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ABSTRACT 

The aim of the present paper is to obtain the two- 
dimensional deformation of a two-phase elastic 
medium consisting of half-spaces of different ri- 
gidities in welded contact due to a buried long 
strike-slip fault. The solution is valid for arbitrary 
values of the fault-depth and the dip angle. The 
effect of fault-depth on the displacement and 
stress fields for different values of dip angle has 
been studied numerically. It is found that the dis- 
placement field varies significantly for a buried 
fault from the corresponding displacement field 
for an interface-breaking fault. The contour maps 
showing the stress field for various dip angles 
for buried and interface-breaking fault have been 
plotted. It has been observed that the stress 
field varies significantly for a buried fault from 
the corresponding stress field for an interface- 
breaking fault. 
 
Keywords: Deformation; Two-Phase Elastic 
Medium; Buried Strike-Slip Fault; Arbitrary Dip 

1. INTRODUCTION 

The elastic residual field due to a strike-slip fault in 
various Earth models has been calculated by several in- 
vestigators e.g. [1-12] and others. In [1], the problem of 
the static deformation of a multilayered half-space by a 
long strike-slip line dislocation is considered. In [2], the 
two-dimensional problem of a long displacement dislo- 
cation in an isotropic multilayered half-space is studied. 
In that paper, authors obtained the surface displacement 
caused by a line source of arbitrary dip. In [3], authors 
obtained closed-form analytic expressions for the dis- 
placements and stresses at any point of either of two ho- 
mogeneous, isotropic and perfectly elastic half-spaces in 

welded contact due to a horizontal or a vertical long 
strike-slip fault. Reference [4] demonstrated the solution 
for a long strike-slip fault of arbitrary dip, generalizing 
the work done in [3]. In [5], authors obtained closed- 
form analytic expressions for the problem of a surface- 
breaking long strike-slip fault in an elastic layer overly- 
ing an elastic half-space. In [6], authors obtained the de- 
formation field at any point of a horizontal orthotropic 
elastic layer of infinite lateral extent coupling in different 
ways such as “welded”, “smooth-rigid”, or “rough-rigid” 
to a base due to a long blind strike-slip fault. Most of 
these studies have chosen the interface-breaking fault. The 
depth of the fault does not occur explicitly in the solution. 
Therefore, for small dip angles, the fault approaches near 
the interface and the effect of depth on a fixed dip angle 
can not be studied independently. 

The purpose of present paper is to obtain an analytical 
solution for the deformation of a long strike-slip fault 
buried at arbitrary depth located in an elastic, homoge- 
neous, isotropic half-space welded with another elastic, 
isotropic half-space. The depth occurs explicitly in the 
solution. Therefore, the effect of the variations in the depth 
for a fixed dip and vice-versa can be studied directly. 

2. THEORY 

Let the Cartesian co-ordinates be denoted by 
 1 2 3, ,x x x  with 3x -axis vertically downwards. Con- 
sider a two-phase elastic medium consisting of half- 
spaces welded along the plane 3 . The upper half- 
space 

0x 
 03x   is called Medium I and the lower half- 

space  3x
and 

0  is called Medium II with rigidities 

1 2  , respectively. A long inclined strike-slip fault 
with strike along 1x -axis is situated in the lower half- 
space. The upper edge of the fault is taken to be at depth 
d (Figure 1). Superscript (1) denotes quantities related to 
the upper half-space and superscript (2) denotes those for 
the lower half-space. 
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Figure 1. Geometry of a two-phase elastic medium consisting 
of half-spaces in welded contact with a long strike-slip fault of 
width L situated in the lower half-space. d is the depth of upper 
edge A of the fault,   is the dip angle and s is the distance 
from the upper edge of fault measured in down-dip direction. 
The displacement discontinuity on the fault is parallel to x1- 
axis. The sign  indicates displacement in the direction of x1- 
axis and the sign Θ in the opposite direction. 



