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ABSTRACT

In this paper a generalized tanh-function type method is proposed by using the idea of the transformed rational function
method. We show that the (G'/G)-expansion method is a special case of the generalized tanh-function type method, so

the (G'/G)-expansion method is considered as a special deformation application of the transformed rational function
method. We demonstrate that all solutions obtained by the (G’/G)—expansion method were found by the generalized

tanh-function type method. As applications, we consider mKdV equation. Compared with the (G’/G)-expansion me-
thod, the generalized tanh-function type method gives new and more abundant solutions.

Keywords: The Generalized Tanh-Function Method; (G'/G)-Expansion Method; mKdV Equation; The Transformed
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1. Introduction

Direct searching for exact solutions of nonlinear partial
differential equations (NLPDES) plays an important role
in the study of nonlinear physical phenomena and be-
comes one of the most exciting and extremely active ar-
eas of research investigation. In the past several decades,
many effective methods for obtaining exact solutions of
NLPDEs have been presented, such as inverse scattering
method [1], Darboux and Backlund transformation [2,3],
Hirota’s bilinear method [4], Lie group method [5], va-
riational iteration method [6], Adomian decomposition
method [7] and so on. Most recently, Prof. Ma and Lee
[8] proposed a new direct method called the transformed
rational function method to solve exact solutions of non-
linear partial differential equations. The transformed ra-
tional function method provides a more systematical and
convenient handling of the solution process of nonlinear
equations, unifying the tanh-function method, homoge-
nous balance method, Jacobi elliptic function expansion
method, F-expansion method, Exp-function method. The
key point is to search for rational solutions to variable-
coefficient ordinary differential equations transformed
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from given partial differential equations.

In this paper using the idea of the transformed rational
function method, a generalized tanh-function type me-
thod is introduced to solve exact traveling solutions of
NLPDEs. We also show that the (G'/G)-expansion me-
thod [9-16] is a special case of the generalized tanh-func-
tion type method, so the transformed rational function
method includes the (G'/G)-expansion method. We de-
monstrate that all solutions obtained by the (G'/G)-ex-
pansion method were also found by the generalized tanh-
function type method. As applications, we consider
mKdV equation. Compared with the (G'/G)-expansion
method, the generalized tanh-function type method gives
new and more abundant solutions.

The rest of the paper is organized as follows: In Sec-
tion 2, using idea of the transformed rational function
method, a generalized tanh-function type method for fin-
ding travelling wave solutions of NLPDEs was introduc-
ed. In Section 3, we show that the (G'/G)-expansion
method is a special case of the generalized tanh-function
type method. In Section 4, we applied this method to
mKdV equation and compared with the (G'/G)-expan-
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sion method, the generalized tanh-function type method
gives new and more abundant solutions. In Section 5,
some conclusions are given.

2. The Generalized Tanh-Function Type
Method

A detailed describe of the transformed rational function
method can be found in Ma and Lee’s paper [8]. Using
the idea of the transformed rational function method, a
new approach called the generalized tanh-function me-
thod is proposed. The key point of the new approach is
based on the assumptions that the solutions can be ex-
pressed by Laurent polynomial (a special case of rational
functions) and that solution variable satisfies Riccati
equation. In the following we give the main steps of the
generalized tanh-function type method for finding travel-
ling wave solutions of NLPDEs.

For simplicity, let us consider the nonlinear partial dif-
ferential equation with two independent variables x
and t, isgiven by

P(u,u,,u, Uy Uy, Uy, ) =0, (2.1)

PR X Tt it !

where u=u(x,t) isan unknown function, P is a po-
lynomial in u=u(xt) and its various partial deriva-
tives, in which the highest order derivatives and nonlin-
ear terms are involved.

