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ABSTRACT 

The purpose of this work is to review procedures to obtain relationships between wind and large-scale atmospheric 
fields, with special emphasis on extreme situation results. Such relationships are obtained by using different methods 
and techniques such as wind cumulative probability functions and composite maps. The analyses showed different 
mean atmospheric situations associated with the different wind patterns, in which strong atmospheric gradients can be 
related to moderate to strong winds in Spain. Additionally, a statistical downscaling analog model, developed by the 
authors, is used for diagnosing large-scale atmospheric circulation patterns and subsequently estimating extreme wind 
probabilities. From an atmospheric circulation pattern set obtained by multivariate methodology applied to a large-scale 
atmospheric circulation field, estimations of wind fields, particularly extreme winds, are obtained by means of the ana- 
logs methodology. Deterministic and probabilistic results show that gust behaviour is quite better approximated than 
mean wind speed, in general. The model presents some underestimations except for strong winds. Moreover, the model 
shows better probabilistic wind results over the Spanish northern area, highlighting that the atmospheric situations 
coming from the Atlantic Ocean are better recovered to predict mean wind and gusts in the Northern Peninsula. 
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1. Introduction 

Winter storms are responsible for more than 50% of the 
total economic loss in central Europe, due to natural haz- 
ards [1,2] and a single extreme storm event can cause 
economic losses exceeding 10 billion euros. A rise in 
storm-related monetary losses for Europe in the course of 
the 20th century has been observed by Barredo [3], ex- 
plained principally by changes in economic and demo- 
graphic conditions, with much of the recent infrastructure 
in various parts of the world increasingly constructed in 
zones at risk from severe weather [2]. Therefore, the 
knowledge of atmospheric circulation patterns, particu- 
larly the one dealing with atmospheric patterns condu- 
cive to risky meteorological situations related to extreme 
wind events, is especially important for wind energy ap- 
plications [4-6]. Forecasters, energy producers and grid 
operators have different views on what extremes related 
to wind generation are. Extreme events have been cate- 
gorized taken into account damages and economic loss  

[7,8]. Extremes have been also identified as their occur- 
rence probabilities [9]; they have been analyzed from the 
spatial-temporal characteristics of prediction errors [10], 
or taking into account their probabilistic forecasts by 
statistical scenarios [11,12], by ensemble predictions [13]. 
The final analysis can be used for nowcasting wind 
power over the whole area, and for data assimilation pur- 
poses (in order to update and improve wind power pre- 
dictions) for better understanding the, or for issuing “glo- 
bal” warnings related to expected accuracy of weather 
and wind power forecasts over the area considered. 

In determining temporal-spatial distribution changes of 
wind and other climatological elements, it is necessary to 
take into account the atmospheric circulation variability. 
The Western European climate steps are necessary on the 
available knowledge of natural variability in regional 
scales and its relationship to large-scale circulation [14- 
20]. The relative location of different pressure centers 
over the North Atlantic area influence different air mas-  
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ses with distinct physical characteristics over Iberia to 
produce a wide range of differentiated regional climates, 
playing the topography a leading role. In fact, at local 
scales the development of cloud systems or the en- 
hancement of wind speed over different areas can be es- 
pecially affected due to the topography [21-23]; at large- 
scale domains, topography can generate o redirected 
synoptic and mesoscale flows [24]. The present study is 
firstly focused on showing relationships between wind 
and large-scale atmospheric fields over an Atlantic area, 
with special emphasis on results involving extreme situa- 
tions. These connections are attained by using different 
methods and procedures, such us cumulative probability 
curves and composite maps. Composites have already 
been used by the authors in several studies in order to 
analyse different fields, obtaining relationships between 
them, so that maximum and minimum intensity phases of 
a field can be related to the other one [16,18,19]. 

