

# **Pseudosymmetric Features and Nonlinear Optical Properties of Potassium Titanyl Phosphate Crystals**

Anastasia P. Gazhulina<sup>\*</sup>, Mikhail O. Marychev

Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia Email: \*asyagazhulina@yandex.ru

Received June 20, 2013; revised July 22, 2013; accepted August 16, 2013

Copyright © 2013 Anastasia P. Gazhulina, Mikhail O. Marychev. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

# ABSTRACT

A number of publications containing structural data, characteristics of nonlinear optical properties of pure and doped crystals of potassium titanyl phosphate (KTP) family have been reviewed to analyze the structural and symmetry conditionality of nonlinear optical properties of these crystals. The pseudosymmetric features of KTP-type crystals with respect to inversion are investigated. Specifically, pseudoinversion distribution maps are calculated; pseudoinversion extrema and coordinates of pseudoinversion centres are found; and the distributions of pure and doped KTP-type structures and their individual atomic sublattices over the degree of pseudoinversion are analyzed. A correlation between the characteristics of nonlinear optical properties of a number of crystals belonging to the KTP family and the degree of pseudoinversion of their atomic structures is demonstrated.

Keywords: Potassium Titanyl Phosphate Family; Pseudosymmetry; Nonlinear Optical Properties

# **1. Introduction**

Study of the relationship of structural and symmetric features of crystals with their physical properties is an urgent problem of condensed-matter physics. Point symmetry determines the set of possible physical properties of crystals, primarily, in correspondence with the Neumann principle. The symmetric features of atomic structures of crystals can be characterized more completely taking into account the phenomenon of pseudosymmetry, which makes it possible to establish finer relationships of the structure-property type. Fedorov pseudosymmetry of crystals [1] is the phenomenon of invariance of a considerable part of the crystal atomic structure (part of electron density and (or) subsystem of atomic nuclei) with respect to some group of symmetry operations compatible with the lattice (with respect to some supergroup of the symmetry space group of crystal).

The pseudosymmetry of a specific structure can quantitatively be characterized by the degree of invariance (degree of pseudosymmetry) of its total electron density  $\rho(\mathbf{r})$  with respect to some isometric operation  $\hat{g}$  [1,2]:

\*Corresponding author.

$$\eta_{g}\left[\rho(\mathbf{r})\right] = \frac{\int_{V} \rho(\mathbf{r})\rho(\hat{g}\mathbf{r})dV}{\int_{V} \rho^{2}(\mathbf{r})dV}.$$
(1)

Integration in Equation (1) is performed over the volume V of crystal unit cell. If  $\hat{g}$  is not a symmetry operation for the function  $\rho(\mathbf{r})$ , the degree of pseudosymmetry  $\eta_g \left[ \rho(\mathbf{r}) \right] < 1$ ; however, if  $\rho(\mathbf{r})$  is symmetric with respect to the operation  $\hat{g}$ ,  $\eta_g \left[ \rho(\mathbf{r}) \right]$  reaches a maximally possible value: unity.

The second-order susceptibility of crystal determines the intensity of generation of the second optical harmonic and is a structure- and symmetry-sensitive property of crystal. For centrosymmetric crystals, the second-order susceptibility should be zero. One might suggest that reduction of symmetry will lead to some dependence of the second-order susceptibility of crystal on the degree of invariance of crystal structure with respect to inversion.

# 2. Nonlinear Optical Properties of Potassium Titanyl Phosphate Crystals: A Review

The family of crystals with potassium titanyl phosphate (KTP) structure includes more than 100 compounds [3,4]. Their general formula can be written as  $MM'OXO_4$ , where M = K, Rb, Na, Cs, Tl, NH<sub>4</sub>; M' = Ti, Sn, Sb, Zr,

Ge, Al, Cr, Fe, V, Nb, Ta, Ga; X = P, As, Si, Ge. Interoctahedral (*M*'-O-*M*') oxygen atoms can be replaced with OH- and F-; the resulting compounds with the general formula *MM*'(F,OH)*X*O4 also belong to the KTP family. The structure of KTP crystals is described by the space group *Pna2*<sub>1</sub>.

We considered 118 crystals belonging to the KTP family, including 29 pure and 89 doped ones. Information about the nonlinear optical characteristics of 108 crystals was found in the corresponding publications. All crystals under consideration were separated into three groups with respect to the available data on their structure and nonlinear optical properties; the relationship between these groups is clearly shown in **Figure 1**.

The characteristics of nonlinear optical properties of KTP crystals are listed in **Table 1**, where the parameter  $I/I_{\text{reference}}$  is the ratio of second harmonic intensities from a sample under study studied and a powder sample of reference crystal.

The characteristics of nonlinear optical properties were determined in [8,10,11,24] by the Kurtz-Perry method [26] and in [3,5-7,12,14,19,22] by the method described in [27]. The components of the second-order susceptibility tensor were found in [16,17,20] using the Maker fringe technique [28,29].

With allowance for the results of our analysis of the corresponding publications, we can select crystals whose characteristics of nonlinear optical properties are comparable with those for KTiOPO<sub>4</sub> crystal (K<sub>0.5</sub>Rb<sub>0.5</sub>TiOPO<sub>4</sub>, RTA,  $K_{0.966}Ti_{0.966}Nb_{0.034}OPO_4$ ,  $K_{0.921}Ti_{0.921}Nb_{0.079}OPO_4$ , RTP, K<sub>0</sub> 99 Ti<sub>0</sub> 99 Sb<sub>0</sub> 01 OPO<sub>4</sub>, KTi<sub>0</sub> 96 Zr<sub>0</sub> 04 OPO<sub>4</sub>, TTP, KTi<sub>0.9975</sub>V<sub>0.0025</sub>OPO<sub>4</sub>, K<sub>0.5</sub>Ti<sub>0.5</sub>Nb<sub>0.5</sub>OPO<sub>4</sub>, CTA, K<sub>0.5</sub>Ta<sub>0.5</sub>Ti<sub>0.5</sub>OPO<sub>4</sub>, KTiO(PO<sub>4</sub>)<sub>0.5</sub>(AsO<sub>4</sub>)<sub>0.5</sub>, TTA, KTi<sub>0.7</sub>Nb<sub>0.3</sub>OP<sub>0.7</sub>Si<sub>0.3</sub>O<sub>4</sub>, KTi<sub>0.65</sub>Nb<sub>0.35</sub>OP<sub>0.65</sub>Si<sub>0.35</sub>O<sub>4</sub>, KTi<sub>0.6</sub>Nb<sub>0.4</sub>OP<sub>0.6</sub>Si<sub>0.4</sub>O<sub>4</sub>, RbTi<sub>0.98</sub>Nb<sub>0.02</sub>OPO<sub>4</sub>, Na<sub>0.87</sub>K<sub>0.13</sub>TiOAsO<sub>4</sub>, KTi<sub>0.7</sub>Nb<sub>0.3</sub>OAs<sub>0.7</sub>Si<sub>0.3</sub>O<sub>4</sub>,  $KTi_{0.6}Nb_{0.4}OAs_{0.6}Si_{0.4}O_4 RbTi_{0.927}Nb_{0.056}Er_{0.017}OPO_4$ ) and crystals with characteristics of nonlinear optical properties exceeding those of KTiOPO<sub>4</sub> crystal (KTA, K<sub>0.98</sub>Ti<sub>0.98</sub>Nb<sub>0.02</sub>OPO<sub>4</sub>, K<sub>0.96</sub>Ti<sub>0.96</sub>Nb<sub>0.04</sub>OPO<sub>4</sub>, K<sub>0.97</sub>Ti<sub>0.97</sub>Sb<sub>0.07</sub>OPO<sub>4</sub>, K<sub>0.88</sub>Ti<sub>0.98</sub>Zr<sub>0.06</sub>OP<sub>0.99</sub>O<sub>4</sub>, K<sub>0.88</sub>Ti<sub>0.93</sub>Zr<sub>0.11</sub>OP<sub>0.99</sub>O<sub>4</sub>, K<sub>0.97</sub>Ti<sub>0.99</sub>OAs<sub>0.53</sub>P<sub>0.49</sub>O<sub>4</sub>, KTi<sub>0.9</sub>Nb<sub>0.1</sub>OP<sub>0.9</sub>Si<sub>0.1</sub>O<sub>4</sub>, K<sub>0.80</sub>Ti<sub>0.26</sub>Zr<sub>0.78</sub>OAs<sub>1.01</sub>O<sub>4</sub>, KTi<sub>0.9</sub>Nb<sub>0.1</sub>OAs<sub>0.9</sub>Si<sub>0.1</sub>O<sub>4</sub>, K<sub>0.94</sub>Nb<sub>0.12</sub>Ti<sub>0.91</sub>OAs<sub>0.89</sub>Ge<sub>0.09</sub>O<sub>4</sub>, KTi<sub>0.8</sub>Nb<sub>0.2</sub>OAs<sub>0.8</sub>Si<sub>0.2</sub>O<sub>4</sub>, K<sub>1.02</sub>Nb<sub>0.25</sub>Ti<sub>0.76</sub>OAs<sub>0.75</sub>Ge<sub>0.23</sub>O<sub>4</sub>, K<sub>0.68</sub>Rb<sub>0.32</sub>TiOPO<sub>4</sub>, Cs<sub>0.5</sub>K<sub>0.5</sub>TiOAsO<sub>4</sub>, KTi<sub>0.97</sub>Zr<sub>0.03</sub>OPO<sub>4</sub>, K<sub>0.54</sub>Li<sub>0.46</sub>TiOAsO<sub>4</sub>, K<sub>1.03</sub>Nb<sub>0.52</sub>Ti<sub>0.48</sub>OAs<sub>0.48</sub>Ge<sub>0.51</sub>O<sub>4</sub>, Rb<sub>0.855</sub>Ti<sub>0.955</sub>Nb<sub>0.045</sub>OPO<sub>4</sub>, KNb<sub>0.52</sub>Ti<sub>0.48</sub>OAs<sub>0.48</sub>Ge<sub>0.51</sub>O<sub>4</sub>, RbTi<sub>0.96</sub>Nb<sub>0.04</sub>OPO<sub>4</sub>, K<sub>0.98</sub>Nb<sub>0.46</sub>Ti<sub>0.56</sub>OAs<sub>0.58</sub>Ge<sub>0.39</sub>O<sub>4</sub>).

