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ABSTRACT 

Method for numerical simulation of the temperature of granule with internal heat release in a medium with random 
temperature fluctuations is proposed. The method utilized the solution of a system of ordinary stochastic differential 
equations describing temperature fluctuations of the surrounding and granule. Autocorrelation function of temperature 
fluctuations has a finite decay time. The suggested method is verified by the comparison with exact analytical results. 
Random temperature behavior of granule with internal heat release qualitatively differs from the results obtained in the 
deterministic approach. Mean first passage time of granules temperature intersecting critical temperature is estimated at 
different regime parameters. 
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1. Introduction 

The catalytic synthesis processes are generally accompa- 
nied by heat release. Synthesis of heavy hydrocarbons in 
the Fischer-Tropsch process (GTL technology) is associ- 
ated with essential heat generation [1]. GTL technology can 
solve a number of environmental and economic problems.  

In the Technological Institute for Superhard and Novel 
Carbon Materials (Troitsk, Russian Federation), industrial 
reactor is developed with a capacity of 5000 Nm3/h of syn- 
thesis gas with a production of 500 kg/h stabilized liquid hy- 
drocarbons. The reactor used fixed bed of catalyst granules.  

Exothermic heat of reaction is transferred from the 
volume of catalytic granules to the boundary of the gran- 
ules. At the boundary heat is removed to the liquid prod- 
ucts of the synthesis. Exceeding heat generation over 
heat transfer leads to uncontrolled growth temperature 
(thermal explosion). Loss of thermal stability of catalyst 
granules is responsible of thermal explosion of the reac- 
tor. Therefore, investigation of critical conditions of 
thermal explosion is an important practical problem.  

Reasons leading to thermal explosion in deterministic 
situation have been well studied [2-6]. There is a critical 
temperature, the excess of which causes a significant 
increase in temperature of granules. The situation drasti- 

cally changes when the temperature of the environment 
is a random process. In this case there is always a 
non-zero probability for a temperature fluctuation, the 
magnitude of which exceeds a critical value, which may 
lead to the loss of thermal stability. Study of the effect of 
random noise is dedicated to the behavior of systems 
with explosive features, for example, [7-11]. The results 
of this study can also be applicable in modeling of igni- 
tion conditions of dispersed fuel in aircraft and rocket 
engines, and power stations. Main trends obtained in the 
paper are helpful for the estimation of the probability of 
thermal explosion in storages and transportation lines of 
dispersed combustible materials.  

Investigation on effect of noise is devoted to the be- 
havior of systems with explosive behavior [7-11]. Study 
of random temperature fluctuations was carried out in the 
framework of probability density function approach [12]. 
This approach requires the use of modern methods of 
stochastic processes and functional analysis and yields 
results which have practical importance. However, the 
method of the probability density function does not take 
into account some important details of the complicated 
chemical kinetics. In this situation, it is appropriate to use 
the methods of modeling of temperature dynamics which 
is based on direct numerical solutions of stochastic ordi-  
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nary differential equations [13-17]. 
In this paper we propose a method for direct numerical 

modeling of a random temperature of granule with inter- 
nal heat generation with accounted temperature fluctua- 
tions in the surrounding. We construct temperature fluc- 
tuations with internal temporal structure. The autocorre- 
lation function of temperature fluctuations of the sur- 
rounding has a finite decay time. This approach can be 
used in future for modeling stochastic behavior in not 
only temperature, but also reactant concentration inside 
the granule with detailed complex kinetics. Verification 
of the proposed algorithm is based on a comparison with 
exact analytical solutions. We illustrate various scenarios 
of the loss of thermal stability of catalytic granule. Cal- 
culations on results of the average waiting time of ther- 
mal explosion are presented.  

2. Equation for Temperature of Granule  
with Internal Heat Release. Semenov’s  
Diagram  

In this section we write down the equation for the tem- 
perature of the granule with internal heat source and per- 
form the analysis of Semenov’s diagram. 

2.1. Equation for Temperature of the Catalytic  
Granule  

We investigate spherical granule with diameter pd , 
which is placed in liquid products with temperature f . 
Thermal effect of exothermal reaction inside the granule 
is Q. Rate of chemical reactions is modeled as Arrhenius 
law with activation energy E. Heat transfer coefficient is 
α. Equation for the volume-averaged temperature of the 
granule p has the following form  

 d
e

d
p

E

Rp
p p p f p pm c S V QA

t





   


. 