Step 1. Using the transformation

u=u(xt)=u(¢), &=x-kt,
we reduce the Equation (2.1) to an ODE
Q(u,u'u"u",-)=0. (2.2)

Step 2. Suppose that the solution of ODE (2.2) can be
expressed by a finite series in 'Y as follows:

u= Y aY". (2.3)
k=-m

where Y =Y (&) satisfied Riccati equation
Y'=aY?+bY +c, a0, (2.4)
where Y'=dY(¢£)/dé. a,.--a,, k, abandc are

constants to be determined later , and non-negative inte-
gers m and n can be determined by considering the
homogeneous balance between the highest order deriva-
tive and nonlinear terms appearing in ODE (2.2).

Step 3. By substituting (2.3) along with (2.4) into
ODE (2.2) and collecting all terms with the same order of
Y , ODE (2.2) will yield a system of algebraic equation
with respect to a__,---,a,,K,a,b,c, because all the coef-
ficient of Y* have to vanish.

Step 4. With the aid of Mathematica or Maple, one
can determine, a__,---,a,,k,ab and c by solving the
system of algebraic equation of Step 3.

Step 5. Substituting a_,,---,a,,k and the solutions

n?
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of Riccati Equation (2.4) into (2.3) we can obtain the so-
lutions of the nonlinear partial differential Equation (2.1)
Using the following formula of indefinite integrals, we
can obtain general solution of Riccati Equation (2.4).
The formula of indefinite integrals
Let a=0,A=b’-4ac, then we have the following
results:
Case 1. when A=hb’-4ac>0,

2ax+b—«/X
2ax+b+\/K

:_—Zarctan h(Zax+b]

N e

or _—zarc coth ( 2ax+ b}
JA JA

Case 2. when A=b’—-4ac<0,

j d o

ax®+bx+c A

.[ dx 2 arctan 2ax+b
ax’ +bx+c  +-A J=A

-2 (2ax+bj
or ———arccot| —=——~

J-A J-A
Case 3. when A=b’—-4ac=0,
I dx _ -2
ax’? +bx+c 2ax+b

Using above the formula of indefinite integrals, the
Riccati Equation (2.4) has the following general solu-
tions:

1) If A=b*—-4ac>0,

b VA [VA
—=———tanh| —
T2 2a { 2 ("”"%)}
Ji VA
or ———coth| — , 2.5a
o, ot -+ &) | (259)
2) If A=b*-4ac<0,
b A, |JA
Y+—=——tan| —
(2.5b)
L £(§+§)
2a 2 °
3)If A=b*-4ac=0,
MLEN > S (2.5¢)
2a  a(Ci+C,)
where &, C,, C, are constants.
By using formula
tanh (a + B) = S|nhacoshﬂ+095h as!nhﬂ,
cosh @ cosh g +sinh e sinh g
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tan (o + §) = sinacosﬂ+c95as?nﬂ .
cosea cos B —sinasin S
We can change (2.5a) and (2.5b) into the following
result respectively
4)If A=b*-4ac>0,
b VA {JZ

Y +£= —Ztanh 7(54—50 ):|

_ﬂ A sinh {\/E 5} + A, cosh {\/ZX 5} ,(2.6a)
A cosh {\/ZX 5} + A, sinh {\/ZZ 5}

where Al:cosh{%go}, A, :sinh{%gﬁ,} be con-

stants.
5)If A=b*-4ac<0,

Y +%=%tan{%(§+§o)}
o Bl 3]
el
(2.6b)
where B, =—cos{§§o}, B, =sin[g§0} be
constants.

We notice that the expressions (2.6a) and (2.6b) are
more cumbersome than (2.5a) and (2.5b), and solutions
expression of the (G'/G)—expansion method are just
from (2.6a) and (2.6b).

3. The (G'/G)-Expansion Method: A
Special Case of the Generalized Tanh
Function Type Method

Recently, Wang et al. [9] introduced a new method call-
ed the (G'/G)-expansion method to look for travelling
wave solutions of NLPDEs. Later, the (G'/G)-expan-
sion method is used by some authors, such as in [10-15].
The (G'/G)-expansion method is based on the assump-
tions that the travelling wave solutions can be expressed
by a polynomial in (G'/G), that is

u= Zn: H (G’/G)k

k=-m

and G :G(é) satisfies a second order linear ordinary
differential equation (LODE):

G"+AG +uG =0. (3.1)
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Where G'=dG(¢&)/dé, G"=d’G(&)/dé” . The de-
gree of the polynomial can be determined by the homo-
geneous balance method. The coefficients of the polyno-
mial can be obtained by solving a set of algebraic equa-
tions resulted from the process of using the method.