There are data in the literature on KTiOPO<sub>4</sub> crystals doped with Nb [30-36], Ge [37], Sn [33,38-40], Zr [41-43], Sb [35,44,45], Ta [35], Fe [46], Hf [47], and Zn [48] and RTP crystals doped with Cs [49] and Zr [50,51]. It was indicated in [39] that an increase in the Sn content

leads to a dramatic decrease in the output second-harmonic intensity to zero. The intensity of second-harmonic generation (SHG) for KTi<sub>1-x</sub>Zr<sub>x</sub>OPO<sub>4</sub> crystals reaches a maximum at x = 0.28, where it is more than doubled in comparison with the  $KTiOPO_4$  sample [41]. The SHG intensity increases with an increase in the zirconium content in RbTi<sub>1-x</sub>Zr<sub>x</sub>OPO<sub>4</sub> crystals; at x = 0.034, it rises by 40% [50]. The SHG intensity increases by approximately 35% in comparison with pure KTiOPO<sub>4</sub> samples after replacement of 6% titanium atoms with hafnium [47]. RbTi<sub>1-x</sub>Ta<sub>x</sub>OPO<sub>4</sub> and RbTi<sub>1-x</sub>Nb<sub>x</sub>OPO<sub>4</sub> crystals were investigated in [52], as well as Yb-doped RbTi<sub>1-x</sub>Ta<sub>x</sub>OPO<sub>4</sub> crystals and RbTi<sub>1-x</sub>Nb<sub>x</sub>OPO<sub>4</sub> crystals doped with Yb, Ln and Er. KTiOPO<sub>4</sub> crystals doped with transition metals and RTA crystals doped with lanthanides were studied in [53]. A number of compounds (RbTi<sub>0.98</sub>Er<sub>0.01</sub>Nb<sub>0.01</sub>OAsO<sub>4</sub>, RbTi<sub>0.96</sub>Er<sub>0.02</sub>Nb<sub>0.02</sub>OAsO<sub>4</sub>, and KTi<sub>0.98</sub>Cr<sub>0.02</sub>O<sub>0.98</sub>F<sub>0.02</sub>PO<sub>4</sub>, KTi<sub>0.99</sub>Fe<sub>0.01</sub>O<sub>0.99</sub>F<sub>0.01</sub>PO<sub>4</sub>  $RbTi_{0.98}Er_{0.02}O(AsO_4)_{0.98}(SO_4)_{0.02})$  exhibited an increase in the SHG intensity in comparison with RTA and KTP crystals, respectively.

# 3. Analysis of the Degree of Invariance of the Structure of KTP Crystals with Respect to Inversion

The complete characteristic of pseudosymmetry of any crystal under study with respect to inversion is a threedimensional distribution map of the degree of structural invariance (electron density) with respect to this operation (hereinafter, pseudoinversion), calculated for different positions of inversion points within their unit cell. These maps were obtained with scanning steps over the unit-cell axes a, b, and c chosen to be 0.05 of the cor responding unit-cell parameters. For 118 crystals (**Figure 1**) with known structure, we calculated three-dimensional pseudoinversion maps using Equation (1). The calculations were performed using the computer program and technique described in [54]. Within this approach the electron density function is expanded in a Fourier series in structural amplitudes ([1], see Formulas (5) and (6)).

**Figure 2** presents typical examples of cross sections of three-dimensional distribution maps of the degree of pseudoinversion for the structures of KTiOPO<sub>4</sub>, KSnOPO<sub>4</sub>, KTiOAsO<sub>4</sub>, Cs<sub>0.625</sub>K<sub>0.375</sub>TiOAsO<sub>4</sub> crystals (cuts by the plane z = 0.25). For the structures presented in **Figure 2**, the origin of coordinates is chosen on the two fold screw axis, and the coordinates of pseudoinversion peaks on the x and y axes are 0.25. We chose cuts by the plane z = 0.25 in **Figure 2** because the z coordinate of the pseudoinversion peaks for the structures of the aforementioned crystals is also 0.25.

This situation is typical of most structures under study; in KTP crystals is accompanied by a phase transition to the centrosymmetric space group *Pnan*. Indeed, having



### Figure 1. Groups of KTP crystals under consideration.

| N⁰ | Crystal                                                                 | Characteristics of nonlinear optical properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | References |
|----|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|    |                                                                         | 6000 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [3,5]      |
|    |                                                                         | 910 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [6,7]      |
|    |                                                                         | $4.24 \pm 0.17$ ( $\chi_{2\omega}$ , relative to KDP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [8]        |
| 1  | KTiOPO₄ (KTP)                                                           | $d_{15} (0.852 \ \mu\text{m}) = 1.9 \pm 0.1 \ \text{pm/V}$<br>$d_{24} (0.852 \ \mu\text{m}) = 3.9 \pm 0.2 \ \text{pm/V}$<br>$d_{33} (0.852 \ \mu\text{m}) = 16.6 \pm 0.8 \ \text{pm/V}$<br>$d_{15} (1.064 \ \mu\text{m}) = 1.9 \pm 0.1 \ \text{pm/V}$<br>$d_{24} (1.064 \ \mu\text{m}) = 3.7 \pm 0.2 \ \text{pm/V}$<br>$d_{31} (1.064 \ \mu\text{m}) = 3.7 \pm 0.2 \ \text{pm/V}$<br>$d_{32} (1.064 \ \mu\text{m}) = 3.7 \pm 0.2 \ \text{pm/V}$<br>$d_{33} (1.064 \ \mu\text{m}) = 1.4 \pm 0.1 \ \text{pm/V}$<br>$d_{15} (1.313 \ \mu\text{m}) = 1.4 \pm 0.1 \ \text{pm/V}$<br>$d_{33} (1.313 \ \mu\text{m}) = 2.6 \pm 0.1 \ \text{pm/V}$ | [9]        |
|    |                                                                         | 6000 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [3,5]      |
|    |                                                                         | 0.73 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [10]       |
| 2  | RbTiOPO <sub>4</sub> (RTP), rubidium titanyl phosphate                  | 0.7 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [11]       |
|    |                                                                         | $d_{31} (1.064 \ \mu\text{m}) = 3.3 \pm 0.6 \ \text{pm/V}$<br>$d_{32} (1.064 \ \mu\text{m}) = 4.1 \pm 0.8 \ \text{pm/V}$<br>$d_{33} (1.064 \ \mu\text{m}) = 17.1 \pm 3.4 \ \text{pm/V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [9]        |
| 3  | TITiOPO <sub>4</sub> (TTP), thallium titanyl phosphate                  | 6000 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [3,5]      |
| 4  | NaTiOPO <sub>4</sub>                                                    | 160 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [3]        |
| 5  | AgTiOPO <sub>4</sub>                                                    | 5 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [3,5,7]    |
| 6  | (NH <sub>4</sub> )TiOPO <sub>4</sub> (NTP)*, ammonium titanyl phosphate | 2400 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [5,12]     |
| 7  | $KSnOPO_4$                                                              | 0.50 (I/I <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [13]       |
| 8  | KGeOPO <sub>4</sub>                                                     | 3.3 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 9  | NaGeOPO <sub>4</sub>                                                    | 4 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [3,5]      |
| 10 | $KVOPO_4$                                                               | opaque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|    |                                                                         | 6000 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [3]        |
|    |                                                                         | 990 (I/I <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [6,7]      |
|    |                                                                         | $1.09 (I/I_{\rm KTP})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [14]       |
|    |                                                                         | $1.01 (I/I_{\rm KTP})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [15]       |
| 11 | KTiOAsO4 (KTA), potassium titanyl arsenate                              | $d_{15} (1.064 \ \mu\text{m}) = 1.3 \times d_{15}(\text{KTP})$<br>$d_{24} (1.064 \ \mu\text{m}) = (1.8 \pm 0.1) \times d_{15}(\text{KTA})$<br>$d_{31} (1.064 \ \mu\text{m}) = 2.8 \pm 0.3 \ \text{pm/V}$<br>$d_{31} (1.064 \ \mu\text{m}) = (1.3 \pm 0.1) \times d_{31}(\text{KTP})$<br>$d_{32} (1.064 \ \mu\text{m}) = 4.2 \pm 0.4 \ \text{pm/V}$<br>$d_{32} (1.064 \ \mu\text{m}) = 16.2 \pm 1.0 \ \text{pm/V}$<br>$d_{33} (1.064 \ \mu\text{m}) = 1.2 \times d_{15}(\text{KTP})$<br>$d_{24} (1.32 \ \mu\text{m}) = 1.7 \times d_{15}(\text{KTP})$                                                                                      | [9,16]     |