Here pm  is mass of the granule; 2
p pS d   area of 

the granule surface; 3 6p pV d   is volume of the gran- 
ule; A is the frequency factor;  is the universal gas 
constant. 

R

The equation for the granule temperature can be re- 
written in the relaxation form  

d
e

d
p

E

Rp f p

p p

QA

t c 






  
 


,        (1) 

where p p pd c    is thermal relaxation time of the 
granule.  

Temperature of the surrounding liquid is given as 

   f f ft t    , 

where f  is averaged temperature of the fluid; 
 is temperature fluctuations;  f t   0f t  .  

Angular brackets denote the results of averaging over 
an ensemble of random realization of fluid temperature.  

Equation (1) in dimensionless variables has the form  

 1d
e

d
p

E
f pp Q











 
 


.     (2) 

Here p p f    is dimensionless temperature of 
the granule; Et T   is dimensionless time; TE is inte- 
gral time scale of fluid temperature autocorrelation func-
tion; f p f    is a dimensionless temperature 
fluctuation of fluid surrounding; fE E R    is 
dimensionless activation energy;  p p fQ QA c    
is dimensionless heat of exothermal reaction;  

ET    is parameter of thermal inertia of the 
granule.  

2.2. Semenov’s Diagram 

Based on the analysis of Semenov’s diagram we show 
the existence of critical temperature. Infinitely small ex- 
cess above the critical temperature leads to uncontrolled 
increase of temperature of the granule (thermal explo- 
sion). 

Analysis of Semenov’s diagram is provided for steady- 
state temperature of the liquid medium. Looking for a 
stationary temperature of the granule from the following 
equation 

d 1
0, e

d
p

E

p p Q








  
 


.          (3) 

We introduce dimensionless power of heat transfer to 
the liquid phase  * 1pW      and dimensionless 
power of heat release  expQ pW Q E     .  

Figure 1 represent Semenov’s diagram. It is evident 
that there is a region with three stationary temperatures 
of the granule. This region with three roots of Equation 
(3) is bounded by the tangential lines, whose position is 
determined by the values of thermal relaxation parameter 
of the granule.  

 

 

Figure 1. Semenov’s diagram. 
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At the tangential lines b and c in Figure 1 the tem- 
perature of the granule returns to a steady state with low 
or high temperatures, respectively. To study the types of 
stationary temperature we performed numerical integra- 
tion of the nonlinear Equation (2) without taking into 
account fluctuations in the temperature of the medium.  

Figure 2 illustrates the dynamics of change of tem- 
perature of the granule, if the initial temperature is close 
to the second root on the Semenov’s diagram. It can be 
seeing, that infinitely small disturbance above II  give 
a loss of thermal stability of the granule.  

If initial temperature of the granule is infinitively less 
than the value II , the temperature of the granule pro- 
ceeds to low value close to ambient temperature. The 
second root at the Semenov’s diagram may be regarded 
as critical value .  



cr II  

3. Autocorrelation Function of Temperature  
Fluctuations. Exact Results 

In this section, we obtain some exact results for com- 
parison with data of numerical simulation. Exact solu- 
tions exist for linear equations. We consider the equation 
for the fluctuations of temperature of the granule (1) 
without the chemical heat source  

     d

d
p f pt t

t

  





t
.           (4) 

Temperature fluctuations of fluid  is statistic- 
cally stationary random process with correlation  

 f t

    2
f f f ft t t t        .       (5) 

We use the relationship between the autocorrelation 
function and its spectrum  

     1
e

2
i t

f t  df  






 
  ,               (6) 

   ei s
f f ds s 





  .                    (7) 

 

 

Figure 2. Temperature of the granule with initial value near 
second root on Semenov’s diagram. 

Solution of Equation (4) has the form  

   
0

1
e d

t st

p ft s 









  s . 

Correlation function of temperature fluctuations of the 
granule is written as 

     

   

2

0 0

1 1
d e d e

p p p p

t s t st t

f f

t t t t

s s s 

  

 
 

 

      

 

     

s     
. 

With the help of spectrum of the fluid temperature 
autocorrelation function (5) and (6) we write down ex-
pression for granule autocorrelation  

   
 

2

2
2

e d
2 1

f fi t
p p t

  
 




 

 

 
 
 .    (8) 

Square of dispersion of the granule temperature fluc- 
tuations is follows from expression (8) at t = 0   

 
 

2

2
2

d
2 1

f f
p

  
 





 


 
 . 

