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ABSTRACT 

In this paper a generalized tanh-function type method is proposed by using the idea of the transformed rational function 
method. We show that the G G -expansion method is a special case of the generalized tanh-function type method, so 

the G G  -expansion method is considered as a special deformation application of the transformed rational function 

method. We demonstrate that all solutions obtained by the  G G -expansion method were found by the generalized 

tanh-function type method. As applications, we consider mKdV equation. Compared with the G G  -expansion me- 

thod, the generalized tanh-function type method gives new and more abundant solutions. 
 
Keywords: The Generalized Tanh-Function Method;  G G -Expansion Method; mKdV Equation; The Transformed 

Rational Function 

1. Introduction 

Direct searching for exact solutions of nonlinear partial 
differential equations (NLPDEs) plays an important role 
in the study of nonlinear physical phenomena and be- 
comes one of the most exciting and extremely active ar- 
eas of research investigation. In the past several decades, 
many effective methods for obtaining exact solutions of 
NLPDEs have been presented, such as inverse scattering 
method [1], Darboux and Bäcklund transformation [2,3], 
Hirota’s bilinear method [4], Lie group method [5], va- 
riational iteration method [6], Adomian decomposition 
method [7] and so on. Most recently, Prof. Ma and Lee 
[8] proposed a new direct method called the transformed 
rational function method to solve exact solutions of non- 
linear partial differential equations. The transformed ra- 
tional function method provides a more systematical and 
convenient handling of the solution process of nonlinear 
equations, unifying the tanh-function method, homoge- 
nous balance method, Jacobi elliptic function expansion 
method, F-expansion method, Exp-function method. The 
key point is to search for rational solutions to variable- 
coefficient ordinary differential equations transformed 

from given partial differential equations.  
In this paper using the idea of the transformed rational 

function method, a generalized tanh-function type me- 
thod is introduced to solve exact traveling solutions of 
NLPDEs. We also show that the G G  -expansion me- 
thod [9-16] is a special case of the generalized tanh-func- 
tion type method, so the transformed rational function 
method includes the  G G -expansion method. We de- 
monstrate that all solutions obtained by the  G G -ex- 
pansion method were also found by the generalized tanh- 
function type method. As applications, we consider 
mKdV equation. Compared with the G G  -expansion 
method, the generalized tanh-function type method gives 
new and more abundant solutions.  

The rest of the paper is organized as follows: In Sec- 
tion 2, using idea of the transformed rational function 
method, a generalized tanh-function type method for fin- 
ding travelling wave solutions of NLPDEs was introduc- 
ed. In Section 3, we show that the  G G -expansion 
method is a special case of the generalized tanh-function 
type method. In Section 4, we applied this method to 
mKdV equation and compared with the G G  -expan- 
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sion method, the generalized tanh-function type method 
gives new and more abundant solutions. In Section 5, 
some conclusions are given. 

2. The Generalized Tanh-Function Type 
Method 

A detailed describe of the transformed rational function 
method can be found in Ma and Lee’s paper [8]. Using 
the idea of the transformed rational function method, a 
new approach called the generalized tanh-function me- 
thod is proposed. The key point of the new approach is 
based on the assumptions that the solutions can be ex- 
pressed by Laurent polynomial (a special case of rational 
functions) and that solution variable satisfies Riccati 
equation. In the following we give the main steps of the 
generalized tanh-function type method for finding travel- 
ling wave solutions of NLPDEs.  

For simplicity, let us consider the nonlinear partial dif- 
ferential equation with two independent variables x  
and , is given by  t

 , , , , , , 0t x tt xt xxP u u u u u u 






.       (2.1) 

where  is an unknown function,  is a po- 
lynomial in  and its various partial deriva- 
tives, in which the highest order derivatives and nonlin- 
ear terms are involved. 

 ,u u x t
u u

P
 ,x t

Step 1. Using the transformation 

   , ,  u u x t u x kt     , 

we reduce the Equation (2.1) to an ODE 

 , , , , 0Q u u u u    .           (2.2) 

Step 2. Suppose that the solution of ODE (2.2) can be 
expressed by a finite series in  as follows: Y

n
k

k
k m

u a Y


  .             (2.3) 

where  Y Y   satisfied Riccati equation 
2 ,  0,Y aY bY c a             (2.4) 

where  d dY Y    . , ,  are 
constants to be determined later , and non-negative inte- 
gers  and  can be determined by considering the 
homogeneous balance between the highest order deriva- 
tive and nonlinear terms appearing in ODE (2.2). 