### Continued

|    |                                                                       | 6000 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                          | [3]     |
|----|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 12 | RbTiOAsO4 ( <b>RTA</b> ), rubidium titanyl arsenate                   | $d_{31} (1.064 \ \mu\text{m}) = 2.3 \pm 0.5 \ \text{pm/V}$<br>$d_{31} (1.064 \ \mu\text{m}) = 3.55 \times d_{36} (\text{KDP})$<br>$d_{32} (1.064 \ \mu\text{m}) = 3.8 \pm 0.7 \ \text{pm/V}$<br>$d_{32} (1.064 \ \mu\text{m}) = 11.71 \times d_{36} (\text{KDP})$<br>$d_{33} (1.064 \ \mu\text{m}) = 15.8 \pm 1.6 \ \text{pm/V}$<br>$d_{33} (1.064 \ \mu\text{m}) = 31.05 \times d_{36} (\text{KDP})$ | [9]     |
| 13 | CsTiOAsO <sub>4</sub> (CTA), cesium titanyl arsenate                  | $d_{31} (1.064 \ \mu\text{m}) = 2.1 \pm 0.4 \ \text{pm/V}$<br>$d_{32} (1.064 \ \mu\text{m}) = 3.4 \pm 0.7 \ \text{pm/V}$<br>$d_{33} (1.064 \ \mu\text{m}) = 18.1 \pm 1.8 \ \text{pm/V}$<br>$d_{31} (1.32 \ \mu\text{m}) = 1.1 \pm 0.1 \ \text{pm/V}$<br>$d_{32} (1.32 \ \mu\text{m}) = 1.7 \pm 0.6 \ \text{pm/V}$                                                                                     | [9,17]  |
| 14 | TITiOAsO <sub>4</sub> (TTA), thallium titanyl arsenate                | 6000 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                          |         |
| 15 | NH <sub>4</sub> TiOAsO <sub>4</sub>                                   | 100 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           |         |
| 16 | KGeOAsO <sub>4</sub>                                                  | 0.03 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                          |         |
| 17 | KSnOAsO4                                                              | 0.53 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                          | [3]     |
| 18 | RbZrOAsO <sub>4</sub>                                                 | 3 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                             |         |
| 19 | CsZrOAsO <sub>4</sub>                                                 | 2 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                             |         |
| 20 | NH <sub>4</sub> ZrOAsO <sub>4</sub>                                   | $1 (I/I_{SiO2})$                                                                                                                                                                                                                                                                                                                                                                                      |         |
| 21 | $KSbOSiO_4$                                                           | 0.5 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           | [18]    |
| 22 | NaSbOSiO <sub>4</sub>                                                 | 0.4 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           |         |
| 23 | $AgSbOSiO_4$                                                          | 1.1 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           | [18]    |
| 24 | KSbOGeO <sub>4</sub>                                                  | 0.95 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                          |         |
| 25 | NaSbOGeO <sub>4</sub>                                                 | 0.8 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           |         |
| 26 | AgSbOGeO <sub>4</sub>                                                 | 1.5 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           |         |
| 27 | KFePO <sub>4</sub> F                                                  | 2.66 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                          | [3,5]   |
| 28 | KGaAsO <sub>4</sub> F                                                 | 0.02 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                          | [3]     |
| 29 | KFeAsO <sub>4</sub> F                                                 | 1 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                             |         |
| 30 | K <sub>2</sub> FeNb(PO <sub>5</sub> ) <sub>2</sub>                    | 1 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                             | [5]     |
| 31 | $RbScFAsO_4$                                                          | 0.5 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           | [19]    |
| 32 | CsScFAsO <sub>4</sub>                                                 | 1.2 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           |         |
| 33 | Ag K TiOPO                                                            | 130 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           | [3]     |
| 55 | $Ag_{0.5}R_{0.5}HOTO_4$                                               | 135 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           | [7]     |
| 34 | Ag. K. TiOPO                                                          | 7 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                             | [3,6,7] |
| 54 | Ag0.85 A0.15 HOT 04                                                   | 0.01 ( <i>I</i> / <i>I</i> <sub>KTP</sub> ) ***                                                                                                                                                                                                                                                                                                                                                       | [14]    |
| 35 | (NH <sub>4</sub> ) <sub>0.5</sub> K <sub>0.5</sub> TiOPO <sub>4</sub> | 1100 (I/I <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                                           | [3,5]   |
| 36 | $K_{0.5}Rb_{0.5}TiOPO_4$                                              | 6000 (I/I <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                                           | [3]     |
| 37 | $K_{0.68}Rb_{0.32}TiOPO_4$                                            | $d_{31} (1.06 \ \mu\text{m}) = 6.5 \ \text{pm/V}$<br>$d_{32} (1.06 \ \mu\text{m}) = 5.0 \ \text{pm/V}$<br>$d_{33} (1.06 \ \mu\text{m}) = 13.7 \ \text{pm/V}$<br>$d_{24} (1.06 \ \mu\text{m}) = 7.6 \ \text{pm/V}$<br>$d_{15} (1.06 \ \mu\text{m}) = 6.1 \ \text{pm/V}$                                                                                                                                | [20]    |
| 38 | Na <sub>0.2</sub> K <sub>0.8</sub> TiOPO <sub>4</sub>                 | 675 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           | [7]     |
| 39 | Na <sub>0.4</sub> K <sub>0.6</sub> TiOPO <sub>4</sub>                 | 620 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           |         |
| 40 | Na <sub>0.55</sub> K <sub>0.45</sub> TiOPO <sub>4</sub>               | 570 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           |         |
| 41 | Na <sub>0.65</sub> K <sub>0.35</sub> TiOPO <sub>4</sub>               | 590 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           |         |
|    |                                                                       | 100 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           | [6]     |
| 42 | Na <sub>0.95</sub> K <sub>0.05</sub> TiOPO <sub>4</sub>               | 90 (I/I <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                                             | [7]     |
|    |                                                                       | 0.11 ( <i>I</i> / <i>I</i> <sub>KTP</sub> ) ***                                                                                                                                                                                                                                                                                                                                                       | [14]    |
| 10 | <b>W W W W</b>                                                        | 620 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                                                                                                                                                                                           | [6]     |
| 43 | K <sub>0.55</sub> L1 <sub>0.45</sub> T1OPO <sub>4</sub>               | 0.68 ( <i>I</i> / <i>I</i> <sub>KTP</sub> ) ***                                                                                                                                                                                                                                                                                                                                                       | [14]    |

