4¢.

Since Cl(f(Y)) is compact and Cl(f(Y)) is con-
tained in

&1y +g))mF¢¢

O{(r— &1, +&,) |1, is in CI(E(Y))}

there exist y,"*",r, in Cl(f (Y)) such that Y is contained
in

U{f'l((ri—gi,ri+£i))|i=1,-~,n}.
Let F, =n{F, |i=1---,n}, then F, isin& and
FEculFnf " ((n-e.r+e))li=1-nf=9,

contradicting that ¢ is not in F.
Corollary 2.2 Let F (or Q) be a closed (or an open)
ultrafilter on Y. For each fin D , there exists a unique

<@

r,oin CI(f(Y)) such that (1) for any H €[D]|™, any
>0,

A S ([r,. —er, +g]) cF

(or A £7((r, =201, +2)) Q)
and (2) for any H €[D]|, anye >0,

e[y +6]) 20

(or v 17 ((r, =201, +2)) % 6).

(See Cor. 2.2 & 2.3 in[2, p.1164].)

Therefore, for a given closed ultrafilter & (or open ul-
trafilter Q), there exists a unique 7y in Cl(f (Y)) for
eachfin D such that forany H €[D]”,&>0,

Niren fil ([rf —E& Tt g]) *¢
(or Open f ((rf —&,r, +5)) # ¢).
Let K be the set
{mfer" (|:rf —&,r, +g})|
Ay [ ([rf —&,r, + g]) ¢

forany H € [D]<w ,E> 0}
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and let V be the set
{mferil((rf &7y +5))|
Ao S ((rf -1, +g))
+¢ forany He[D]"”,& >o}

K and V are called a closed and an open C*p-filter
bases, respectively. If for all fin D, r,=f (x) for
some x in Y, then K and V are called the closed and open
C*p-filter bases at x, denoted by K, and V,, respectively.
Let £ and &, (or A and A,) be the closed (or open) filters
generated by K and K, (or V and V,), respectively, then €
and &, (or A and A,) are called a basic closed C*p-filter
and the basic closed C*p-filter at x (or a basic open
C*p-filter and the basic open C*p-filter at x), respec-
tively.

Corollary 2.3 Let F and Q be a closed and an open
ultrafilters on a topological space Y, respectively. Then
there exist a unique basic closed C*p-filter € and a
unique basic open C*p-filter A on Y such that & is con-
tained in F and A is contained in Q.

3. A Closed g «-Filter and a Modified
Wallman Method of Compactification

Let Y be a topological space, of which, there is a subset
D of C*(Y) containing a non-constant function. For
each x in Y, let N, be the union of {{x}} and €, if V, is
an open nhood filter base at x; let N, be the union of
{{X}} and {F|F isclosed, x isin F}, if V, is not an
open nhood filter base at x. For each x in Y, N, is a
fo-filter with @ being N,. (See 12E. in [1, p.82] for defi-
nition and convergence). N, is called a closed §,-filter. It
is clear that K, is contained in &, and &, is contained in
N,, N, converges to x for each x in Y. Let Y, be the set
of all N,, x in Y. Let Y, be the set of all basic closed
C*p-filter € that does not converge in Y and let
Yv =Y, uY,.

Definition 3.4 For each nonempty closed set F in Y,
let F* be the set of € in Y" such that the intersection of
F and T is not an empty set for all T in €.

From the Def. 3.4, the following Cor. 3.5 can be read-
ily proved. We omit its proofs.

Corollary 3.5 For a closed set F in Y, (i) x is in F if
N, is in F*; (ii) F is equal to Y if F* is equal to Y " ; (iii)
if Fisin €, then € is in F*; (iv) € is in (Y”’—F*) if
there is a T in € such that T is contained in Y — F.

Lemma 3.6 For any two nonempty closed sets E and F
inY,

() ECF<S E*CF*,

(i) (ENnF)*c(E*NF*),

(iii) (EUF)*=(E*UF¥*).

Proof. (i) For [<]: If E¢ F,pickanxin E-F,by
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Cor. 35 (i), Ny is in E* and N, is not in F*; ie.,
E*¢ F*. For (=) is obvious. (ii) is clear from (i). (iii)
For [c]: If € belongs to (£ F)* and does not belong
E*UF*  thenpick 7;,7, in € such that

EnT=FnT,=¢.
Since 7, "7, isin € and
(EUF)N(T,NT,)c(ENT)U(FNT,)=¢.
Thus, € does not belong to (£ U F)*, contradicting
the assumption. For [2] is obvious from (i).