, ,m na a  k ,  and a b c

m n

Step 3. By substituting (2.3) along with (2.4) into 
ODE (2.2) and collecting all terms with the same order of 

, ODE (2.2) will yield a system of algebraic equation 
with respect to , because all the coef- 
ficient of  have to vanish. 

Y
, , , ,, ,m na a a bk  c

b

ac

kY
Step 4. With the aid of Mathematica or Maple, one 

can determine,  and  by solving the 
system of algebraic equation of Step 3. 

, , ,, ,m na a ak  c

Step 5. Substituting  and the solutions 

of Riccati Equation (2.4) into (2.3) we can obtain the so- 
lutions of the nonlinear partial differential Equation (2.1) 

, , ,m n ka a 

Using the following formula of indefinite integrals, we 
can obtain general solution of Riccati Equation (2.4). 

The formula of indefinite integrals 
Let , then we have the following 

results: 

20, 4a b   

Case 1. when 2 4 0b ac    , 

2

d 1 2
ln

2

2 2
arctan

x ax b

ax bx c ax b

ax b
h

  


     

  
    


 

2 2
or   arccoth

ax b  
   

 

Case 2. when 2 4 0b ac    , 

2

d 2 2
arctan

x ax b

ax bx c

 
      

 
 

2 2
or   arccot

ax b  
   

 

Case 3. when 2 4 0b ac    , 

2

d 2

2

x

ax bax bx c




   


Using above the formula of indefinite integrals, the 
Riccati Equation (2.4) has the following general solu- 
tions: 

1) If 2 4 0b ac    , 

 0tanh
2 2 2

b
Y

a a
 

  
    

 
 

 0or   coth
2 2a

 
  

 
 

  ,    (2.5a)  

2) If 2 4 0b ac    , 

 

 

0

0

tan
2 2 2

                     or   cot
2 2

b
Y

a a

a

 

 

  
   

 
  

  
 

 (2.5b) 

3) If 2 4 0b ac    , 

 
1

1 22

Cb
Y

a a C C
  


.       (2.5c) 

where 0 1 2,  ,  C C  are constants.  
By using formula  

  sinh cosh cosh sinh
tanh

cosh cosh sinh sinh

    
  


 

 
, 
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  sin cos cos sin
tan

cos cos sin sin

    
  


 

 
. 

We can change (2.5a) and (2.5b) into the following 
result respectively 

4) If , 2 4 0b ac   

 0

1 2

1 2

tanh
2 2 2

sinh cosh
2

2
cosh sinh

2 2

b
Y

a a

A A

a
A A

 

2
 

 

  
    

 
  

  
    

    
   

   





,(2.6a) 

where 1 0 2cosh ,  sinh
2 2

A A 0 
   

   
  





 be con- 

stants. 
5) If , 2 4 0b ac   

 0

1 2

1 2

tan
2 2 2

sin cos
2 2

2
cos sin

2

b
Y

a a

B B

a
B B

 

2

 

 

  
   

 
   

   
    

    
   

   





, 

(2.6b) 

where 1 0 2cos ,  sin
2 2

B B 0 
   

    
  





 be 

constants. 
We notice that the expressions (2.6a) and (2.6b) are 

more cumbersome than (2.5a) and (2.5b), and solutions 
expression of the G G  -expansion method are just 
from (2.6a) and (2.6b). 

3. The  G G  -Expansion Method: A  
Special Case of the Generalized Tanh  
Function Type Method 

Recently, Wang et al. [9] introduced a new method call- 
ed the G G  -expansion method to look for travelling 
wave solutions of NLPDEs. Later, the G G  -expan- 
sion method is used by some authors, such as in [10-15]. 
The G G  -expansion method is based on the assump- 
tions that the travelling wave solutions can be expressed 
by a polynomial in G G  , that is 

 
n

k

k
k m

u a G G


   

and  G G   satisfies a second order linear ordinary 
differential equation (LODE): 

0G G G     .