On the other hand, the improvement of meteorological 
forecasts of wind by means of dynamic modelling has 
been progressing by means of limited area models or 
ensemble prediction systems in several research projects 
(ANEMOS, ANEMOS.plus). However, this methodol- 
ogy bears high computational costs. In order to overcome 
this problem, the analog method for predicting time se- 
ries can be used [25]. With this method, local prediction 
models are obtained finding in a set of historic data simi- 
lar situations to a particular situation [26-28]. This tech- 
nique has been implemented for both climatic anomaly 
predictions [29,30] and short-range prediction [31], re- 
vealing as an alternative to other more complex models 
with high computational cost. In the framework of the 
European Project SafeWind, the authors have been de- 
veloping several works based on multivariate method- 
ologies for obtaining atmospheric situations analog to a 
situation associated with extreme winds [32]. One of the 
final purposes of this European Project is to develop a 
statistical downscaling model (ANPAF: ANalog PAttern 
Finder) for diagnosing large-scale atmospheric circula- 
tion patterns and subsequently estimating extreme wind 
probabilities. In the present paper, from an atmospheric 
circulation pattern set obtained by multivariate method- 
ology [18,19,33,34] applied to a large-scale atmospheric 
circulation field, estimations of wind fields, particularly 
extreme winds, are obtained by means of the analogs 
methodology. 

The study is organized as follows. In Section 2, data 
used in the study are described. In Section 3, the connec- 
tions between wind speeds and large-scale atmospheric 
patterns are shown, presenting the relationships between 
large-scale atmospheric patterns and wind speed patterns 
statistically obtained. Moreover, the interactions between  
observational winds and large-scale atmospheric circula- 

tion statistical modes are provided and analyzed. Section 
4 is devoted to analyze the analog results for both the 
large-scale atmospheric field and the Spanish mean wind 
speed and wind gust, in terms of some deterministic and 
probabilistic tools. The main conclusions are drawn in 
Section 5. 

2. Data 

In order to analyze the relationships between wind 
speeds and large-scale atmospheric fields and to extract 
information about extreme situations it is very important 
to select the appropriate datasets. In this work, in order to 
characterize the atmospheric circulation, 1000 hPa daily 
geopotential heights at 12:00 UTC (Z1000) for 36 win- 
ters from 1971 to 2007 covering from 51.5˚W to 15.5˚E 
and 20˚ to 60˚N have been used. Z1000 data are a prod- 
uct of the ERA40 Reanalysis [35]. Concerning the wind 
speed, firstly daily mean wind speed (MWS) data for 21 
stations distributed over Spain (Figure 1) during the 
winter (D-J-F) season from 1970 to 2002 have been con- 
sidered. These wind data come from in-situ measure- 
ments of the station network of the Spanish Meteoro- 
logical Service (Agencia Estatal de Meteorología, 
AEMET). In order to analyze the relationships between 
wind speeds and large-scale atmospheric fields and to 
extract information about extreme situations it is very 
important to select the appropriate datasets. In this work, 
in order to characterize the atmospheric circulation, 1000 
hPa daily geopotential heights at 12:00 UTC (Z1000) for 
36 winters from 1971 to 2007 covering from 51.5˚W to 
15.5˚E and 20˚ to 60˚N have been used. Z1000 data are a 
product of the ERA40 Reanalysis [35]. Concerning the 
wind speed, firstly daily mean wind speed (MWS) data 
for 21 stations distributed over Spain (Figure 1) during 
the winter (D-J-F) season from 1970 to 2002 have been 
considered. These wind data come from in-situ meas- 
urements of the station network of the Spanish Meteoro- 
logical Service (Agencia Estatal de Meteorología, AEM- 
ET). 

On the other hand, some techniques for estimating and 
forecasting wind speeds are reviewed, with special em- 
phasis in extreme winds. To do this wind speed and wind 
gust estimations in Spain, with special emphasis in ex- 
treme values, are obtained using the analog methodology 
applied to the Z1000 data base. To do this, a additional 
data set is considered, the daily wind gust (WGU) data 
over Spain. The WGU data used in this paper consist of 
73 time series of daily gusts in Spain (Figure 1). Taking 
into account the observational data quality and the 
methodology employed in this contribution, in this part 
of study described in Section 4, the three datasets finally 
cover the common period from 1971 to 2002. 
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Figure 1. The Iberian Peninsula with its orography detailed with the mean wind speed stations in red crosses and the wind 
gust stations in black crosses. 
 