 
Under the assumption of antiplane strain case, the dis- 

placement components are of the form 

          1 1 2 3 2 3, , 0 1, 2i i i iu u x x u u i         (1) 

For zero body forces, the equilibrium equations re- 
duces to  

   


2 2
1 1
2 2
2 3

0 1, 2
i iu u

i
x x

 
  

 
          (2) 

The displacement field due to a long inclined strike- 
slip line dislocation parallel to x1-axis and passing through 
the point (y2, y3) in the lower half-space (medium II) is 
given by [4]: 

 

 
   1

1 3 3 22
cos sin

1

bds
u x y δ x y δ

R
       2  (3) 

     

 
    

2 3 3 2 2
1 2

3 3 2 22

cos sinδ

2π

1
cos sin

1

x y δ x ybds
u

R

x y δ x y δ
S




   
 




    
 

 (4) 

where 
b  = displacement discontinuity (slip) 
ds = width of the line dislocation 
  = dip angle 
 2 3, x x
 ,

 = receiver location 
2 3y y  = source location 

       2 22 22 2
2 2 3 3 2 2 3 3,R x y x y S x y x y         

1 2   .                (5) 

We write (Figure 1) 

2 3cos , siny s δ y d s δ              (6) 

where d is depth of the upper edge A of the fault and s is 
the distance from the upper edge of the fault measured in 
the down-dip direction. Inserting the values of y2 and y3 
from Equation (6) into Equations (3) and (4) and inte- 
grating over s between the limits (0, L), we obtain the 
following expressions for the displacements in the two 
half-spaces due to an inclined strike-slip fault of finite 
width L and infinite length: 

 

 
1 1 2

1
2 0

 cos sin
tan

π 1 cos  sin

L
s x δ X δb

u
X δ x δ

   
    

    (7) 

 2 1 2
1

2

1 2

2 0

cos sin
tan

2π cos sin

cos sin1
tan

1 cos sin

L

s x δ X δb
u

X δ x δ

s x δ X δ

X δ x δ








  
   

  
    

    (8) 

where 

     
0

0
L

f s f L f                (9) 

The non-zero stresses at any point of a two-phase elas- 
tic medium are given by 

 
 

 
 
 1 1

12 13
2 3

, 1, 2, no summation over 
i i

i i
i i

u u
p p i

x x
 
 

  
 

i

(10) 

From Equations (7) and (8) and Equation (10), we get 
the following expressions for the stresses. For the me- 
dium I, 

 

 
1 1

12 2

0

sin

1

L
b s δ X

p
R




      
           (11) 

 

 
1 1 2

13 2

0

cos

π 1

L
b x s δ

p
R




     
           (12) 

and the medium II, 

   2 2
12 2 2

0

sinsin 1

2π 1

L
X s δb s δ X

p
R S

 


    
     

 (13) 

   2 2
13 2 2

0

1 1 1
cos

2π 1 2

L

b
p x s δ

R S

 


   
         

  (14) 

where now 

  
  

2 22
2

2 22
2

cos sin
cos sin

R x s δ X s δ
S x s δ X s δ

   
   




      (15) 
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Equations (7) and (8) and Equations (11)-(14) give the 
elastic residual field at any point of two half-spaces due 
to a long strike-slip fault of finite width dipping at an an- 
gle   buried at depth d. On taking d = 0, the results for 
an interface breaking fault located in the lower half- 
space welded with another half-space coincide with the 
corresponding results of [4]. Also on taking 1 0  , 
which implies , the results coincide 
with the corresponding results given by [7] for a uniform 
half-space due to a vertical strike-slip fault. 

0 and 90   

3. NUMERICAL RESULTS 

We have studied the behaviour of the parallel displace- 
ments and the stresses numerically. Figure 2(a) shows 
the parallel displacement    1 2

1 1u b u b  at the interface 
 with the distance from the fault for  3 0x   0    for 

different values of depth d. Figures 2(b)-(d) are for 
 respectively. We observe that the 

behaviour of displacement for the interface-breaking 
fault is altogether different from that for the buried fault. 
Figures 3(a)-(d) show the variation of parallel displace- 
ment 

15 , 

 

 30  and 45 ,  

2
1u b  with 2x L  at 3x L

0 
 for three values of 

depth d = 0, L/2 and 2L for  
The case d = 0 corresponds to the interface-breaking 
fault. For the case d = L/2, observer is below the upper 
edge of the fault and for d = 2L, observer is above the 
upper edge of the fault. 

,  15 ,  5 .  30  and 4

In all these figures, there is a discontinuity at 2x = X 
cot  . Figures 4(a)-(d) show the variation of  1

1u b  
with  2 3 for x L x  L


 for different value of d for 
 when the observer is in the up- 

per half-space. 
0 ,  15 ,  30  and 45   

The contour maps for the shear stress    12 2
ip b L   

have been plotted in Figures 5(a) and (b) for an interface 
breaking fault located in the lower half-space welded 
with another half-space for 0    and 45˚. Solid lines 
indicate positive values and dashed lines negative values.  

The values are shown in units of    3
12 210 ip b L . 