Proposition 3.7 r = {F*|F is a nonempty closed set in
Y} is a base for the closed sets of Y .

Proof. Let B be the set {Yw —F*|F*e z’}. We show

that B is a base for Y. For (a) of Thm. 5.3 in [1,
p.38], if €eY", then there exist an fin D, a >0
such that

S:f’l([rf—é',rf+5J)eKc5g€
and
E=Y-f" ([V.f

otherwise, if for all fin D, all >0, E=¢, then for
all fin D, f (Y):{rf}, contradicting that D con-

~28,r,+25 )% ¢,

tains a non-constant function. Thus E#¢, E is closed,

S isin€Cand SNE=¢ imply that €isin Y"-E*.
So,

X" = u{(Y”‘ ~E¥)| E*e z’} .
For (b) of Thm. 5.3, if € belongs to
(Y"—E*) (v -F*),
then EUF isclosed, (EUF)*ez and
(Y"—E*)n(Y"—F*)=y"-(EUF)*
is in B. Thus, € is in
Y —(EUF)*c(Y" —E*)n(Y"=F*).

Equip Y" with the topology I induced by 7 For
eachfe D, define f*: Y* >R by f*(€)=r,,if

f’l([rf—g,rf+g})eKc5g€

for all &> 0. Since (i) if € is equal to N, for some N, in

Y, , then
- ([f(x)—g,f(x)+g])
isin N, forall &> 0, (ii) if € is € which is in Y, , then

S [y ey +e])

is in € for all >0, (iii) by Cor. 2.2, the 7y is unique
for each fin D and (iv) the K that is contained in € is
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unique. Thus, f* is well-defined for each fin D . For all
fin D,allxin,

M )-ef (x)+e])

is in N, for all ¢ > 0, thus f*(N,) is equal to f{x) for all
in D andallxin.

Lemma 3.8 For each fin D, let r be in Cl(f(Y)) ,
then

((li) (7 ([r=o.r+0)) c f* ((r-e.r+e))

(ii)f*'l((r—g,r+£))g(f_l([r—g,r—i-g]))*

for any £ > > 0.

Proof. (i): If Cisin (/' ([r—d,r+05]))* and f*()
is tf,then

(I [t =roty+7]) %9
for all y >0, where f‘l([tf—y,t/.+}/J)eKc(’: for
all y > 0. Thus,
[r=8.r+8]A[t,—r.t, +7]# ¢

£(¢) is
tf.e[r—5,r+§]

-0 r+5]

forall y>0;ie.,
c(r-er+e),
For (ii): If € is in

i , then

so € is in [ ((r-e,r+e)).
) i

f*'l((r—g,r+g)) and f*(¢) is
t,e(r-er+e).

Pick a > 0 such that
[tf—5,tf+5Jc[r—g,r+g],

/o ([tf

Since
[y

thus /7' ([r—&,r+&])e€. By Cor. 35 (iii), € is in

(f" ([r—g,r+5]))* )

Proposition 3.9 For each fin D , f* is a bounded real
continuous function on Y" .

Proof. For each fin D and each € in Y", f*(C)
is in Cl(f(Y)) Thus f’“(YW is contained in
Cl(f (Y)); i.e., f* is bounded on Y" . For the continuity
of f: If €isin Y"and f*(C) is . We show that for
any ¢ >0, thereisa E* in rsuch that € isin

c f*! ((t/ -&.t, +g)).

then
-6.1, +5]) cf! ([r—g,r+g]).

—5,tf+5])eKcQ:,

U=Y"-E*
Let
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E= 1" ((-ont, —e/2])0 s ([1, +¢/2.0))
and U=Y"-E*. Since
pP=f" ([tf -&/3.1, +8/3:|) eKce

and PcY-E,byCor. 3.5 (iv), €eU . Next, for any €
in U,if € #N_ forallxinY, by Cor. 3.5 (iv), pick a
T in €, such that

rey-£c ([t /2.t +£/2])=S,
then § isin €. By Cor. 3.5 (iii) and Lemma 3.8 (i), €,
isin S*c f*! ((tf —&,t, +5)). If €, is N, for some x
in Y, by Cor.35 (i), N,in U if x¢E, thus
LN = f(x)e(t, —/2.t, +£/2)
ie., € is N, whichisin f* ((t/. —&,t, +£)) )

Lemma 3.10 Let k1 Y—>Y" be defined by
k(x) =N, . Then, (i) k is an embedding from Y into Y" ;
(i) for all fin D, f*ok = f; and (iii) k(Y) is dense
in Y.