3. Extreme Wind Speeds-Large Scale 

Atmospheric Patterns Connections 

3.1. Large-Scale Atmospheric Patterns—Wind 
Speed Statistical Mode Relationships 

A Principal Component Analysis (PCA) is applied to the 
MWS and Z1000 fields in order to know its general be- 
haviour and to extract the most significant patterns from 
the original data [36]. However beyond mere data com- 
pression, a PCA is a very useful tool for exploring large 
multivariate data sets because of its potential for yielding 
substantial insights into both the spatial and temporal 
variations of the analysed fields. This methodology ap- 
plied to spatial data enables patterns to be identified that 
can be attributed to specific physical processes by statis- 
tical assessment. The new uncorrelated variables are 
called principal components (PCs) and consist of linear 
combinations of the original variables derived from the 
diagonalization of the covariance/correlation matrix. The 
coefficients of the linear combinations represent the 
weight of the original variables in the PCs and they are 
named loadings or PC patterns. The PCs indicate modes 
of variation of the original field and are numbered ac- 
cording with their related variance. Thus, the first PC is 
the linear combination with the maximum possible vari- 
ance; the second one is the linear combination with the 
maximum possible variance which is uncorrelated with 
the first PC and so on. The projection of the original se- 
ries onto each eigenvector gives as result the time-de- 
pendence coefficient named scores or PC time series. In 
our case, the PCA was applied to the correlation matrices 
of both data sets, the MWS and Z1000 fields, being a set 
of eigenvalues and eigenvectors produced for each data 
set. Generally, the most important (the first ones) eigen- 

vectors tend to describe regions with largest fluctuations. 
Thus, most relevant information from the data can be 
represented using fewer numbers of the principal com- 
ponents and a much smaller data set. Five leading modes 
for both datasets have been selected (not all shown). 
They account for more than 66% and 77% of the total 
variability for MWS and Z1000, respectively. 

For reasons of brevity only the first mode is shown. In 
Figure 2(a), the eigenvector or spatial pattern of the re- 
tained MWS PCs is shown which helps highlighting di- 
verse areas of different wind behaviour over Spain. The 
leading wind PC pattern (Figure 2(a)) accounts for the 
most important percentage of variance in the original 
data (37.9%). In Figure 2(a) the spatial pattern shows 
homogeneous wind behaviour in inner Iberia, and also 
underlines the area to the North Iberian Plateau with high 
correlation values. This conduct in the wind field could 
be related to the predominant westerly circulation regime 
(Poniente) in the Iberian Peninsula. The time variability 
of the spatial pattern above described is depicted show- 
ing the evolution of its PC time series obtained by ap- 
plying the PCA over the MWS data in wintertime (Fig- 
ure 2(b)). Significant trends are not found after applying 
a Mann-Kendall test and a spectral analysis of the PC 
time series. As stated previously, the first spatial pattern 
of Figure 2a showed homogeneous wind pattern over 
Iberia, underlying areas corresponding to the North Ibe- 
rian Plateau. This behaviour can also be represented in 
the corresponding time series (Figure 2(b)) with mostly 
positive and high score values over the selected period 
(1970-2002). 

However, the derived modes are statistically obtained. 
To analyze the extreme situations is needed to find con- 
nections between wind speed and the atmospheric field. 
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Figure 2. (a) Spatial patterns of the first PC of wind speed. The positive (negative) correlations are solid (dashed); (b) Time 
series of the first PC of the wind speed. Units are in standard deviations in the y-axis and the x-axis corresponds to the time 
period; (c) Illustration of picked up dates from the PC time series. Red rows indicate both the 5% high positive and negative 
scores used to build the composite maps. 
 