# A. P. GAZHULINA, M. O. MARYCHEV

# 110

# Continued

| 44 | $K_{0.966} Ti_{0.966} Nb_{0.034} OPO_4$                                  | $d_{15} (1.064 \ \mu\text{m}) = (0.8 \pm 0.1) \times d_{15} (\text{KTP})$<br>$d_{24} (1.064 \ \mu\text{m}) = (2.2 \pm 0.1) \times d_{15} (\text{Nb: KTP})$                                                                      | [9]    |
|----|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 45 | $K_{0.921} Ti_{0.921} Nb_{0.079} OPO_4$                                  | $d_{15} (1.064 \ \mu\text{m}) = 0.75 \times d_{15}(\text{KTP}) \pm 10\%$<br>$d_{24} (1.064 \ \mu\text{m}) = 1.13 \times d_{24}(\text{KTP}) \pm 10\%$<br>$d_{33} (1.064 \ \mu\text{m}) = 0.9 \times d_{33}(\text{KTP}) \pm 10\%$ |        |
| 46 | K <sub>0.98</sub> Ti <sub>0.98</sub> Nb <sub>0.02</sub> OPO <sub>4</sub> | $4.56 \pm 0.18$                                                                                                                                                                                                                 |        |
| 47 | K <sub>0.96</sub> Ti <sub>0.96</sub> Nb <sub>0.04</sub> OPO <sub>4</sub> | $4.97 \pm 0.18$                                                                                                                                                                                                                 |        |
| 48 | K <sub>0.89</sub> Ti <sub>0.89</sub> Nb <sub>0.11</sub> OPO <sub>4</sub> | $2.39 \pm 0.25$                                                                                                                                                                                                                 |        |
| 49 | $K_{0.99}Ti_{0.99}Sb_{0.01}OPO_4$                                        | $4.18 \pm 0.22$                                                                                                                                                                                                                 | [0]    |
| 50 | $K_{0.97}Ti_{0.97}Sb_{0.07}OPO_4$                                        | $4.50 \pm 0.18 \qquad (\chi_{2\omega(\text{relative to KDP})})$                                                                                                                                                                 | [8]    |
| 51 | $K_{0.83}Ti_{0.83}Sb_{0.17}OPO_4$                                        | $1.02 \pm 0.05$                                                                                                                                                                                                                 |        |
| 52 | KTi <sub>0.97</sub> Zr <sub>0.03</sub> OPO <sub>4</sub>                  | $4.58 \pm 0.21$                                                                                                                                                                                                                 |        |
| 53 | KTi <sub>0.96</sub> Zr <sub>0.04</sub> OPO <sub>4</sub>                  | $4.33 \pm 0.2$                                                                                                                                                                                                                  |        |
| 54 | $K_{0.88} Ti_{0.98} Zr_{0.06} OP_{0.99} O_4$                             | 1.8 ( <i>I</i> / <i>I</i> <sub>KTA</sub> )                                                                                                                                                                                      | [21]   |
| 55 | $K_{0.88} Ti_{0.93} Zr_{0.11} OP_{0.99} O_4$                             | 1.7 ( <i>I</i> / <i>I</i> <sub>KTA</sub> )                                                                                                                                                                                      |        |
| 56 | KTi <sub>0.5</sub> V <sub>0.5</sub> OPO <sub>4</sub>                     | 0.0008 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                   | [22]   |
| 57 | KTi <sub>0.75</sub> V <sub>0.25</sub> OPO <sub>4</sub>                   | 0.05 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                     | [5]    |
| 58 | KTi <sub>0.85</sub> V <sub>0.15</sub> OPO <sub>4</sub>                   | 0.1 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                      |        |
| 59 | KTi <sub>0.95</sub> V <sub>0.05</sub> OPO <sub>4</sub>                   | 0.13 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                     | [22]   |
| 60 | KTi <sub>0.9975</sub> V <sub>0.0025</sub> OPO <sub>4</sub>               | 1 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                        |        |
| 61 | $K_{0.67}Ti_{0.5}V_{0.5}OPO_4$                                           | 0.20 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                     | [5]    |
| 62 | $K_{0.75} Ti_{0.75} V_{0.25} OPO_4$                                      | 0.24 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                     |        |
| 63 | $K_{0.85} Ti_{0.85} V_{0.15} OPO_4$                                      | 0.36 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                     |        |
| 64 | $K_{0.5}Ti_{0.5}Nb_{0.5}OPO_4$                                           | 0.9 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                      | [23]   |
| 65 | $K_{0.5}Ta_{0.5}Ti_{0.5}OPO_4$                                           | 0.8 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                      |        |
| 66 | KGa <sub>0.5</sub> Nb <sub>0.5</sub> OPO <sub>4</sub>                    | 1 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                       | [3]    |
| 67 | KFe <sub>0.5</sub> Nb <sub>0.5</sub> OPO <sub>4</sub>                    | 2.7 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                     |        |
| 68 | $K_{0.5}Nb_{0.5}V_{0.5}OPO_4$                                            | 0.5 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                      | [23]   |
| 69 | $K_{0.5}Ta_{0.5}V_{0.5}OPO_4$                                            | 0.4 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                      |        |
| 70 | KTiO(PO <sub>4</sub> ) <sub>0.5</sub> (AsO <sub>4</sub> ) <sub>0.5</sub> | 6000 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                    | [3]    |
| 71 | $K_{0.97} Ti_{0.99} OAs_{0.53} P_{0.49} O_4$                             | $1.6 (I/I_{\rm KTA})$                                                                                                                                                                                                           | [21]   |
| 72 | $KTi_{0.9}Nb_{0.1}OP_{0.9}Si_{0.1}O_4$                                   | 1.05 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                     | [15]   |
| 73 | $KTi_{0.8}Nb_{0.2}OP_{0.8}Si_{0.2}O_{4}$                                 | 0.96 (I/I <sub>KTP</sub> )                                                                                                                                                                                                      |        |
| 74 | $KTi_{0.7}Nb_{0.3}OP_{0.7}Si_{0.3}O_{4}$                                 | 0.84 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                     |        |
| 75 | $KTi_{0.65}Nb_{0.35}OP_{0.65}Si_{0.35}O_4$                               | $0.81(I/I_{\rm KTP})$                                                                                                                                                                                                           |        |
| 76 | $KTi_{0.6}Nb_{0.4}OP_{0.6}Si_{0.4}O_{4}$                                 | 0.72 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                     |        |
| 77 | $K_2GaGeP_2O_9(F, OH)$                                                   | 10 (I/I <sub>SiO2</sub> )                                                                                                                                                                                                       | [5]    |
| 78 | $KTi_{0.5}Ga_{0.5}O_{0.5}PO_4F_{0.35}(OH)_{0.15}$                        | 200 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                     | [3]    |
| 79 | KGaPO <sub>4</sub> F <sub>0.7</sub> (OH) <sub>0.3</sub>                  | 0.72 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                    | [3, 5] |
| 80 | $RbTi_{0.98}Nb_{0.02}OPO_4$                                              | 0.97 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                     | [10]   |
| 81 | RbTi <sub>0.96</sub> Nb <sub>0.04</sub> OPO <sub>4</sub>                 | 1.23 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                     |        |
| 82 | RbTi <sub>0.93</sub> Nb <sub>0.07</sub> OPO <sub>4</sub>                 | 0.73 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                     |        |
| 83 | $Rb_{0.855}Ti_{0.955}Nb_{0.045}OPO_{4}\\$                                | $1.2 (I/I_{\rm KTP})$                                                                                                                                                                                                           | [11]   |
| 84 | $RbTi_{0.927}Nb_{0.056}Er_{0.017}OPO_{4}$                                | $0.7 (I/I_{\rm KTP})$                                                                                                                                                                                                           |        |
| 85 | $Rb_{0.855}Ti_{0.95}Ta_{0.04}OPO_{4}\\$                                  | 0.95 ( <i>l</i> / <i>l</i> <sub>KTP</sub> )                                                                                                                                                                                     | [24]   |
| 86 | $RbTi_{0.95}Ta_{0.03}Y_{0.02}OPO_{4}$                                    | 0.80 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                                                                                                                                                                                     |        |
| 87 | RbGa <sub>0.5</sub> Nb <sub>0.5</sub> OPO <sub>4</sub>                   | 1 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                       | [3]    |
| 00 | (NH) H TOPO **                                                           | 60 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                      | [5]    |
| 00 | (1114)0.5110.5110104                                                     | 40 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                                                                                                                                                                                      | [12]   |

| Continued |
|-----------|
| Commute   |

| 80  |                                                                                              | 700 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                    | [3,5]  |
|-----|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------|
| 89  | (1\pm 4)0.5(\pm 3\pm 0)0.511\pm 04                                                           | 650 (I/I <sub>SiO2</sub> )                                     | [5,12] |
| 90  | $Cs_{0.5}K_{0.5}TiOAsO_4$                                                                    | 6700 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                   | [3]    |
| 01  |                                                                                              | 790 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                    | [5,6]  |
| 91  | $Na_{0.87}K_{0.13} \Pi OASO_4$                                                               | $0.87 (I/I_{\rm KTP})^{***}$                                   | [14]   |
| 92  | $Na_{0.98}K_{0.02}TiOAsO_4$                                                                  | 0.01 ( <i>I</i> / <i>I</i> <sub>KTP</sub> )                    |        |
| 02  |                                                                                              | 970 (I/I <sub>SiO2</sub> )                                     | [6]    |
| 95  | <b>K</b> 0.54L10.4611OASO4                                                                   | $1.07 (I/I_{\rm KTP})^{***}$                                   | [14]   |
| 94  | $Ag_{0.98}K_{0.02}TiOAsO_4$                                                                  | 10 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                     | [6]    |
| 95  | (NH4)0.5K0.5TiOAsO4                                                                          | 100 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                    | [3]    |
| 96  | Sc: KTA (0.22 % dopant)                                                                      | $d_{24} (1.32 \ \mu\text{m}) = 1.4 \times d_{15} (\text{KTP})$ | [16]   |
| 97  | $K_{0.80} Ti_{0.26} Zr_{0.78} OAs_{1.01} O_4$                                                | 1.2 ( <i>I</i> / <i>I</i> <sub>KTA</sub> )                     | [21]   |
| 98  | $KTi_{0.9}Nb_{0.1}OAs_{0.9}Si_{0.1}O_4$                                                      | $1.04 (I/I_{\rm KTP})$                                         | [15]   |
| 99  | $KTi_{0.8}Nb_{0.2}OAs_{0.8}Si_{0.2}O_4$                                                      | $1.03 (I/I_{\rm KTP})$                                         |        |
| 100 | KTi <sub>0.7</sub> Nb <sub>0.3</sub> OAs <sub>0.7</sub> Si <sub>0.3</sub> O <sub>4</sub>     | 0.98 (I/I <sub>KTP</sub> )                                     |        |
| 101 | $KTi_{0.6}Nb_{0.4}OAs_{0.6}Si_{0.4}O_4$                                                      | 0.90 (I/I <sub>KTP</sub> )                                     |        |
| 102 | $K_{0.94}Nb_{0.12}Ti_{0.91}OAs_{0.89}Ge_{0.09}O_4$                                           | 1.3 ( <i>I</i> / <i>I</i> <sub>KTA</sub> )                     | [21]   |
| 103 | $K_{1.02}Nb_{0.25}Ti_{0.76}OAs_{0.75}Ge_{0.23}O_{4}$                                         | 1.1 ( <i>I</i> / <i>I</i> <sub>KTA</sub> )                     |        |
| 104 | $K_{1.03}Nb_{0.52}Ti_{0.48}OAs_{0.48}Ge_{0.51}O_{4}$                                         | 1.1 ( <i>I</i> / <i>I</i> <sub>KTA</sub> )                     |        |
| 105 | KNb <sub>0.52</sub> Ti <sub>0.48</sub> OAs <sub>0.48</sub> Ge <sub>0.51</sub> O <sub>4</sub> | 1.3 ( <i>I</i> / <i>I</i> <sub>KTA</sub> )                     |        |
| 106 | $K_{0.98}Nb_{0.46}Ti_{0.56}OAs_{0.58}Ge_{0.39}O_{4}$                                         | 1.2 ( <i>I</i> / <i>I</i> <sub>KTA</sub> )                     |        |
| 107 | KGa <sub>0.5</sub> Nb <sub>0.5</sub> OAsO <sub>4</sub>                                       | 1 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                      | [3]    |
| 108 | RbGa <sub>0.5</sub> Nb <sub>0.5</sub> OAsO <sub>4</sub>                                      | 5.5 ( <i>I</i> / <i>I</i> <sub>SiO2</sub> )                    |        |

<sup>\*</sup>A value of 1100 was indicated in [3], with reference to [5], where a value of 2400 was reported. <sup>\*\*</sup>A value of 140 was indicated in [25], with reference to [12], where a value of 40 was reported, and a value of 6 was indicated in [3], with reference to [5], where the corresponding value was found to be 60. <sup>\*\*\*</sup>Values of second-harmonic generation intensity for KTiOPO4 crystal were reported in [14] with reference to [6], where the corresponding values were given for quartz crystal. The values of [14] correspond to those of [6], when divided by I/I<sub>SiO2</sub> value for KTiOPO4 crystal (also taken from [6]).



Figure 2. Cut of three-dimensional distribution maps of the degree of pseudoinversion of crystal structure by the plane z = 0.25: (a) KTiOPO<sub>4</sub> (CSD-N<sup>o</sup> 20970); (b) KSnOPO<sub>4</sub> (CSD-N<sup>o</sup> 68706); (c) KTiOAsO<sub>4</sub> (CSD-N<sup>o</sup> 202158); and (d) Cs<sub>0.625</sub>K<sub>0.375</sub>TiOAsO<sub>4</sub> (CSD-N<sup>o</sup> 74595).

added inversion to the set of symmetry operations of the space group  $Pna2_1$ , which describes the structure of KTP crystals at room temperature, we obtain the group Pnan, where the inversion centre with respect to the twofold screw axis has coordinates (0.25, 0.25).