Let us consider two special cases of the autocorrela- 
tion function of the temperature fluctuations of the fluid.  

3.1. Delta-Correlated in Time Random Process  

Temperature fluctuations  is delta-correlated in 
time random process. The autocorrelation function 

 f t
(5) 

has the form  

  2f t t t t         .          (9) 

Here    is integral time scale 

   
0 0

d df s s s s  
 

      . 

Spectrum of autocorrelation function (9) is found from 
expression (7) 

   2 e d 2i s
f s s    






   . 

Substitution expression for the spectrum into formula 
(8) leads to autocorrelation function of the granule tem- 
perature fluctuations  

 2 2 e
t

p p ft 
 








  
 . 

Intensity of temperature fluctuations and autocorrela- 
tion function of granule are 

 2 2 2 , e
t

p f f p
p

t 
  






    .    (10) 
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Delta-correlation approach is correct for granule with 
high thermal inertia. Autocorrelation functio
perature fluctuations of the granule has exponential form 
w

orrelation Function 

ation of fluid 
 

n of tem- 

ith integral temporary scale equal to the granule relaxa- 
tion time.  

3.2. Exponential Approximation of  
Autoc

Second approach is exponential approxim
temperature  f t  autocorrelation function 

  e E

t

T
f t



                 (11) 

Spectrum of the autocorrelation function (11) follows 
from formula (7) 

 
 2

2
e dE

t
i t

T E
f

T
t


 

 

  . 
1 ET 

Correlation of the granule temperature fluctuation is 
obtained from formula (11) 

 
   

2

2 2 e
d

2 1
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f E

p p

T
t


2 2
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
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 
    

    

Calculation of the above integral under theory of fu - 
tions with complex variables leads to the result  

 . 

nc

   
 

2 2
2

e eE

tt

T
E

p p f

T
t


 







 


. 

1 ET

   (12) 

Square of dispersion of the granule tempera
tuations is follows from Equation (12) at t = 0 

ture fluc- 

 

2

2

1

f

p
ET








.            (13) 

Autocorrelation function of the gra
fluctuation also obtained from Equati

nule temperature 
on (12) 

   
 

e e

1

E

tt

T
E

p

T
t

T








 


.  

E

      (14) 

Integral time scale of the granule temp
tion is  

erature fluctua- 

 dp ET t t T
0




     . 

One can conclude about existence o  two granules 
types. Granule with small thermal inertia with thermal 
relaxation time much smaller than integral time scale of 
flu

f

id temperature autocorrelation function ET  . In 
that case dispersion of temperature fluctuations of the 
granule and fluid is close 2 2

p f  , and integral time  

scale of granule temperature fluctuations is ET T  . For 
granule with high thermal inertia ET   dispersion of 
granule temperature fluc ess then fluid tuations is l

 2 2
p E fT   . Integral time scale of tem-

perature fluctuations is close to ure relaxation 
time T

granule 
temperat

  , and granule autocorrelation function de-
cays as    pp text  

gorithm
emperature of surrou

rrelation 
ly on 

the ic ordinary equations.  

  (see, also Equation (10)). 
Obtained exact results will be used for testing numeri- 

cal al  of simulation of temperature of granule in a 
random t ndings.  

4. System of Stochastic Differential  
Equations  

Analytical results show that modeling autoco
function with finite relaxation time is possible on

 base of stochast
Write down system of differential equations for tem- 

perature fluctuations of fluid and the granule with heat 
release 

     
d

d
f

f

 
   


  ,                    (15) 

        1d

d

E
fp

t tt 







 




Here 

e pp t
Q


 .      (16) 

    
lta-correlated

is seeded Gaussian random process with 
de  function 

     22t t t t         . 

Integration of the system of Equations (15) and (16) is 
carried out by explicit Euler method  

        1 1n n n n
f f f         , 

 
       

 

*
1

1 *e
1 n

p

E

f pn n
p p Q









n n         
 

 

. 

Here n is the number of temporary steps; rando n-
crement of seeded process is modeled as  

m i

    22n n       , 

where  n is random realization of the normalized 
Gaus ess (white noise) with zero mean and unit 
dispersion. 

re 3 

nclude that increasing the thermal inertia re- 
du

sian proc

Figu illustrates the effect of thermal inertia of the 
granules on temperature fluctuations without heat source. 
It can be co

ces the amplitude of temperature fluctuations of the 
granule. 