Heavy line denotes the fault. The shear stress  is   
12

ip

discontinuous at the interface. 
Figures 6(a) and (b) are for the buried strike-slip fault 

d = L for  and 45˚, respectively. The contour maps 0  

for the shear stress    13 2
ip b L  are shown in Figures  

7(a) and (b) for interface-breaking fault d = 0 for 0    
and 45˚. The stress is continuous at the interface. The  

values are shown in units of    3
13 210 ip b L . Figures  

8(a) and (b) are for the buried fault d = L. 

4. DISCUSSION 

The results presented in this paper are significant  

-0.4

-0.3

-0.2

-0.1

0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

d = 2 L
d = L
d = L / 2

  = 0
x

3
 = 0

DISTANCE  FROM  THE  FAULT

PA
R

A
L

L
E

L
  D

IS
PL

A
C

E
M

E
N

T

 
(a) 

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

-4 -3 -2 -1 0 1 2 3 4

d = 2 L
d = L
d = L / 2
d = 0

  = 15°
x

3
 = 0

DISTANCE  FROM  THE  FAULT
P

A
R

A
L

L
E

L
  D

IS
PL

A
C

E
M

E
N

T
 

(b) 

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

-4 -3 -2 -1 0 1 2 3 4

d = 2 L
d = L
d = L / 2
d = 0

  = 30°
x

3
 = 0

DISTANCE FROM  THE  FAULT

PA
R

A
L

L
E

L
  D

IS
PL

A
C

E
M

E
N

T

 
(c) 

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

-4 -3 -2 -1 0 1 2 3 4

d = 2 L
d = L
d = L / 2 
d = 0

  = 45
x

3
 = 0

DISTANCE  FROM  THE  FAULT

P
A

R
A

L
L

E
L

  D
IS

P
L

A
C

E
M

E
N

T

 
(d) 

Figure 2. Variation of the horizontal displa- 
cement    1 2

1 1u b u b  at the interface with 

the dimensionless distance from the fault 
 2x L  assuming 1 2 1 2    for various 
values of depth d from the upper edge of the 
fault for (a) δ = 0˚ (b) δ = 15˚ (c) δ = 30˚ (d) 
δ = 45˚. 
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(d) 

Figure 3. Variation of the dimensionless ho- 
rizontal displacement  2

1u b  with distance 
from the fault  2
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(d) 

x L  for 3x L  for vari- 
ous values of depth d from the upper edge of 
the fault for (a) δ = 0˚ (b) δ = 15˚ (c) δ = 30˚ 
(d) δ = 45˚. 

Figure 4. Variation of the parallel displacement 
 1
1u b  with  2x L  for 3x L   for different 

values of depth d for (a) δ = 0˚ (b) δ = 15˚ (c) δ = 
30˚ (d) δ = 45˚. 
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(a)                                                        (b) 

Figure 5. Contour map for the stress component      12 2 1 2, 1,2  for 1 2ip b L i     for interface 

breaking fault for (a) δ = 0˚ (b) δ = 45˚. Solid lines indicate positive values and dashed lines indicate nega-

tive values. The values are in units of 
   3
12 210 ip b L . 

 

                
(a)                                                        (b) 

Figure 6. Contour map for the stress component    12 2
ip b L ,   1 21,2  for 1 2i     for buried fault 

d = L for (a) δ = 0˚ (b) δ = 45˚. Solid lines indicate positive values and dashed lines indicate negative val-

ues. The values are in units of    3
12 210 ip b L . 

 

                
(a)                                                        (b) 

Figure 7. Contour map for the stress component      13 2 1 2,  1,2  for 1 2ip b L i     for interface 

breaking fault for (a) δ = 0˚ (b) δ = 45˚. Solid lines indicate positive values and dashed lines indicate nega-
tive values. The values are in units of    3

13 210 ip b L . 
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(a)                                                             (b) 

Figure 8. Contour map for the stress component    13 2
ip b L ,   1 21,2  for 1 2i     for buried fault d = L for (a) δ 

= 0˚ (b) δ = 45˚. Solid lines indicate positive values and dashed lines indicate negative values. The values are in units of 
   3
13 210 ip b L . 

 
for obtaining the deformation due to an inclined strike- 
slip fault located at an arbitrary depth and arbitrary dip 
angles. In the earlier paper [4], the results are obtained 
for d = 0. Therefore, for small dip angles, the fault ap- 
proaches near the interface. In the present paper, the 
depth d is taken explicitly. The effect of variation in 
depth for a fixed dip and vice-versa can be studied inde- 
pendently. 
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