In here we show that the (G'/G)-expansion method is
a special case of the generalized tanh-function type me-
thod. It is not difficult to find if we make the transforma-
tion Y =G'/G then Equation (3.1) is equivalent to the
following special Riccati equation

Y +Y24+AY + =0, (3.2)

where A and u are constants. In the (G'/G)-expan-
sion method, Y =(G'/G) uses the result from (2.6a)
and (2.6b), so the (G'/G)-expansion method is equiva-
lent to the generalized tanh-function type method.

Remark 1. In Equation (2.3) and Riccati Equation
(2.4),if m=0 and b=0 respectively, then the gener-
alized tanh-function type method degenerate the tanh me-
thod. The idea of the tanh-function type method can go
back to [17].

Remark 2. If we take m=n in Equation (2.3) and
take b=0, a=1 in Equation (2.4), then the generaliz-
ed tanh-function type method degenerate modified exten-
ded tanh method which can be obtained more exact solu-
tions than tanh-function method, hyperbolic function me-
thod and other more sophisticated methods [18].

Remark 3. In Riccati Equation (2.4), if a=-1,
b=-4, ¢=-u, the generalized tanh-function type me-
thod is equivalent to (G'/G)-expansion method.

4. Application to mKdV Equation

In the section we will illustrate the generalized tanh-
function method with mKdV equation.
Let us consider mKdV equation in the form [9].
u, —u’u +éu, =0, 5>0 4.1)
Using the wave variable u=u(x,t)=u(¢),
& =x-ct converts Equation (4.1) to an ODE
—cu'—u?u'+6u" =0, (4.2)

where u'=du(&)/dé, u” =d%u(&)/d&E® . Suppose that
the solution of Equation (4.2) can be expressed by a fi-
nite seriesin Y as follows:

u=yr aY", (4.3)
where Y =Y (&) satisfied a first order ordinary differen-
tial equation

Y (Y2 AY + ) =0. (4.4)
where Y'=dY(&)/dé,a . ++,a,,c,Aand 4 are con-
stants to be determined later, a_a, #0.

Balancing the order of u” with the order u’u’ in
Equation (4.2) gives
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n+3=2n+n+1
{ (4.5)

-m-3=-2m-m-1’
We find
m=n=1
So we can suppose that the solution of Equation (4.2)
is of the form

(4.6)

Substituting Equation (4.6) into Equation (4.2) and
making using of Equation (4.4), with the aid of Mathe-
matica we obtain a system of algebraic equations for

a,, a, a and c

as follows:
pa, (60" —a’,) =0,
a, (126u° - 2a%, —2ua 13,) = 0
a, (cu—T00 -85 +a% +2Aa 8, + paj + i ;, )
=0
—a, (cA-04° -804 +2a 18, + Aa] + Aa 3, ) =
—(a,—pa)(c-04" —20u+al +a,3) =0
3, (CA— 04 8oy + 48] + Aa 13 +2113,3, ) =0
3, (C—704" —8u+a; +a,3 + 2483, + 1a; ) =
—a, (1262 23,3, - 287 ) =

-a,(65-a/)=0

Solving the algebraic equations above by Mathematica
gives three cases, namely:

u=a,Y ' +a,+aY,

Case 1:
c=—L57 oo, a, = /65,
21 . (47a)
a, = 15/1\/5, a,=0.
Case 2:
c=—Lsp +26u, a, =0,
21 . (4
= 15/1\/@, a, =+u65.
Case 3:
YL 48y, a, =++/65,
2 L (a70)

a, = 1%1\/65, a, = +u/65.