Thus, in the polar phase of KTP structures, the pseudoinversion peaks are located specifically at inversion centres of these crystals in their high-symmetry nonpolar phase. With allowance for this circumstance, we will characterize the pseudosymmetry of the electron density in each crystal with a known structure by the maximum value of pseudoinversion  $\eta_{\text{max}}$  in the three-dimensional map, and the point with the coordinates corresponding to the found  $\eta_{\text{max}}$  values will be referred to as pseudoinversion centres.

Since the origin of coordinates is arbitrarily chosen in X-ray diffraction analysis, the coordinates of the pseudoinversion centres may differ from 0.25. In the  $Pna2_1$  group [55], the origin of coordinates on the *z* axis can be chosen at any point, while in the directions of the *x* and *y* axes it may lie either on the twofold axis or at the intersection of mirror planes; therefore, the *x* and *y* coordinates of pseudoinversion centres can be either (0.25, 0.25) or (0, 0).

To refine the coordinates of pseudoinversion centres and  $\eta_{\text{max}}$  values, we additionally calculated the distribution of the degree of pseudoinversion with a relative scanning step of 0.025 over the unit cell axes. Fixed refined x and y coordinates of pseudoinversion centres were used for repeated calculation of pseudoinversion distribution along the z axis with a relative scanning step of 0.001.

**Table 2** contains the maximum pseudoinversion values  $\eta_{\text{max}}$  and coordinates of pseudoinversion centres  $z(\eta_{\text{max}})$  for a number of KTP structures.

**Figures 3(a)** and **3(b)** show the distribution histograms for the degree of pseudoinversion  $\eta_{\text{max}}$  for pure and doped KTP crystals.

The distribution of pure KTP crystals over pseudoinversion is fairly uniform. As is indicated in **Table 2**, the mean value  $< \eta_{max} >$  for them is 0.606. The situation for doped crystals is different: the pronounced maximum in the histogram in **Figure 3(b)**, which amounts to 31%, lies in the range of pseudoinversion values of 0.4 - 0.5, which is followed by a sharp falloff. Therefore, the fraction of pseudo-centrosymmetric structures among doped KTP crystals is very small. The mean value  $< \eta_{max} >$  for doped crystals is 0.490. Thus, doped KTP crystals are "less symmetric" with respect to inversion than pure compositions.

For the crystals listed in **Table 2**, along with the calculations of the pseudoinversion of their structures as a whole, pseudoinversion extrema for sublattices of individual types of atoms ( $\eta_{max}$ (sublattices)) were also calculated. Pseudoinversion was calculated for the pure sublattices of all 118 crystals in **Table 2**; the distribution histogram of the corresponding extrema is shown in **Figure 3(c)**. For 89 doped crystals in **Table 2**, the results of similar calculations for *M*- and *M*-type sublattices containing doped atoms are presented as histograms in **Figure 3(d)**. The histograms in **Figure 3(c)** indicate that the sublattices of *X*, O, and *F* atoms are most pseudo-centrosymmetric, sublattices of *M*-type atoms are least pseudo-centrosymmetric, and the pseudoinversion of the *M* sublattice is intermediate (<  $\eta_{max}(X) \ge 0.857$ , <  $\eta_{max}(O) \ge 0.720$ , <  $\eta_{max}(F) \ge 0.870$ , <  $\eta_{max}(M) \ge 0.395$ , <  $\eta_{max}(M') \ge 0.661$ ).

In the presence of impurities, the general view of the histogram for the M' sublattice (**Figure 3(d**)) barely differs from that in **Figure 3(c**); its characteristic maximum shifts to higher pseudoinversion values and the mean value  $< \eta_{\text{max}}(M') >$  becomes 0.700.

The pseudoinversion histogram for the *M*-type sublettice changes more radically: the pronounced peak in the range of 0.3 - 0.4 in Figure 3(c) disappears in Figure 3(d), and the distribution becomes more uniform in a wider pseudoinversion range; the fraction of crystals with ultimately acentric M sublattices increases. The mean pseudo inversion  $\langle \eta_{max}(M) \rangle$  becomes 0.384; *i.e.*, it barely changes in comparison with  $< \eta_{\max}(M) >$ for Msublattices without impurities. Thus, the analysis of the pseudo inversion of individual sublattices suggests that the reductions of pseudoinversion of structures as a whole at a transition to doped KTP compositions, which is noted in Table 2 and Figure 3(b), is related to a great extent to the higher sensitivity of the pseudoinversion of *M*-type sublattice to the presence of doped atoms. Note that pseudosymmetry was previously studied [58] by the atomic displacement method [1] for 11 KTP-type structures. In particular, it was established that the potassium sublattice is less centrosymmetric in comparison with the  $TiO_6$ -PO<sub>4</sub> subsystem, and its pseudosymmetry relative to inversion is more sensitive to introduction of impurities.

# 4. Comparison of the Nonlinear Optical Characteristics of KTP Crystals and the Pseudoinversion of Their Structures

A model was proposed in [8], according to which the second-order susceptibility of crystals is related to the symmetry of KTP-type structures and their pseudoinversion as follows:

$$\chi_{2\omega} \sim \sqrt{1 - \eta} \tag{2}$$

As can be seen in **Table 1**, the SHG data with respect to the reference sample (powder of pure  $SiO_2$  crystal) differ by an order of magnitude in different studies for KTP [3,5-7], and KTA [3,6,7] crystals. Based on this fact, we illustrated Equation (2) by selecting a group of com-

| N⁰ | Crystal                                                    | CSD-№ [56] | $\eta_{ m max} \pm 0.005$ | $z\left(\eta_{\max} ight)$ |
|----|------------------------------------------------------------|------------|---------------------------|----------------------------|
| 1  | KTiOPO <sub>4</sub>                                        | 20970      | 0.363                     | 0.254                      |
| 2  | RbTiOPO <sub>4</sub>                                       | 281379     | 0.350                     | 0.451                      |
| 3  | TITiOPO <sub>4</sub>                                       | 81436      | 0.534                     | 0.205                      |
| 4  | KSnOPO <sub>4</sub>                                        | 68706      | 0.886                     | 0.250                      |
| 5  | KGeOPO <sub>4</sub>                                        | 39735      | 0.812                     | 0.251                      |
| 6  | KVOPO <sub>4</sub>                                         | 79651      | 0.314                     | 0.254                      |
| 7  | KTiOAsO4                                                   | 202158     | 0.375                     | 0.258                      |
| 8  | RbTiOAsO4                                                  | 71907      | 0.276                     | 0.243                      |
| 9  | CsTiOAsO <sub>4</sub>                                      | 280315     | 0.539                     | 0.252                      |
| 10 | KSnOAsO <sub>4</sub>                                       | 80976      | 0.846                     | 0.247                      |
| 11 | $RbSnOAsO_4$                                               | 80977      | 0.714                     | 0.234                      |
| 12 | $KSbOSiO_4$                                                | 69429      | 0.884                     | 0.250                      |
| 13 | $NaSbOSiO_4$                                               | 66354      | 0.474                     | 0.250                      |
| 14 | KSbOGeO <sub>4</sub>                                       | 39463      | 0.634                     | 0.252                      |
| 15 | RbSbOGeO <sub>4</sub>                                      | 71933      | 0.557                     | 0.248                      |
| 16 | NaSbOGeO4                                                  | 39788      | 0.408                     | 0.251                      |
| 17 | TlSbOGeO <sub>4</sub>                                      | 84128      | 0.449                     | 0.252                      |
| 18 | KTaOGeO <sub>4</sub>                                       | 39585      | 0.686                     | 0.250                      |
| 19 | $\operatorname{AgSbOSiO_4}$                                | 39789      | 0.644                     | 0.250                      |
| 20 | $BiCdOVO_4$                                                | 91474      | 0.580                     | 0.133                      |
| 21 | $KFeFPO_4$                                                 | 39560      | 0.702                     | 0.250                      |
| 22 | NH <sub>4</sub> FeAsO <sub>4</sub> F                       | 170672     | 0.880                     | 0.208                      |
| 23 | NH <sub>4</sub> FePO <sub>4</sub> F                        | 75110      | 0.826                     | 0.251                      |
| 24 | NH <sub>4</sub> GaPO <sub>4</sub> F                        | 89953      | 0.920                     | 0.251                      |
| 25 | $CsScFAsO_4$                                               | 87817      | 0.355                     | 0.309                      |
| 26 | KAIFPO <sub>4</sub>                                        | 39445      | 0.612                     | 0.250                      |
| 27 | KCrPO <sub>4</sub> F                                       | 39440      | 0.687                     | 0.498                      |
| 28 | $\mathrm{KGaFPO}_4$                                        | 80893      | 0.771                     | 0.264                      |
| 29 | $RbScFAsO_4$                                               | 87816      | 0.485                     | 0.233                      |
| 30 | $Ag_{0.85}K_{0.15}TiOPO_4$                                 | 67540      | 0.442                     | 0.053                      |
| 31 | $Ba_{0.06}K_{0.88}TiOPO_4$                                 | 280413     | 0.426                     | 0.254                      |
| 32 | K <sub>0.981</sub> Cr <sub>0.019</sub> TiOPO <sub>4</sub>  | 98245      | 0.410                     | 0.245                      |
| 33 | K <sub>0.565</sub> Li <sub>0.34</sub> TiOPO <sub>4</sub> * | 83482      | 0.755                     | 0.259                      |
| 34 | $Na_{0.95}K_{0.05}TiOPO_4$                                 | 67539      | 0.371                     | 0.260                      |
| 35 | $K_{0.845}Na_{0.155}TiOPO_4$                               | 85092      | 0.406                     | 0.254                      |
| 36 | $Na_{0.114}K_{0.886}K(TiO)_2(PO_4)_2$                      | 281363     | 0.400                     | 0.246                      |
| 37 | $Na_{0.48}K_{0.52}TiOPO_4$                                 | 71239      | 0.378                     | 0.255                      |
| 38 | $K_{0.42}Na_{0.58}TiOPO_4$                                 | 71928      | 0.407                     | 0.265                      |
| 39 | K <sub>0.433</sub> Na <sub>0.567</sub> TiOPO <sub>4</sub>  | 71929      | 0.406                     | 0.252                      |
| 40 | Na <sub>0.992</sub> K <sub>0.008</sub> TiOPO <sub>4</sub>  | 59284      | 0.377                     | 0.251                      |
| 41 | $K_{0.5}Rb_{0.5}TiOPO_4$                                   | 71243      | 0.363                     | 0.325                      |
| 42 | $K_{0.84}Rb_{0.16}TiOPO_4$                                 | 81251      | 0.378                     | 0.244                      |
| 43 | $K_{0.88}Rb_{0.12}TiOPO_4$                                 | 88030      | 0.377                     | 0.255                      |
| 44 | $K_{1.14}Rb_{0.86}TiOPO_4$                                 | 400849     | 0.271                     | 0.257                      |
| 45 | K <sub>0.535</sub> Rb <sub>0.465</sub> TiOPO <sub>4</sub>  | 71905      | 0.270                     | 0.246                      |
| 46 | K <sub>0.857</sub> Rb <sub>0.143</sub> TiOPO <sub>4</sub>  | 81250      | 0.365                     | 0.245                      |
| 47 | $Sr_{0.06}Cr_{0.05}K_{0.87}Ti_{0.95}OPO_4$                 | 280412     | 0.514                     | 0.248                      |