Proof. (i) By the setting, N, = N, if x = y. Thus k is
well-defined and one-one. Let k™' be a function from

k(Y) into Y defined by k'(k(x))=x. To show the

continuity of k and k', forany F* in 7 (a): xisin
K ([(r=F#)]k(Y))

iff (b): k(x)=N, isin (¥"—F*).By Cor.35 (i), (b)
iff (¢): x isnotin F'. So,

Y-F =k (Y = F¥)nk(Y)]:
h k(Y=F)=k(Y)n(r"-F*).

So, k and k™' are continuous. (ii) is obvious. (iii)
For any F* in 7 such that Y"—F*=¢, pick a € in
Y" - F* By Cor. 3.5 (iv), there is a 7 in € such that
T cY-F.Pick an x in T, by Cor. 3.5 (i), k(x):NX
which is not in F*, so N, =k(x) is in both k(Y)
and (YW—F*); ie., k(Y)F\(Yw—F*)i¢. Thus,
k(Y) isdensein Y".

Let D*={f*|feD}.Then D*cC*(Y"). Let

K = {mf*ef,*f *1 ([rf —&,r, + g}) | O g /57
([rf —&r + g]) # ¢ forany H* e [D *]<w ,E > 0}

be a closed C*p.filter base on Y" and let £* be the
basic closed C*p«-filter on Y™ generated by K*. Since
k and k' are one-one, f*ok=f forall f in D
and k(Y) isdensein Y",so

Copyright © 2013 SciRes.

e [ ¥ ((rf &0y +g))mk(Y)
= k(mfeH 7 ((rf —&,1; +g)))

for any H*e[D*]<w, H:{f|f*eH*} (or any
He[D]", H*={f*|fUH} andall £>0. Thus,

mf*eH*f*_l ((r/- —&,1, +g)) ey

iff
e ™ ((rf —&,r + .9)) oy
and
O e S 71 ([rf &+ g]) )
iff

mfeﬁf’l([rf—g,rf+(€})¢¢

forany H*e[D*|, H={f|f*eH*} (orany

He[D]™”, H*={f*|feH} andall £>0. Therefore,
if the K* or £* defined as above is well-defined, so is K
or € defined as in Section 2 well-defined and vice versa.
If K* or €* is given, then K or € is called the closed
C*p-filter base or the basic closed C*p-filter on Y in-
duced by K* or £* and vice versa.

Lemma 3.11 Let € be a basic closed C*p-filter on Y
defined as in Section 2. If € converges to a point x in Y,
then (i) r; = fix) for all fin D;ie &= &, (i) V, is an
open nhood base at x in Y and (iif)

V¥ = {mf*eH*f*’l ((f(x)—g,f(x)+£))|
H*<[D*]" \H ={[| f*< H*.2 >0}
is an open nhood base at k(x) in Y" .
Proof. If € converges to x in Y, (i): foreach feD,
xe f ([rf—e,rf+5})e|(c¢

for all &>0,thus f(x)=r,; ie, &= E. (ii): Since €
converges to x in Y, for any open nhood U of x, there
is

E:mfer_l ([f(x)—é‘,f(x)-i—é‘])el(x

which is contained in &, = € for some H €[D]™,5>0
such that € F c U. Since x is in

S=,uf((f(x)=8.f(x)+5))cEcU

and S is in V,, thus V, is an open nhood base at x; (iii):
For any F* in 7 such that N, is not in F*, by Cor.
3.5 (i), x is not in F, and by (ii) of Lemma 3.11
above, x isin

0=, /7 ([f(x)=6.f(x)+5])cY-F

APM



594 H.J. WU, W.-H. WU

for some H e[D]™,5>0. Since
xeP=n,, [ ([f(x)—a/z,f(x)+5/z]) eN,,
Cor. 3.5 (i), Lemmas 3.6 (ii) and 3.8 (i) imply that
N, € P*Ceye f (£ (%)= 0.1 (x)+6))
=TeVx,

where H*={/*|feH}.We claim that T cY" —F*:
Forany € in T,if f*(¢,)=s, forallfin D, thens,
is in I, =(f(x)=6,/(x)+5) forall fin H. Pick a

p >0 such that [sf—p,sf+p}clf for all fin H,

then
L:mfer_'([sf—p,sf+pJ)COCY—F
and LeK c€ ie € e€Y"-F* So
k(x)eTCYW—F*.