Thus, to examine the real atmospheric circulation fea- 
tures associated with the winter wind speed patterns a set 
of positive and negative composite plots (of Z1000 and 
MWS) was constructed from the dates associated with 5 
and 95 percentiles of the scores of the time series ob- 
tained of the PCA (Figure 2(c)). The composite maps 
represent configurations of the variable which are com- 
parable to observations. Composites are defined here as 
the averaged ensemble of sets of maps of the large-scale 
atmospheric variable and the wind speeds [37]. Physical 
distinctive features in the composite plots are achieved 
through obtaining additional information to the statistical 
meaning of the derived spatial modes. Here, the anomaly 
composites of large-scale atmospheric variables have 
been built for those weather configurations associated 
with the highest and lowest PC scores of the wind speed. 
This way, the composites represent the atmospheric state 
associated with particular extreme wind characteristics. 
Positive (negative) composites are constructed directly 
from a number of configurations with high (low) scores 
of the PC time series because they indicate situations in 
which the corresponding PC mode is dominant in its 
positive (negative) phase. The selected number of con- 
figurations represents 5% of the total number of cases in 

the dataset. 
Figure 3 shows the anomaly composites for Z1000 

displaying the positive and negative composite plots 
conditioned by the 5% highest and lowest PC scores of 
the MWS. Subsequently, mean maps of Z1000 anomalies 
are drawn up from these days, and highlight the mean 
atmospheric state conditioned by predominant oscillation 
of the selected wind speed PC mode. Additionally, maps 
of MWS, also corresponding to those days, are picked up 
to illustrate the behaviour of the wind speed field over 
Spain in such atmospheric situations. Thus, the Z1000 
anomaly composites associated to the first wind speed 
PC (Figures 3(a) and (b) first positive and negative 
composites) highlight two different mean atmospheric 
situations associated with the wind behaviour. Thus, in 
the first positive anomaly composite (Figure 3(a)), a 
strong gradient of Z1000 is observed over the Iberian 
Peninsula, underlying strong winds over Iberia as it can 
be noted in Figure 3(c) with wind speeds exceeding 8 
m·s−1 (30 km·h−1) in daily average. In contrast to this 
atmospheric situation, the first negative composite (Fig-
ure 3(b)) displays high anomaly pressure over Iberia 
with little gradient over it and a nucleus over northern 
France. This situation is indicative of low wind speed  
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Figure 3. Composite maps of the Z1000 (gpm) conditioned by the highest and lowest scores of the first wind speed PC: (a) 
positive composite; (b) negative composite. Composite maps of wind (m·s−1): (c) positive composite and (d) negative composite 
with shaded areas highlighting mean wind speed higher than 5 m·s−1. Crosses indicate the wind stations. 
 
over most of the area (Figure 3(d)). 

3.2. Wind Speed Cumulated Probability— 
Large-Scale Atmospheric Statistical Mode 
Relationships 

The relationships between MWS and large-scale atmos- 
pheric circulation are studied by means of wind speed 
cumulated probabilities associated with statistical modes 
of Z1000. To do this, the interactions between the PCs of 
Z1000 (only shown some results) and the observational 
local MWS are provided and analyzed. Thus, plots with 
cumulated probability values of wind speed associated 
with the highest and lowest scores of the Z1000 PC (not 
all shown) are described. These plots provide a fair idea 
about the observational wind frequency distributions 
conditioned by the different strong scores of the PC 
Z1000 time series. 

In order to have an idea about the wind speed cumu- 
lated frequencies these are derived associated to domi- 
nant positive and negative scores of the Z1000 PCs. To 
do this, higher and lower Z1000 scores were selected and 
subsequently their associated dates. Thus, at every station,  

the MWS is picked up for such days and depicted the 
associated cumulative probabilities from 0 to 100%. Here 
only the Madrid station results are shown (Figures 4(a) 
and (b)). Once the PCA has been applied to the Z1000 
field, the five leading Z1000 PCs, explaining 77% of the 
total variability, are retained. In general, it is remarkable 
in Figure 4(a) the quite high mean wind speeds associ- 
ated with the Z1000 PC3. The third most significant PC 
pattern obtained for the Z1000 field (Figure 5(a)) con- 
sists of a configuration of positive (negative) correlation 
values centered over the North Atlantic area (western 
Mediterranean). This distribution of isolines implies that 
northern (southern, in its negative phase) winds are 
mainly affecting Iberia. Such configuration is associated 
with dynamically coherent and characterized by intru- 
sions of cold (warm, in its negative phase) air masses 
over Iberia. This third Z1000 mode has the strongest in- 
fluence over the observational wind speeds in throughout 
Spain, with daily MWS of up to 10 m·s−1 in Madrid sta- 
tion (Figure 4(a)) and of almost 14 m·s−1 (50 km·h−1) in 
Melilla and Valencia (not shown) which reflects strong 
winds over such areas. 