Table 2. Maximum pseudoinversion values  $\eta_{max}$  and z coordinates of pseudoinversion centres  $z(\eta_{max})$  for a number of KTP structures.

# A. P. GAZHULINA, M. O. MARYCHEV

| 1 | 14 |  |
|---|----|--|
|   |    |  |

| Continued |
|-----------|
|           |

| 48       | K <sub>0.59</sub> Tl <sub>0.41</sub> TiOPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39777           | 0.190 | 0.199 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|-------|
| 49       | $K_{0.812}Tl_{0.188}TiOPO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85099           | 0.217 | 0.255 |
| 50       | KGe <sub>0.042</sub> Ti <sub>0.958</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39950           | 0.439 | 0.254 |
| 51       | KGe <sub>0.063</sub> Ti <sub>0.937</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39882           | 0.467 | 0.253 |
| 52       | KGe <sub>0.184</sub> Ti <sub>0.816</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39951           | 0.568 | 0.252 |
| 53       | $K_{0.84} Ti_{0.92} Nb_{0.08} OPO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67120           | 0.546 | 0.254 |
| 54       | $K_{0.89}Nb_{0.11}Ti_{0.89}OPO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250046          | 0.822 | 0.252 |
| 55       | $K_{0.93}Nb_{0.07}Ti_{0.93}OPO_4\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 250016          | 0.593 | 0.252 |
| 56       | $K_{0.96}Nb_{0.04}Ti_{0.96}OPO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91556           | 0.480 | 0.253 |
| 57       | $K_{0.97}Nb_{0.03}Ti_{0.97}OPO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54149           | 0.439 | 0.253 |
| 58       | $K_{0.99}Ti_{0.988}Sb_{0.0125}OPO_4^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 250298          | 0.430 | 0.254 |
| 59       | $K_{0.874} Ti_{0.927} Sb_{0.074} OPO_4 ^{\ast}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250299          | 0.587 | 0.254 |
| 60       | $K_{0.893} Ti_{0.833} Sb_{0.166} OPO_{4}^{\ *}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250300          | 0.956 | 0.250 |
| 61       | KSn <sub>0.53</sub> Ti <sub>0.47</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 250087          | 0.705 | 0.249 |
| 62       | KSn <sub>0.064</sub> Ti <sub>0.934</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91534           | 0.461 | 0.253 |
| 63       | KSn <sub>0.75</sub> Ti <sub>0.25</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 250088          | 0.840 | 0.250 |
| 64       | KSn <sub>0.504</sub> Ti <sub>0.496</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72720           | 0.769 | 0.241 |
| 65       | $K_{0.998} Ti_{0.998} W_{0.002} OPO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82601           | 0.394 | 0.254 |
| 66       | KTi <sub>0.99</sub> Zr <sub>0.01</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 418713          | 0.408 | 0.068 |
| 67       | KTi <sub>0.975</sub> Zr <sub>0.025</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 418715          | 0.415 | 0.068 |
| 68       | KTi <sub>0.981</sub> Zr <sub>0.019</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 418714          | 0.425 | 0.068 |
| 69       | KTi <sub>0.97</sub> Zr <sub>0.03</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 173235          | 0.404 | 0.254 |
| 70       | KTi <sub>0.96</sub> Zr <sub>0.04</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 173233          | 0.414 | 0.254 |
| 71       | KTi <sub>0.88</sub> Hf <sub>0.12</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 421394          | 0.473 | 0.001 |
| 72       | KTi <sub>0.97</sub> Hf <sub>0.03</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 421393          | 0.432 | 0.253 |
| 73       | KTi <sub>0.99</sub> Hf <sub>0.01</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 421392          | 0.410 | 0.254 |
| 74       | KTiOP <sub>0.5</sub> As <sub>0.5</sub> O <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72051           | 0.585 | 0.255 |
| 75       | KTiOP <sub>0.38</sub> As <sub>0.62</sub> O <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80024           | 0.546 | 0.259 |
| 76       | KTiOP <sub>0.56</sub> As <sub>0.44</sub> O <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80023           | 0.473 | 0.259 |
| 77       | KTiOP <sub>0.58</sub> As <sub>0.42</sub> O <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71904           | 0.485 | 0.242 |
| 78       | KTiOP <sub>0.75</sub> As <sub>0.25</sub> O <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80022           | 0.440 | 0.257 |
| 79       | KTiOP <sub>0.57</sub> As <sub>0.43</sub> O <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400850          | 0.520 | 0.261 |
| 80       | $K_{0.5}Na_{0.5}Sn_{0.5}Ti_{0.5}OPO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67585           | 0.695 | 0.269 |
| 81       | $K_{0.5}Rb_{0.5}Sn_{0.5}Ti_{0.5}OPO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67587           | 0.648 | 0.257 |
| 82       | $K_2(Cr_{0.63}Ti_{0.37})(Cr_{0.43}Ti_{0.57}) (PO_4)_2(F_{0.65}O_{0.35})(F_{0.41}O_{0.59})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 87835           | 0.776 | 0.257 |
| 83       | Na <sub>0.505</sub> Rb <sub>0.495</sub> TiOPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71240           | 0.505 | 0.325 |
| 84       | Tl <sub>0.23</sub> Rb <sub>0.77</sub> TiOPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81438           | 0.362 | 0.201 |
| 85       | $Rb_{0.766} \Pi_{0.234} \Pi OPO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85100           | 0.363 | 0.201 |
| 80<br>87 | $\frac{R}{R} = \frac{1}{2} \frac{1}{10.927} \frac{R}{N} = \frac{1}{10.927} \frac{1}{N} \frac{1}{10.$ | 96408<br>250274 | 0.335 | 0.015 |
| 88       | $Rb_{0.98} + 10.991 + 00.01 + 0.04$ $Rb_{0.855} + Ti_{0.055} + Nb_{0.045} + OPO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [11]            | 0.261 | 0.197 |
| 89       | RbTi <sub>0.97</sub> Zr <sub>0.03</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 417985          | 0.311 | 0.200 |
| 90       | RbTi <sub>0.98</sub> Zr <sub>0.02</sub> OPO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 418599          | 0.254 | 0.197 |
| 91       | RbTi0.98Zr0.016OPO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 418598          | 0.317 | 0.201 |
| 92       | Rb <sub>2</sub> TiGe <sub>0.121</sub> Ti <sub>0.879</sub> O <sub>2</sub> (PO <sub>4</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 281380          | 0.342 | 0.198 |
| 93       | Na <sub>0</sub> $sB_0 sS_0 sT_0 sOPO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67586           | 0.452 | 0.495 |
| 9/       | $KNh_{\rm e}V_{\rm e}$ ODO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86787           | 0.730 | 0.250 |
| 24       | $K_{100,5} \vee_{0.5} OrO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00/0/           | 0.730 | 0.250 |
| 95       | $KUa_{0.5}Ue_{0.5}F_{0.5}U_{0.5}FU_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80894           | 0.881 | 0.262 |
| 96       | $K_{0.5}Rb_{0.5}SnOPO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 67584           | 0.638 | 0.253 |
| 97       | Cs <sub>0.6</sub> K <sub>0.4</sub> TiOAsO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74597           | 0.389 | 0.263 |