   2d d ,  dG G G 2dG

            (3.1) 

Where    
gr e polynomial can be determined by th

  . The de- 
ee of th e homo- 

geneous balance method. The coefficients of the polyno- 
mial can be obtained by solving a set of algebraic equa- 
tions resulted from the process of using the method. 

In here we show that the  G G -expansion method is 
a special case of the generalized tanh-function type me- 
thod. It is not difficult to find if we make the transforma- 
tion Y G G  then Equation (3.1) is equivalent to the 
following special Riccati equation 

2Y Y Y  0    ,          (3.2) 

where and    are constants. In the  G G -expan- 
sion method,  Y G G  uses the resu  (2.6a) 
and (2.6b), so t e 

lt from
h  G G -expansion method is equiva- 

lent to the generalized -function type method.  
Remark 1. In Equation (2.3) and Riccati Equation 

(2.4), if 0m

 tanh

  and 0b   respectively, then the gener- 
alized tanh-function type method degenerate the tanh me- 
thod. The idea of the tanh-function type method can go 
back to [17]. 

Remark 2. If we take m n  in Equation (2.3) and 
take 0b  , a 1  in Equatio en the generaliz- 
ed tanh-function type method degenerate modified exten- 
ded tanh method which can be obtained more exact solu- 
tions than tanh-function method, hyperbolic function me- 
thod and other more sophisticated methods [18]. 

Remark 3. In Riccati Equation (2.4), if 1,a

n (2.4), th

   
,b    c   , the generalized tanh-function ty

d is equivalent to 
pe me- 

tho  G G -expansion method. 

4. Application to  Equation mKdV

ralized tanh- In the section we will illustrate the gene
function method with mKdV equation. 

Let us consider mKdV equation in the form [9]. 
2 0,  0t x xxxu u u u            (4.1) 

Using the wave variable   ,u u x t u   , 
x ct    converts Equation (4.1) to an ODE 

2 0cu u u u      ,          (4.2) 

where    3 3' d d ,  d du u u u   
n of Equation (4.2) can be ex

             (4.3) 

where 

 . Suppose that 
prethe solutio ssed by a fi- 

nite series in Y  as follows: 
n k
k m

u


  ka Y ,

 Y Y   satisfied a first order ordinary differen- 
tial equation 

 2 0Y Y Y      .          (4.4) 

 d d , , , , ,where  and m nY Y a a c    
ermined later, 

orde

  are con- 
stants to be det

Balancing the order of u r 2u u
0m na a  . 

  with the   in 
Equation (4.2) gives 
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3 2 1n n n

m m

  


,        .5) 
3 2 m


    1

 (4

We find 

n suppose that the solution of Equation (4.2) 
is of the for

into Equation (4.2) and 
making using of Equation (4.4), with 
m

 , 

1m n   
So we ca

m 
1

1 0 1u a Y a a Y
   ,          (4.6) 

Substituting Equation (4.6) 
the aid of Mathe- 

atica we obtain a system of algebraic equations for 

1 0 1 ,  ,  a a a  and c  
as follows: 

2 2   6 0a a   , 1 1

1a 2 2
1 1 1 02 2 0a a a      

 2 2 2 2
1 1 07 8 2

0

a c a a a a a a            


 1 0

1 1 0

0 1 0

1



.  

Solving the algebraic equations above by Mathematica 
gives three cases, na : 

1 1

 3 2
1 1 0 08 2a c a a a a a            , 

  2 2
1 1 0 1 12 0a a c a a a          , 

 3 2
1 0 1 18 2a c a a a a a           , 

 2 2
1 0 1 1 0 17 8 2a c a a a a a a          , 2 0

 2
1 0 1 112 2 0a a a a    , 

 2
1 16 0a a  

mely
Case 1: 

21
c a1

0 1

2 ,  6 ,  
2
1

6 ,  0.
2

a a

     

  

 

  
,    (4.7a) 

Case 2: 

2
1

0 1

1
2 ,  0,  

2
1

6 ,  6 .
2

c a

a a

 

  

   

    
,     (4.7b) 

Case 3: 

2
1

0 1

1
4 ,  6 ,

2
1

6 ,  6 .
2

c a

a a

   

  

    

    
,    (4.7c) 

By using Equations (4.7a)-(4.7c), express (4.6) can be 
written as 

  1
6 6u Y

21
2

2
x t    

 
. 

where 

  11
6 6

2
u Y        ,      (4.8b) 

where 21
2

2
x t      

 
. 