Thus V *k(x is an open nhood base at k(x).
Lemma 3.1% Let € be a basic C*p-filter on Y defined
as in Section 2. If € does not converge in Y,

VE = {mf*eH*f*’l ((rf —&,1; +g)) \
H*e[DH]" 2 >0}

is an open nhood base at € in Y .
Proof. If € does not converge in Y, then € is in Y" .
Since f*(€) = ry for all f* € D*,

€€ oy f* ((r/' &7y +‘9))

for any H*e[D*|”,£>0. Forany F*er such that
EeY" — F* by Cor. 3.5 (iv) there exists a

Ezﬁfer’1 ([rf—é',rf-i-é})ech

<@

for some He[D] ,0>0 such that E c Y — F. For
H*:{f*|feH}, let

U=0pegpef* ((r.f =01 +5))’

then Ec U e V*. We claim that U c Y — F *. For any
&in U, let f*(&) =ty for each f* in H *. Then for each
Sin H ,t, isin

(r,~8.r,+5) and s~ (|:tf ~7.t; +y}) c&,
forall >0. Picka o >0 such that
[tf -0, +a] c [rf 0,1, +§J
for each fin H , then
L=cy ([t -0t +o|)]cEcY-F.

Since LeK,c&, so & eY”—F*. Hence € is in
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U cY" —F*. Thus, V¥; is an open nhood base at &.

Proposition 3.13 For any basic closed C*ps-filter £*
on Y" E* convergesin Y".

Proof. For given £* let K and € be the closed
C*p-filter base and the basic closed C*p-filter on Y in-
duced by *. Case 1: If € converges to an x in Y, then
r, is f(x) forallfin D . For any

U=0pocye S *" ((r.f —O,r + 5))
in V*k(x)y let

E=0uyf* (|:”f -6/2,r, +5/2]) ,

where ]*e[D*]w. Then E eK*c &* and EcU.

Thus, £* converges to k(x)=N, in Y". Case 2: If €
does not converge in Y, then € isin Y . For any

U= f* ((r.f —O.r + 5))
in V*¢, let

E=Cuyf* (|:”f -6/2,r, +5/2]) ,

then EcK*c&*and EcU. Thus, £* converges to €
in Y.
Theorem 3.14 (Y W,k) is a compactification of Y.
Proof. First, we show that Y is compact. Let G be a
sub-collection of 7 with the finite intersection property.
Let

L= {mE*eHE* |H e [G]“"},

then L is a filter base on Y. Let F be a closed ultrafil-
ter on ¥" such that L is contained in &. By Cor. 2.3,
there is a unique basic closed C*p«-filter % on Y" such
that £* is contained in F. By Prop. 3.13, £* converges
to an & in Y. This implies that F converges to &, too.
Hence, &, is in F for all F in F; i.e.,

Een{E*|E*eG}. Thm. 17.4 in [1, p.118], Y" is
compact. Thus, by Lemma 3.10 (i) and (iii), (¥".k) is
a compactification of Y.

4. The Hausdorff Compactification (X" k) of
X Induced by a Subset D of C (X)

Let X be a Tychonoff space and let D be a subset of
C*(X) such that D separates points of X and the
topology on X is the weak topology induced by D . It is
clear that D contains a non-constant function. For each
x in X, since V, is an open nhood base at x, it is clear that
&, converges to x. Let X" =X, UX,, where X;= {E’x
[xe X} and X; = {€|€ is a basic closed C*p-filter that
does not converge in X}. Similar to what we have done
in Section 3, we can get the similar definitions, lemmas,
propositions and a theorem in the following:

(4.15.4) (See Def. 3.4) For a nonempty closed set F in
X, F¥={Eec X"|FNT#¢ forall T iné&}.
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(4.15.5) (See Cor. 3.5) For a nonempty closed set F in
X, (i) x is in F if &, is in F*; (i) F is X if F*=X"; (iii)
for each & in X", F is in € implying € is in F*; (iv) €
e X" —F*< thereisa S in& suchthat S < X —F.
Proof. (i) (<) If €, is in F *, then

Frf ((f(x)—g,f(x)+g)):>
Fof ' ([f(x)-¢/2.f(x)+&/2]) % ¢

for all fin D, &>0. Since V, is a nhood base at x,
thus x is a cluster point of F, sox is in F. (i) implying
(i1), (iii) and (iv) are obvious.