#### A. P. GAZHULINA, M. O. MARYCHEV

| Continued |                                                                                                          |                          |       |       |
|-----------|----------------------------------------------------------------------------------------------------------|--------------------------|-------|-------|
| 98        | $Cs_{0.61}K_{0.39}TiOAsO_4$                                                                              | 74596                    | 0.464 | 0.151 |
| 99        | $Cs_{0.595}K_{0.405}TiOAsO_4$                                                                            | 74598                    | 0.638 | 0.253 |
| 100       | Cs <sub>0.625</sub> K <sub>0.375</sub> TiOAsO <sub>4</sub>                                               | 74595                    | 0.265 | 0.239 |
| 101       | K <sub>0.534</sub> Li <sub>0.34</sub> TiOAsO <sub>4</sub> *                                              | 83483                    | 0.385 | 0.263 |
| 102       | Na <sub>0.87</sub> K <sub>0.13</sub> TiOAsO <sub>4</sub>                                                 | 67541                    | 0.436 | 0.259 |
| 103       | K <sub>1.65</sub> V(V <sub>0.78</sub> W <sub>0.22</sub> )O <sub>2</sub> (AsO <sub>4</sub> ) <sub>2</sub> | 260558                   | 0.807 | 0.253 |
| 104       | KAlNbO <sub>2</sub> ((As <sub>0.8</sub> Nb <sub>0.2</sub> )O <sub>4</sub> ) <sub>2</sub>                 | [57]                     | 0.881 | 0.251 |
| 105       | Cs <sub>0.068</sub> Rb <sub>0.95</sub> TiOAsO <sub>4</sub>                                               | 280501                   | 0.376 | 0.243 |
| 106       | $Cs_{0.62}Rb_{1.38}TiO_2(AsO_4)_2$                                                                       | 280502                   | 0.331 | 0.255 |
| 107       | Cs1.12Rb0.85(TiO)2(AsO4)2                                                                                | 280503                   | 0.286 | 0.252 |
| 108       | Cs <sub>1.43</sub> Rb <sub>0.57</sub> (TiO) <sub>2</sub> (AsO <sub>4</sub> ) <sub>2</sub>                | 280504                   | 0.372 | 0.344 |
| 109       | Cs1.73Rb0.27(TiO)2(AsO4)2                                                                                | 280505                   | 0.371 | 0.345 |
| 110       | Cs1.4Rb0.6(TiO)2(AsO4)2                                                                                  | 280506                   | 0.369 | 0.159 |
| 111       | Cs1.72Rb0.28(TiO)2(AsO4)2                                                                                | 280507                   | 0.373 | 0.340 |
| 112       | Cs <sub>0.9</sub> Rb <sub>0.1</sub> TiOAsO <sub>4</sub>                                                  | 280508                   | 0.330 | 0.109 |
| 113       | NH <sub>4</sub> Fe(AsO <sub>4</sub> ) <sub>0.19</sub> (PO <sub>4</sub> ) <sub>0.81</sub> F               | 420019                   | 0.877 | 0.208 |
| 114       | NH <sub>4</sub> Fe(AsO <sub>4</sub> ) <sub>0.37</sub> (PO <sub>4</sub> ) <sub>0.63</sub> F               | 420020                   | 0.865 | 0.207 |
| 115       | NH4Fe(AsO4)0.74(PO4)0.26F                                                                                | 420021                   | 0.898 | 0.207 |
| 116       | $NH_4VAsO_4F_{0.8}O_{0.2}$                                                                               | 419640                   | 0.852 | 0.207 |
| 117       | $(NH_4)_2Ga_2(PO_4)(HPO_4)F_3$                                                                           | 89952                    | 0.429 | 0.418 |
| 118       | (NH <sub>4</sub> ) <sub>0.875</sub> K <sub>0.125</sub> FePO <sub>4</sub> F                               | 260152                   | 0.772 | 0.167 |
|           | Mean value $< \eta_{max} >$ for pure of                                                                  | crystals (29 structures) |       | 0.606 |
|           | Mean value $<\eta_{max}>$ for doped                                                                      | crystals (89 structures) |       | 0.490 |

# For crystals with numbers 2, 13, 16, 20, 25, 30, 34, 40, 41, 71, 83, 86, 92, 93, 98, 101, 102, 108-112, and 117, the (x, y) coordinates of pseudoinversion centres are (0, 0); for other crystals they are (0.25, 0.25). The numbers of crystals with known estimated characteristics of nonlinear optical properties are bolded. <sup>\*</sup>The chemical composition of the crystals is given in correspondence with the CIF files indicated here; it somewhat differs from the corresponding chemical formulas in **Table 1**, which are given in correspondence with the references to original studies.



Figure 3. Distribution histogram of the degree of pseudoinversion for (a) pure KTP crystals (29 structures), (b) doped KTP crystals (89 structures), (c) pure atomic sublattices of individual types for 118 KTP crystals from Table 2, and (d) doped sublattices of individual types of atoms for 89 KTP crystals from Table 2.

positions (from the aforementioned set of crystals) for which experimental SHG data were obtained either by the powder method [26], or directly with respect to a powder of pure KTiOPO<sub>4</sub> crystal, or the data can be recalculated with respect to it based on a specific publication. In addition, since most sources yield data on the ratio of second-harmonic intensities for the studied and reference samples ( $I/I_{\rm KTP} = I_{2\omega}/I_{2\omega}({\rm KTP})$ ), they were additionally recalculated into estimated values of the relative effective second-order susceptibility (it will be denoted as  $\chi_{2\omega}/\chi_{2\omega}({\rm KTP})$ ). In the first approximation, one can assume that

$$I_{2\omega} \sim I_{\omega}^2 \cdot \chi_{2\omega}^2,$$

where  $I_{2\omega}$  is the second harmonic intensity and  $I_{\omega}$  is the primary radiation intensity. Therefore, the desired ratio  $\chi_{2\omega}/\chi_{2\omega}$ (KTP) was estimated to be

$$\chi_{2\omega} / \chi_{2\omega} (\text{KTP}) \sim I_{2\omega} / I_{2\omega} (\text{KTP}).$$

Figure 4 shows the dependence of the set of  $\chi_{2a}/\chi_{2a}$ (KTP) values for KTiOPO<sub>4</sub> (CSD-№ 20970), RbTiOPO<sub>4</sub> (CSD-№ 281379, [10, 11]), KTiOAsO<sub>4</sub> (CSD-№ 202158, [14, 15]), K<sub>0.565</sub>Li<sub>0.34</sub>TiOPO<sub>4</sub> (CSD-№ 83482, [14]), RbTi<sub>0.927</sub>Nb<sub>0.056</sub>Er<sub>0.017</sub>OPO<sub>4</sub> (CSD-№ 96408, [11]), Rb<sub>0.855</sub>Ti<sub>0.955</sub>Nb<sub>0.045</sub>OPO<sub>4</sub> ([11]), K<sub>0.534</sub>Li<sub>0.34</sub>TiOAsO<sub>4</sub> (CSD-№ 83483, [14]), Na<sub>0.87</sub>K<sub>0.13</sub>TiOAsO<sub>4</sub> (CSD-№ 87541, [14]), K<sub>0.89</sub>Nb<sub>0.11</sub>Ti<sub>0.89</sub>OPO<sub>4</sub> (CSD-№ 67541, [14]), K<sub>0.96</sub>Nb<sub>0.04</sub>Ti<sub>0.96</sub>OPO<sub>4</sub> (CSD-№ 250046, [8]), K<sub>0.99</sub>Ti<sub>0.988</sub>Sb<sub>0.0125</sub>OPO<sub>4</sub> (CSD-№ 250298, [8]), K<sub>0.893</sub>Ti<sub>0.983</sub>Sb<sub>0.166</sub>OPO<sub>4</sub> (CSD-№ 250300, [8]), KTi<sub>0.97</sub>Zr<sub>0.03</sub>OPO<sub>4</sub> (CSD-№ 173235, [8]), and KTi<sub>0.96</sub>Zr<sub>0.04</sub>OPO<sub>4</sub> (CSD-№ 173233, [8]) crystals on the

pseudoinversion  $\eta = \eta_{\text{max}}$  of their atomic structures in the

$$\left(\sqrt{1-\eta}, \chi_{2\omega}/\chi_{2\omega}(\mathrm{KTP})\right)$$

coordinates. The linear approximation of the dependence presented in **Figure 4** within the model described in [8], is characterized by a correlation coefficient of 0.91, and the confidence interval boundaries are (0.76, 0.97) at a confidence probability of 0.95.

Equation (2) can be more pronounced within the concentration series of samples of the same qualitative composition. For example, the SHG intensity decreases with an increase in the tin fraction in the  $KTi_{1-x}Sn_xOPO_4$ series, and the calculation of pseudoinversion for a series of known structures of this composition indicates a monotonic increase in the latter (**Figure 5**).

The boundary-composition crystal KSnOPO<sub>4</sub> has almost zero SHG intensity and the largest (in the KTi<sub>1-x</sub>Sn<sub>x</sub>OPO<sub>4</sub> series) pseudoinversion: 0.886 (**Table 1**, no. 7; **Table 2**, no. 4). This fact is in agreement with the



Figure 4. Correlation between the relative effective secondorder susceptibility  $\chi 2\omega/\chi 2\omega$ (KTP) for a number of KTP crystals and their pseudoinversion in the

$$\left(\sqrt{1-\eta}, \ \boldsymbol{\chi}_{2\boldsymbol{\omega}}/\boldsymbol{\chi}_{2\boldsymbol{\omega}}(\mathbf{KTP})\right)$$

coordinates (see [8] for the approximation model).



Figure 5. Dependence of the pseudoinversion on the tin content in KTi1-xSnxOPO4 crystals (calculation based on the structural data CSD-№ 20970, 91534, 72720, 250087, 250088, 68706).

data of Godfrey *et al.* [58], who established that the KSnOPO<sub>4</sub> structure can be partially described (in good approximation) by the *Pnan* group; exact description is obtained within the *Pna2*<sub>1</sub> group.

# **5.** Conclusions

To date, despite the numerous publications on the structure and properties of KTP crystals, the question of the structural conditionality of the behavior of their nonlinear optical properties has not been completely clarified.

In this paper, we reported the results of studying the pseudosymmetric features of known structures of KTP crystals with respect to inversion and tried to analyze the entire set of known nonlinear optical parameters of these crystals in view of the obtained pseudosymmetric characteristics. In particular, it was shown that doped structures of KTP crystals have on average a lower degree of pseudoinversion than "pure" compositions; in some cases this feature adequately correlates with the increase in the relative intensity of the second optical harmonic. This correlation may manifest itself within the concentration series samples of the same qualitative composition.