  1 1
6 6

2
u Y 6 Y         ,   (4.8c) 

where 21
4

2
x t      

 
. 

Substituting (2.6a)-(2.6b) 
three ty

into (4.8a)-(4.8c) we have 
pes of travelling wave solutions of the mKdV 

equation as follows: 
Case 1. 24 0      

2
      ,        (4.8a) 

 
1 2

11

1 2

1 1
sin cos1 2 26

1 12 cos sin
2 2

C C
u

C C

 


     
    

     
 

,(4.9a) 

where 21
2

2
x t      

 
.  

 
1 2

12

1 2

1 1
sin cos

1 2 26
1 12 cos sin
2 2

B B
u

B B

 
 

 

 
  

  

 
 
 
 
 

,(4.9b) 

Where 



21
2

2
x t      

 
, 

1 2 1 2 1 2
2 2

,  
2 2

B C C


 C B C
 

   . 

 
1 2

13

1 2

1 2

1 2

1 1
sin cos1 2 26

1 12 cos sin
2 2

1 1
sin cos 12 2 6

1 1 2cos sin
2 2

B B
u

B B

C C

C C

 
 

 

 
 

 

   
   

   


    
 

  




, 

(4.9b) 

where 21
4

2
x t      

 
,  

1 1B 2 1 2 2,  
2 2 2 2

C C B C C
  

  . 

Case 2. 

 
24 0      , 

 21

1 2

1 2

1 1
sinh cosh1 2 26

1 12 cosh sinh
2 2

u

C C

C C



      ,(4.10a) 
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21
2

2
x t      

 
. where 

 22

1 2

1 2

1 1
sinh cosh1 2 26

1 12 cosh sinh
2 2

u

A A

A A



 


 

    
     

    
 

,(4.10b) 

where 21
2

2
x t      

 
,  

1 2 1 2 1,  A
2 2 2 2 2A C C C C

  
     

 23

1 2

1 2

1 2

1 2

1 1
sinh cosh1 2 26

1 12 cos sin
2 2

1 1
sinh cosh 12 2 6

1 1 2cosh sinh
2 2

u

A A

A A

C C

C C



 


 

 
 

 

   
    

   


   
 

  




,(4.10c) 

where 21
4

2
x t      

 
, 

1 2 1 2 1,  A
2 2 2 2 2A C C C C

  
     

2Case 3. 4 0     , 

  2
31

1 2

6 C
u

C C x








,            (4.11a) 

  2
32

1 2

6 K
u

K K x








,            (4

where 

.11b) 

1 2 1 2,  
2 22

K C C K C
 

    

  2 2
33

1 2 1 2

6
2x

6 6 1C K
u

C C x K K

 
   , (4.11c) 

 
 

 

re Whe 1 2 1 2,  
2 2 2K C C K C
 

   . 

The example comes from Wange’s Letter [9], but it is
worth noticing that the solutions (4.9c), (4.10c
are not obtained by Wang [9] by using the 

 
), (4.11c) 

( )GG -ex- 
pansion method. The example shows that the more abun-
da ling solutions can be obtai d by using the ge-
neralized h-function method.  

can be obtained. In this letter we show that the 

 
 nt travel ne

 tan

5. Conclusion 

The generalized tanh-function type method can be vie- 
wed as an application of the transformed rational func- 

tion method. In fact, using the idea of the transformed ra- 
tional function method, many methods to solve NLPDEs 

( )G G - 
expansion method is a special case of the generalized 
tanh-function type method, so the ( )G G -expansion 
method is considered as a special deformation applica- 
tion of the transformed rational function method. It is 
worthy noticing that the generalized tanh-function type 
method is more concise and straightforward to seek exact 
solutions of nonlinear partial differential equations 
(NLPDEs) and can be applied to many other NLPDEs in 
mathematical physics.  
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