Figure 4 shows influence of thermal inertia of the 
granule on dispersion of temperature fluctuations. The  
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increasing thermal inertia decreases the intensity of tem- 
pe

s of numerical simulations satisfactory agree 
w

g time of Explosion  

 scenar- 
al heat  

rature fluctuations of the granule. From the Figure 4 is 
also evident a satisfactory agreement between the results 
of calculations by the exact formula (13) and numerical 
data obtained by averaging random realizations of tem- 
perature. 

Autocorrelation function of the granule temperature 
fluctuations are shown in Figure 5. It can be seen that 
the result

ith obtained exact results. The growth of thermal inertia 
increases the damping region of the autocorrelation func- 
tion of the granules.  

5. Simulation of Thermal Explosion.  
Average Waitin

This section presents results showing the various
ios of behavior of granule temperature with intern

 

 

Figure 3. Random temperatures of surroundings and gran-
ule. 
 

 

generation with account temperature fluctuatuation of the 
fluid. Figure 6 shows the behavior of the actual tem- 
perature of the granules with heat generation. On the 
figure  1f f t    is actual temperature of sur- 
rounding fluid. It can be seen that fluctuations of magni- 
tude of chemical reactions make a significant contribu- 
tion to the value of random temperature of the granule. 

On all illustrations following next the initial tempera- 
ture of the granule is less than the critical value corre- 
sponding to the second root II  
gram). 

Random process with nonzero probability may exceed 
any level. After some random ti  the actual temperature 
of

  (see Semenov’s dia-

me
 the granule will be over the critical value cr II    

and there will be a loss of thermal stability. This scenario 
is illustrated by Figure 7. 

The waiting time of a thermal explosion we define as 
the average time of first crossing by random temperature 
of the granule the critical level cr . Waiting time of 

 
 

 

Figure 5. Autocorrelation functions of temperature fluctua-
tions fluid and granule. Points are numerical simulations
lines are the formulas (11) and (14). Dashed line is exponen

, 
-

tial approximation (10). 
 

 Figure 4. The ratio between dispersions of temperature 
fluctuations of granule and the fluid: points are simulation 
results; curve is the formula (13). 

Figure 6. Example of granule temperature without heat 
explosion. 
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Figure 7. Example of temperature of the granule with heat 
explosion. 
 
thermal explosion cr is function of initial temperature 
of the granule p



mp
 (Fi

eratur
gure 8).  

As initial te e approaches to the critical value, 
the average waiting time of thermal explosion dramati- 
cally reduced. The critical temperature  essentially 
depends on parameter of thermal inertia granule. 

From the Figure 8 it is evident that average delay time 
of thermal explosion depends on the parameter of ther- 
mal relaxation of the granule. 

6. Conclusions  

Method of numerical simulation of random temperatu e 
of granules with internal heat source in surrounding l - 

 release is described by the Arrhenius law.  
flu

ss

 explosion for various val- 
erature relaxation times, initial te
and dispersion of temperature fluc-

al
va

cr
 of the 

r
iq

uid with temperature fluctuations is designed. The inten- 
ity of heats

For temperature ctuations, a numerical generation 
of random Gau ian process with an exponentially de- 
caying autocorrelation function is suggested. Autocorre- 
lation function and dispersions of temperature fluctua- 
tions without heat generation obtained by the numerical 
simulation are compared with the exact formulas, found 
by spectral analysis of stochastic processes. 

Analysis of the influence of the fluid temperature 
fluctuations on the process of thermal explosion is car- 
ried out. Dynamics of thermal
ues of granules temp
perature of granules, 

m- 
 

tuations are investigated.  
Based on direct numerical simulations, the average 

waiting time of thermal explosion is investigated. Effect 
of stochastic drift of the granule temperature to its critic  

lue is found.  
Further research in the area of numerical simulation is 

possible to be carried out in two directions. Firstly, it is the 
use of the actual kinetic schemes, the Fischer-Tropsch 
synthesis, on cobalt catalysts. The second direction of  

 

Figure 8. Average waiting time of thermal explosion. 
 
research focuses on the accounting of the random me- 
dium temperature with intermittency, which is character- 
ized by the log-normal distribution.  
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