(4.15.6) (See Lemma 3.6) For any two nonempty sets
E and F inX,

() EcF < EXCF*,

(i) (ENF)*c(E*NF*);

(iiiy (EUF)*=(E*UF*).

(4.15.7) (See Prop. 3.7) t = {F*|F is a nonempty
closed set in X} is a base for the closed sets of X" .

(4.15.7.1) (See the definitions for the topology 3 on
Y" andf* for each fin D in Section 3.)

Equip X" with the topology 3 induced by t. For
each fin D, define f*:X" >R by (&) = ry if
7 ((rf &1, +£)) €€ for all £>0. Then f* is well-

defined and t%(€,) is fix) for all fin D and all x in X.
(4.15.8) (See Lemma 3.8) For eachfin D ,lett be in
CI(f(X)), then
@) (f'1 ([r—é,r+5]))*g ! ((r—g,r+g))
and

@) f*! ((r—g,r+g)) c (f’1 ([r—g,r+g]))*
forany &>06>0.

(4.15.9) (See Prop. 3.9) For each fin D, f* is a
bounded real continuous function on X" .

(4.15.10) (See Lemma 3.10) Let k: X —> X" be de-
fined by k(x) =&,. Then, (i) kis an embedding from X
into X" ; (i) f*ok=f for all fin D ; and (iii)
k(X) isdensein X".

(4.15.11) (See Lemmas 3.11 and 3.12) For each € in
X", let

K= {r\fEHf" ([rf —&,1, +g]) |
mfer’l([rf—g,rf +€J)¢¢
for anyHe[D]<w,g>O} cé

1) If € converges to x, then & is €, and V¥ is =
Vg, =
{m‘,*eH*f*_l ((f(x)—g,f(x)+g)) |H*e[D*]™,
>0 }
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is an open nhood base at €,. 2) If & does not converge in
X, then € isin X" and

Vg =
{m.f*eH*f*_l <(r./'_‘9’rf+‘9))|

O peepe f* ((’/ &7y +5))

#¢ forany H*e[D*] & >0}

is an open nhood base at € in X" .

(4.15.13) (See Prop. 3.13) Each basic closed C*p«-
filter E* on X" convergesto & in X" .

(4.15.14) (See Theorem 3.14) (X",k) is a compac-
tification of X.

Lemma4.16 D* separates points of X" .

Proof. For &, &,in X", let

K, = {m_/.eH ! ([s/» —&,5, +5])\

Oren ™ ([sf &Sy +5])
#¢ forany H € [D]<w ,E > 0}

and similarly for K,. Since &, is not equal to &, K, is not
equal to K; and that D has a g such that s, #7, are

equivalent, where g~' ([sg -5, +5J) eK, which is

contained in € and g ([sg —&,5, + g]) eK, which is

contained in &, for all & >0, thus by the definition of g*,
g (&) =s, #1, =g*(&).

Theorem 4.17 (Xw,k) is a Hausdorff compactifica-
tion of X.

Proof. By 4.15.10 (i) and (iii), 4.15.14 and Lemma
4.16, (X W,k) is a Hausdorff compactification of X.

5. The Homeomorphism between (X" ,k) and
(Z,h)

Let (Z,h) be an arbitrary Hausdorff compactification
of X, then X is a Tychonoff space. Let °D denote
C(Z) which is the family of real continuous functions
onZ,andlet D={f|f=°fch°fe°D}.Then D is
a subset of C*(X) suchthat D separates points of X,
the topology on X is the weak topology induced by D
and D contains a non-constant function.

Let (X W,k) be the Hausdorff compactification of X
obtained by the process in Section 4 and D is defined
as above. For each basic closed C*p-filter € in X", let €
be generated by

K= {meHf_l (|:r/ — &7y +‘9]) | Nien f_l
([rf —&,r; -H;J) #¢ forany H €[D]*“,& > 0}

let °€ be the basic closed C* p-filter on Z generated by
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K= {mﬂf@Hoffl ([rf —&,7; +5]) | m,feoH"f’l
([,—gr +5J)¢¢ for any °He[°D]( >0}

and let &' be the function from h(X) to X defined by
1 '(h(x)) = x. Since h and &' are one-one, = °f o h and
h(X) is dense in Z, similar to the arguments in the para-
graphs prior to Lemma 3.11, we have that

mfer’l ([rf —&,r,+ g]) *@
iff

&, +g]) #

Oy ([’f -
for any
°H e[°D]™ (orany H e[D]™),
H={f|°fe°H} (or "H={°f|feH})
and all &> 0. Thus, if K or € is well-defined, so is °K or