By using Equations (4.7a)-(4.7¢), express (4.6) can be
written as

u(.f):i%ﬂ@i@ :

(4.89)
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where &=x-— G 2§,ujt.
u(§)=+-aBsEufYt,  (48D)
where &= x-— G 25,ujt.
)=+u6SY 1 £= ,1\/_5+J_ 65Y, (4.80)

where & = x —[35/12 +45ujt .

Substituting (2.6a)-(2.6b) into (4.8a)-(4.8c) we have
three types of travelling wave solutions of the mKdV
equation as follows:

Casel. A=4u—-1*>0
—C,;sin %\/Kf +C, cos%x/Xf

1

u, (&)= izm (4.92)

C, cos%x/X§+C2 sin %\/Kef

where &= x—(%&lz - Zéyjt .

u, (&)= i%\/Gé'A

1 1
B, sinE«/X§+ B, cosE\/er

1 1 ,(4.9D)
B, cosEx/Xg + B, sin E\/Kf

Where & = x —[%5/12 - 25,ujt ,
Ja o2 JaA

A
Bl :TCZ —EC“ B2 :Tcl +EC2 .

1 Blsin%\/Z§+ B, cos%«/&f
U13(§):i5\/65A 1 1
B, cosE\/Xf— B, sinE\/X.f

—C,sin 1\/K5+c:2 cos S AE 1
+ 12 12 =266
o} cosEx/Zf+C2 sinE\/Zgg

(4.9b)
where £ = x_(%&z +4§,ujt )
JA 2 JA 4

B1 :TCZ —ECI, 82 :TCI +EC2 .

Case2. A=4u-1*<0 ,
uzl(ég)
o1 1
1 —— C15|nh§\/—A§+CZcoshE\/—Af ,(4.10a)

2 ClCOSh%\/—A§+CZSinh%\/—Af
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where &= x—(%&z —25y)t .

Uy, (&)
A sinh %\/Eéu A, cosh %«/Ef ,(4.10b)

= il —60A 1 1
2 AlcoshE\/—A§+AZsinh§\/—Ae§

where &= x—(%&z —25yjt ,

V-A A V-A A
A :Tcz _ECI' A, :Tcl_ECZ
U23(§)
o1 1
A sinh=~/—A& + A, cosh=~+/-A&

_+1 e 2 2 (4.10c)
2 AlcosE\/—A(erAzsinE\/—A(f
ClsinhE\/—A(erCZcoshéx/—AgE 1

+ 21 i =266
ClcoshE\/—A§+C2sinhE\/—AgE
1.
where 5=x—(§5/1 +45,u)t,
N-A A V-A A
A =TC2 _Ecli A, =TC1_EC2
Case3. A=4u—-1*=0,
+/65C,
u B i B 4.11a
5 (8= ox (4.112)
+/65K,
u =—, 4.11b
2= i n (4.11b)
where K1=cz—§cl, K, =§C2
+65C, +/66K, 1
U (€)= + T-465, (4.11c
o (£) C.+Cx K —Kx 2 (4.11c)
A A

Where K, =C,-=C,, K, ==C,.
1 2 2 1 2 2 2

The example comes from Wange’s Letter [9], but it is
worth noticing that the solutions (4.9c), (4.10c), (4.11c)
are not obtained by Wang [9] by using the (G'/G) -ex-
pansion method. The example shows that the more abun-
dant travelling solutions can be obtained by using the ge-
neralized tanh-function method.

5. Conclusion

The generalized tanh-function type method can be vie-
wed as an application of the transformed rational func-
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tion method. In fact, using the idea of the transformed ra-
tional function method, many methods to solve NLPDEs
can be obtained. In this letter we show that the (G'/G) -
expansion method is a special case of the generalized
tanh-function type method, so the (G'/G) -expansion
method is considered as a special deformation applica-
tion of the transformed rational function method. It is
worthy noticing that the generalized tanh-function type
method is more concise and straightforward to seek exact
solutions of nonlinear partial differential equations
(NLPDEs) and can be applied to many other NLPDEs in
mathematical physics.
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