Figures 4(c)-(d) display the results of the cumulative 
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(a)                                                     (b) 

    
(c)                                                      (d) 

Figure 4. Wind speed cumulated frequencies associated with the strong (a) positive and (b) negative scores of the Z1000 prin- 
cipal components for the Madrid station. Dominant PCs (in numbers) over stations obtained from the higher area values of 
the wind speed cumulated frequency curves for (c) positive and (d) negative PC scores. 
 
probabilities (in terms of the curve area values) for all 
used stations over Iberia. These maps show the leading 
PC in the wind speed pattern. Thus, for the high positive 
scores of the Z1000, higher values of the probability 
curve areas correspond to the third PC (Figure 4(c)). As 
noted above, this dominant mode showed a configuration 
characterized by intrusions of cold (warm, in its negative 
phase) air masses over Iberia. On the contrary, Figure 
4(d) shows the results of the dominant PCs associated 
with the largest area under the probability curves derived 
from the strong negative scores of the PCs. As a result, 
the second PC of Z1000 (Figure 5(b)) is the leading 
mode for the negative PC scores (see also Figure 4(b)). 
Such PC make it possible to underline the fact that when 
high positive correlation values are located over western 
Britain Isles and the negative ones do it over southern 
Atlantic Ocean, the “Spanish” wind speed principally 
tends to deploy a homogeneous arrangement except for 
some stations in the eastern Iberian Peninsula. It can be 
noted the nearly dominance of the PC5 in most of the 
Spanish Mediterranean coast stations. This PC5 (Figure 
5(c)) presents, in its positive phase, a spatial pattern 
similar to the second mode except for the center of nega- 

tive anomalies which is located in between two strong 
nuclei of positive ones. The isolines are longitudinally 
extended which embodies strong southern (northern, in 
its negative phase) air advection over Iberia. In its nega- 
tive phase, this situation resembles an omega blocking 
situation [38]. This persistent and particular configura- 
tion reflects a blocking pattern named “Omega block” 
with a meridionally-oriented high sandwiched in between 
two lows. At upper level, this kind of configuration can 
usually be characterized by a stationary ridge standing to 
the east of the Atlantic Ocean and by a main trough situ- 
ated over the western Mediterranean zone which pro- 
motes longitudinal incursions of maritime cold air which 
comes from high latitudes and flows into the Western 
Mediterranean area after rotating around a cut-off low 
nearby the Iberian Peninsula. In the region of the block- 
ing, the weather remains essentially unchanged, as any 
transient weather disturbances are forced to circumvent 
the block. Once established, major blocking situations 
tend to persist for at least a week and appear to represent 
some quasi-equilibrium state of the atmosphere. There- 
fore, the PC5 configuration presents an isoline-correlation 
gradient and shows changes in the isoline signs. Such 
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(a)                                                           (b) 

 
(c) 

Figure 5. Spatial patterns of the obtained modes corresponding to Z1000: (a) third PC; (b) second PC and (c) fifth PC. The 
positive (negative) correlations are solid (dashed). 
 
situation promotes advection of southern (northern) air 
masses over the Spanish Mediterranean coast. 

4. Extreme Wind Speed and Wind Gust 
Estimations 

In this section some techniques for estimating and fore- 
casting wind speeds will be reviewed, with special em- 
phasis in extreme winds. The improvement of meteoro- 
logical forecasts of wind has been progressing by means 
of dynamic limited area modeling or by ensemble predic- 
tion systems, among other methodologies [39,40]. How- 
ever, these methodologies bear high computational costs. 
In order to overcome this problem, the constructed ana- 
logue method in a framework of temporal prediction can 
be used [25,41]. 