°€ and vice versa. If K or € is given, °K or °€ is called the
closed C*-p-filter base or the basic closed C*-p-filter on
Z induced by K or € and vice versa. For any z in Z,

K. ={vpen®t ([0S (2)-2.5F (2) +£])
|°H e[°D] " &> 0}

is the closed C*-p-filter base at z. The closed filter °E,
generated by °K; is the basic closed C*.p-filter at z. Since
Z is compact Hausdorff, each °€ on Z converges to a
unique point z in Z. So, we define T: X" > Z by
T () =z, where €isin X" and z is the unique point in
Z such that the basic closed C*p-filter °€ on Z induced
by € converges to it. For €, €, in X", let

K, {“feﬂf (s =, +e])Inyen f
([sf —&,8; +g])¢¢ for anyHe[D]<w,g>O}

and similarly for K, such that & and &, are generated by
K, and K,, respectively. Assume that °€; and °€, converge
to z, and z, in Z, respectively. Then &, is not equal to &,
°€, is not equal to °€, and z, is not equal to z, are equiva-
lent. Hence T is well-defined and one-one. For each z in
Z, let °€. be the basic closed C*p-filter at z, since Z is
compact Hausdorff and

°V. = { cren S ([of(z)_
|°H e[°D] " &> 0}

g,°f(z)+g})

is an open nhood base at z, thus °€. converges to z. Let £,
be the element in X" induced by °€., then, T (£.) =z.
Hence, T is one-one and onto.

Copyright © 2013 SciRes.

Theorem 5.18 ((X‘”,k) is homeomorphic to (Z,h)
under the mapping T such that T(k(x)) = h(x).

Proof. We show that T™' is continuous. For each &
in F* which is in 7, let °€ be the basic closed C*p-filter
on Z induced by &. If °€ converges tozin Z, °f(z)=
for each fin D and

mfrnr ([
([rf—g,rf+5])¢¢ for any °He[°D]<w,g>0}c°€

-¢ rf+gJ)|m,f€cH°f"

Then (a): € is in F* iff (b):
m(mfeH ! ([rf -&,
forany H e[D]™
mfe,,f"([rf -&,r, +g]) eé.
°foh forall finD, so (b)

&1, +g]ﬂ
&1+ g])]) *¢

r +g])) #

,& >0, where

Since % is one-one, f =
iff (c):

h(F) r\[mfeobﬁf" ([rf

= h(Fm[m,.er‘l ([rf -
for any

He[D] (or°H e[°D]™),

H={°f|feH)} (or H={f|°fc°H})

and any &> 0. Since
o ((rf —&Ty +5)) =°f ([rf /2,1 +5/2J)
>0, (c)iff (d):
W(F)YO[ et (-2, +2)) |2 9
forany °H e[°D]™,&>0. Since

Nepeon S (( eIt ))

is an arbitrary basic open nhood of z in Z. So, (d) iff z is
in Cl,(h(F)); ie, € is in F* if T(€) is equal to z
which belongs to Cl, (h(F)) Hence, T(F*) = Clz(h(F))
is closed in Z for all F* in 7. Thus, T™' is continuous.
Since T is one-one, onto and both Z and X" are
compact Hausdorff, by Theorem 17.14 in [1, p.123], T
is a homeomorphism. Finally, from the definitions of &
and #, it is clear that T(k(x)) =h(x) forallxinX.

Corollary 5.19 Let (fX,h) be the Stone-Cech com-
pactification of a Tychonoff space X,

D={f|f=°fch°feC(BX)}

and T,: X" — BX s defined similarly to'T as above.
Then (BX h) is homeomorphic to (Xw,k) such that

T, (k(x) = A(x).

for any *fin °D,
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Corollary 5.20 Let (pX,h) be the Wallman compac- REFERENCES
tification of a normal T,-space X, [1] S. Willard, “General Topology,” Addison-Wesley, Read-

D:{f|fzofoh,0fec(7/X)} 1r1g,1970

[2]1 H.J. Wu and W. H. Wu, “An Arbitrary Hausdorff Com-
. yw . - pactification of a Tychonoff Space X Obtained from a
and T,:X" —yX isdefined similarly to T as above.

. . w C*p-Base by a Modified Wallman Method,” Topology
Then (X, h) is homeomorphic to (X".k) such that and its Applications, Vol. 155, No. 11, 2008, pp. 1163-
T, (k(x))=h(x). 1168. doi:10.1016/j.topol.2007.05.021
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