The ANPAF downscaling analog model is used to ob- 
tain daily MWS and daily WGU over Spain [42]. The 
idea is based on the comparison between the field of an 
input variable and the other input variable to determine 
the greatest similarity between them. Here the Z1000 
data are used both as input or historical reference field 
with which to be compared. Because of the great amount  

in the freedom degrees of any large-scale atmospheric 
field it turns out to be necessary to use long datasets, 
meaning a disadvantage of the methodology. However, if 
a high number of freedom degrees are considered as as- 
sociated noise, then the inherent noise in the data can be 
reduced by a previous smoothing process. Thus, a PCA is 
previously applied to the Z1000 data base, the obtained 
PCs being the historical reference field. On the other 
hand, several distances based on Euclidean distance 
functions, have been defined and validated. The search of 
analogue patterns is based on finding a time that mini- 
mizes such distances in the PCA space. 

Following this procedure, the methodology based on 
analogies has been applied to the Z1000 field in order to 
find several analogues to a particular Z1000 input pattern 
taking into account the above described distances. The 
ANPAF method used here can be mainly illustrated in 
the diagram of Figure 6. In the Figure 6, an input field 
score of the Z1000 corresponding to a day to be analogued, 

ks


, is compared with the different scores (stk and tks ) of 
the several obtained PCs of the Z1000 field by using the 
distance functions (dt and t ) in order to find the most 
similar scores throughout the historic scores time record. 

d 
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Figure 6. Illustration of the ANPAF analog method. 
 
The procedure is crossvalidated by finding different ana- 
logues for a Z1000 input day and repeating the process 
for all the historic time record. Finally, a set of Z1000 
analogues is obtained with the distance t  (Pascual et 
al., 2012). Once the closest scores have been obtained 
throughout the time, their corresponding concomitant 
dates present associated wind and gust data that finally 
allow us that an estimated winds and gust can be ob- 
tained. The estimation can be made by using different 
criterions: a single analogue, average analogues, neural 
networks, …[29,43,44]. Here, the mean winds and gust 
obtained from the analog method have been estimated by 
using arithmetical means of several analogues. The tests 
cases have been analyzed by taking into account both 
deterministic and probabilistic tools to assess the accuracy 
and skill of the wind estimations. 

d 

From the ANPAF model similar atmospheric situa- 
tions were isolated and from them, a number of different 
wind fields (MWS and MGU) subsequently obtained and 
averaged to characterize and provide both estimated 
Spanish wind fields. In order to assess the accuracy and 
skill of the wind estimations these fields have been ana- 
lyzed by means of both deterministic and probabilistic 
tools. Deterministic results point to a reasonable method 
skillful in estimating the MWS and the WGU fields in 
Spain. Concerning some probabilistic tools, rank histo- 
grams, reliability curves and skill scores have been used 
assessing the model skill in estimating wind data. In or- 
der to give an idea about the WGU values in Spain, Fig- 
ure 7 displays the WGU values computed taking into 
account several thresholds corresponding with the values 
of the standard deviation, σ, of the original data. For val- 
ues exceeding 2σ, all stations showed higher wind speeds 
than 58 km·h−1, which corresponds to strong winds, 
reaching some stations values greater than 80 km·h−1 that 
correspond to very strong winds. 

Deterministic results are calculated for both wind vari-  

 
(a) 

 
(b) 

Figure 7. WGU values (m·s−1) for different thresholds: (a) σ 
= 1, (b) σ = 2. 
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ables (Table 1). Biases for MWS and WGU between the 
averaged wind obtained from the analog method and the 
observational wind fields present small values. Moreover, 
the absolute relative biases present values around 1.66% 
and 1.81% for WGU and MWS, respectively, indicating 
that the estimated analog wind reproduces pretty well the 
observed winds. The values point to significant relation- 
ships in which the input and the output data are strongly 
related. Therefore, the input in the model (Z1000) in- 
volves enough information in the output (Z1000) fields, 
and consequently in the wind. Although the rmse values 
are in general small, the results of MWS and WGU are 
not comparable between them because of the different 
range of variability of each variable. On the other hand, 
the moderately high values of correlation highlight the 
relationships between the input and the output fields, 
thereby emphasizing a degree of skill of the method in 
estimating the MWS and the WGU at Spain. 

From the deterministic point of view, different statis- 
tical tools have been used to compare the results of the 
MWS and the WGU. On the other hand, the probabilistic 
performance of wind estimations can be evaluated fol- 
lowing the difference between a forecast probability dis- 
tribution and the observed probability distribution. Thus, 
several probabilistic verification results are also shown in 
addition to the deterministic verification: rank histograms, 
reliability curves and skill scores have been used assess- 
ing the model skill in estimating wind data. 

For the MWS rank histogram (not shown) large spread 
has been observed, which allows to highlight the pres- 
ence of several observations located between the ex-
tremes of the analog estimations. The MWS Talagrand 
also presents an asymmetric shape, pointing out some 
underprediction of the MWS values. The WGU rank 
histogram has shown flatter distribution than the MSW 
one, illustrating a general pretty better behaviour. The 
reliability curves have been computed taking into ac- 
count several thresholds corresponding with the values of 
the standard deviation, σ, of the original data, both MWS 
and WGU. For all the thresholds (Figure 8) the reliabil- 
ity curves deviate in general from the best line, the model 
forecast probability being smaller than observed fre- 
quency. This situation indicates an underestimation of 
the observational wind frequencies in both variables. 

Again, the WGU performance is quite better than the 
MWS one. It is worth noting the resemblance of the un- 
 
Table 1. Spatial averaged bias (m·s−1), rmse (m·s−1) and cor- 
relation obtained from the estimated wind versus the ob- 
servational data. 

 bias rmse r 

MWS −0.10 1.43 0.60 

WGU −0.20 3.01 0.71 

derestimation of the probabilistic values in all reliability 
diagrams for all thresholds. It points out that the ANPAF 
model reasonably matches the observational and forecast 
data. 

Additionally, and in accordance with Brier [45], the 
Brier Score (BS) and the Brier Skill Score (BSS) are here 
used and derived with respect to the climatological 
probability for different thresholds. The BS shows that 
the goodness of the model performance as measured by 
this score is very similar to the different thresholds. The 
BSS proves that the model generates forecasts with better 
skill than the climatology. The lower the Brier Score the 
better forecast; so, as much as the BSS tends to the unity, 
better is the model skill. The BSS is typically defined as 
the relative probability score compared with the prob- 
ability score of a reference forecast. In order to assess the 
accuracy and skill of all obtained wind estimations from 
the analogue model, the BSS has been also derived 
herein for values of the standard deviation of the original 
data, both MWS and WGU. Thus, not only the model 
mean skill is analyzed, but the estimated tails are also 
evaluated. The BS of reference, BSref, used herein corre- 
sponds to the climatological value. The BSref has been 
obtained using the observational climatological frequen- 
cies taking into account such thresholds. The areal aver- 
aged BSSs for all selected thresholds show values greater 
than zero and indicate that the forecasts improve the 
model. The BSSs for several σs show an asymmetric 
shape (Figure 9), the best results being associated with 
the value of σ= 0.5 in both cases, although the WGU 
result is better than the MWS one. The analogs obtained 
from the ANPAF model shows the best results for σ val- 
ues ranging between 0.5 and 1.5. For extreme values, 
associated with the BSS ≈ 0.12 for σ ≥ 2, a gust range of 
16 - 26 m·s−1 is recorded, with very strong winds spread-
ing over the Ebro Valley and the Gibraltar Strait (≈93 
km·h−1). It is worth noting that MWS and WGU extreme 
values show similar behaviour. 

The BSSs for MWS and WGU are also derived for 
mean values (Figure 10) and for σ = 0.5 (not shown) in 
each Spanish station. The BSS spatial distribution is 
shown more clearly in the WGU case than in the MWS 
one for both thresholds, since the WGU database in- 
cludes more stations than the MWS dataset. The MWS 
BSS results (Figure 10(a)) are again worse than the cor- 
responding WGU ones (Figure 10(b)) in the whole do- 
main. For both thresholds, the BSS spatial distribution 
presents the best values (≈0.25) over Northern Iberia 
(Figure 10(b)), while the rest of stations show small 
values. It means that the atmospheric situations coming 
from the Atlantic Ocean are better to predict mean wind 
and gusts in the Northern Peninsula. It is worth also to 
note high WGU BSS values located over the Gibraltar 
Strait and along the Ebro Valley zones, although smaller 
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(a)                                                       (b) 

 
(c)                                                        (d) 

 
(e)                                                           (f) 

Figure 8. Reliability diagrams of MWS (red dashed line) and WGU (blue continuous line) derived for different thresholds: (a) 
σ = 0; (b) σ = 0.5; (c) σ = 1.0; (d) σ = 1.5; (e) σ = 2.0 and (f) σ = 2.5. 
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Figure 9. Illustration of BSS values for different values of σ: 
red bars (MWS) and blue bars (WGU). 
 

 
(a)                           (b) 

Figure 10. Spatial distributions of BSS for σ = 0 of: (a) 
MWS and (b) WGU stations shown in Figure 1. 
 
ones in the MWS case. On the contrary, poorer BSS es- 
timations and thereby poorer prognosis are expected to 
be mainly located on northern Catalonia for both σ = 0.5 
values and for the mean values. 

5. Conclusions 

The relationships between observed wind speeds in Spain 
and surface circulation patterns have been examined with 
special emphasis in extreme winds. The analysis, based 
on composite maps built from extreme data of PC modes 
of the large-scale atmospheric field, has shown different 
mean atmospheric situations associated with wind pat- 
terns and with strong gradients of Z1000 are related to 
moderate to strong wind in Spain. The analyses have 
revealed a strong influence of the pressure centers over 
the Atlantic Ocean in the Spanish wind speed field and 
also allowed to identify a number of atmospheric circula- 
tion patterns that govern the wind speed variability at 
Spain. The PCA and the associated analyses based on 
composites and wind speed cumulated probabilities to- 
gether with their under curve area values have shown that 
the atmospheric dynamics in the North Atlantic is re- 
sponsible for much of the Spanish wind speed variability. 

The variation of intensity and/or position of pressure 
centers, within a climate change scenario, could possibly 
change the relative frequency of the large-scale atmos- 
pheric patterns or form new ones, changing the present 
wind regime. 

Additionally, it has been revised the process to esti- 
mate wind fields based on finding analogs. The ANPAF 
model is used to find similar atmospheric patterns, and 
from them to obtain wind fields. In order to assess the 
accuracy and skill of the wind estimations these fields 
have been analyzed by means of both deterministic and 
probabilistic tools. The significantly close relationships 
between the input and the output data, and hence with the 
wind are shown by bias and correlation estimators. Reli- 
ability curves indicate some underestimation in the 
model results of the observational wind frequencies in 
both variables. The WGU behaviour is quite better than 
the MWS one, in general. It is worth noting the resem- 
blance of the underestimation of the probabilistic values 
in all reliability diagrams for all thresholds except for the 
small probabilistic values for σ ≥ 1 (gusts greater than 80 
km·h−1, which corresponds to very strong winds). For ex- 
treme wind values MWS and WGU show similar behav- 
iour, and gusts of up to 26 m·s−1 are recorded corre- 
sponding to BSS  0.12 for σ ≥ 2. On the other hand, the 
BSS spatial distribution presents the best values (≈0.25) 
over the northern area, emphasizing that the atmospheric 
situations coming from the Atlantic Ocean are better to 
predict mean wind and gusts in the Northern Peninsula. It 
may be concluded that the process to find analogs and 
the subsequent application of the ANPAF analog model 
can be considered as a good technique to find similar 
atmospheric patterns, and from them to estimate wind 
fields. 
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