We believe that, in order to establish the fundamental correlations between the structural and symmetric features of crystals (in particular, those belonging to the KTP family) and their nonlinear optical properties, for example, having the degree of pseudoinversion as a symmetric characteristic, it is necessary to primarily calculate this characteristic for the entire structure. This thesis is justified by the fundamental principles of symmetry in physical crystallography. The Neumann princeple, which sets a relationship between the symmetry of a medium (crystal) and the set of physical properties that are forbidden or allowed in this medium, deals with specifically the symmetry of the medium as a whole rather than the symmetry of its individual structural fragments within the unit cell. This approach was applied both in [8] and in this study. However, this does not depreciate the validity of the analysis of the characteristics of sublattices of individual types of atoms. Due to this analysis one can find sublattices with pseudosymmetric characteristics exhibiting a more significant sensitivity, for example, at a transition to doped compositions, and therefore, can determine to greater extent the behavior of the pseudosymmetric characteristics of crystal structures, as whole and physical properties of crystals.

# 6. Acknowledgements

This work was supported financially by the Ministry of Education and Science of the Russian Federation, project 14.B37.21.1158.

# REFERENCES

- C. Lee and E. V. Chuprunov, "Fedorov Pseudosymmetry of Crystals: Review," *Crystallography Reports*, Vol. 52, No. 1, 2007, pp. 1-11. <u>doi:10.1134/S1063774507010014</u>
- [2] E. V. Chuprunov and E. A. Soldatov and T. N. Tarkhova, "The Quantitative Estimation of the Symmetry of the Crystal Structures," *Kristallografiya*, Vol. 33, No. 3, 1988, pp. 759-761.
- [3] G. D. Stucky, M. L. F. Phillips and T. E. Gier, "The Potassium Titanyl Phosphate Structure Field: A Model for New Nonlinear Optical Materials," *Chemistry of Materials*, Vol. 1, No. 5, 1989, pp. 492-509. doi:10.1021/cm00005a008
- [4] N. I. Sorokina and V. I. Voronkova, "Structure and Properties of Crystals in the Potassium Titanyl Phosphate Family: A Review," *Crystallography Reports*, Vol. 52, No. 1, 2007, pp. 80-93. doi:10.1134/S1063774507010099
- [5] M. L. F. Phillips, T. E. Gier, M. M. Eddy, N. L. Keder and G. D. Stucky, "Inclusion Tuning of Nonlinear Optical Materials: KTP Isomorphs," *Solid State Ionics*, Vol. 32-33, Part 1, 1989, pp. 147-153.

doi:10.1016/0167-2738(89)90215-4

- [6] M. L. F. Phillips, W. T. A. Harrison and G. D. Stucky, "Nonlinear Optical Properties of New KTiOPO<sub>4</sub> Isostructures," *SPIE Inorganic Crystals for Optics, Electro-Optics, and Frequency Conversion*, Vol. 1561, 1991, pp. 84-92.
- [7] M. L. F. Phillips, W. T. A. Harrison, G. D. Stucky, E. M. McCarron, J. C. Calabrese and T. E. Gier, "Effects of Substitution Chemistry in the Potassium Titanyl Phosphate (KTiOPO<sub>4</sub>) Structure Field," *Chemistry of Materials*, Vol. 4, No. 1, 1992, pp. 222-233. doi:10.1021/cm00019a041
- [8] V. A. Ivanov, V. A. Burdov, M. O. Marychev, D. N. Titaev, M. A. Faddeev and E. V. Chuprunov, "On the Effect of Structural and Symmetrical Features of Potassium Titanyl Phosphate Crystals with Different Contents of Niobium, Antimony, and Zirconium on the Second-Harmonic Intensity," *Crystallography Reports*, Vol. 53, No. 4, 2008, pp. 678-682. <u>doi:10.1134/S1063774508040202</u>
- [9] D. N. Nikogosyan, "Nonlinear Optical Crystals: A Complete Survey," Springer Science+Business Media, USA, 2005. <u>doi:10.1007/b138685</u>
- [10] J. J. Carvajal, V. Nikolov, R. Sole, J. Gavalda, J. Massons, M.Rico, C. Zaldo, M. Aguilo and F. Díaz, "Enhancement of the Erbium Concentration in RbTiOPO<sub>4</sub> by Codoping with Niobium," *Chemistry of Materials*, Vol. 12, No. 10, 2000, pp. 3171-3180. doi:10.1021/cm000305c
- [11] J. J. Carvajal, J. L. Garcia-Mun, R. Sole, J. Gavalda, J. Massons, X. Solans, F. Díaz and M. Aguilo, "Charge Self-Compensation in the Nonlinear Optical Crystals Rb<sub>0.855</sub>Ti<sub>0.955</sub>Nb<sub>0.045</sub>OPO<sub>4</sub> and RbTi<sub>0.927</sub>Nb<sub>0.056</sub>Er<sub>0.017</sub>OPO<sub>4</sub>," *Chemistry of Materials*, Vol. 1, No. 10, 2003, pp. 2338-2345. doi:/10.1021/cm034044t
- [12] M. M. Eddy, T. E. Gier, N. L. Keder, G. D. Stucky, D. E. Cox, J. D. Bierlein and G. Jones, "Inclusion Tuning of Nonlinear Optical Materials: Sorbates on the KTP Structure," *Inorganic Chemistry*, 1988. Vol. 27, No. 11, 1988, pp. 1856-1858. doi:10.1021/ic00284a009
- [13] M. L. F. Phillips, W. T. A. Harrison and G. D. Stucky, "Influence of Electronic Configuration on the Structure and Optical Properties of Potassium Tin Oxide Phosphate," *Inorganic Chemistry*, Vol. 29, No. 17, 1990, pp. 3245-3247. doi:10.1021/ic00342a040
- [14] M. E. Hagerman and K. R. Poeppelmeier, "Review of the Structure and Processing-Defect-Property Relationships of Potassium Titanyl Phosphate: A Strategy for Novel Thin-Film Photonic Devices," *Chemistry of Materials*, Vol. 7, No. 4, 1995, pp. 602-621. doi:10.1021/cm00052a004
- [15] K. K. Rangan, B. R. Prasad, C. K. Subramanian and J. Gopalakrishnan, "Coupled Substitution of Niobium and Silicon in Potassium Titanyl Phosphate and Arsenate (KTiOPO<sub>4</sub> and KTiOAsO<sub>4</sub>. Synthesis and Nonlinear Optical Properties of KTi<sub>1-x</sub>Nb<sub>x</sub>OX<sub>1-x</sub>Si<sub>x</sub>O<sub>4</sub> (X = P, As)," *Inorganic Chemistry*, Vol. 32, No. 20, 1993, pp. 4291-4293. doi:10.1021/ic00072a022
- [16] L. K. Cheng, L. T. Cheng, J. D. Bierlein and F. C. Zumsteg, "Properties of Doped and Undoped Crystals of Single Domain KTiOAsO<sub>4</sub>," *Applied Physics Letters*, Vol.

62, No. 4, 1993, pp 346-348. doi:10.1063/1.108953

- [17] L. T. Cheng, L. K. Cheng, J. D. Bierlein and F. C. Zumsteg, "Nonlinear Optical and Electro—Optical Properties of Single Crystal CsTiOAsO<sub>4</sub>," *Applied Physics Letters*, Vol. 63, No. 19, 1993, pp. 2618-2620. doi:10.1063/1.110424
- [18] B. V. Mill', A. V. Butashin and S. Yu. Stefanovich, "New Compounds with KTiOPO<sub>4</sub>-NaSbOGeO<sub>4</sub>, AgSbOGeO<sub>4</sub> and AgSbOSiO<sub>4</sub> Structure," *Zhurnal Neorganicheskoi Khimii*, Vol. 38, No. 6, 1993, pp. 947-949.
- [19] W. T. A. Harrison and M. L. F. Phillips, "Syntheses, Structures, and Properties of RbScFAsO<sub>4</sub> and CsScFAsO<sub>4</sub>: Scandium-Containing Analogues of Potassium Titanyl Phosphate (KTiOPO<sub>4</sub>)," *Chemistry of Materials*, Vol. 11, No. 12, 1999, pp. 3555-3560. doi:10.1021/cm990335j
- [20] F. C. Zumsteg, J. D. Bierlein and T. E. Gier, "K<sub>x</sub>Rb<sub>1-x</sub>-TiOPO<sub>4</sub>: A New Nonlinear Optical Material," *Journal of Applied Physics*, Vol. 47, No. 11, 1976, pp. 4980-4985. <u>doi:10.1063/1.322459</u>
- [21] V. I. Chani, K. Shimamura, S. Endo and T. Fukuda, "Growth of Mixed Crystals of the KTiOPO<sub>4</sub> (KTP) Family," *Journal of Crystal Growth*, Vol. 171, No. 3-4, 1997, pp. 472-476. doi:10.1016/S0022-0248(96)00693-8
- [22] M. L. F. Phillips, W. T. A. Harrison, T. E. Giers, G. D. Stucky, G. V. Kulkarni, J. K. Burdett, "Electronic Effects of Substitution Chemistry in the Potassium Titanyl Phosphate (KTiOPO<sub>4</sub>) Structure Field: Structure and Optical Properties of Potassium Vanadyl Phosphate," *Inorganic Chemistry*, Vol. 29, No. 11, 1990, pp. 2158-2163. doi:10.1021/ic00336a024
- [23] J. Gopalakrishnan, K. K. Rangan, B. R. Prasad and C. K. Subramanian, "New Transition Metal Phosphates Related to KTiOPO<sub>4</sub>. Synthesis of K<sub>0.5</sub>M<sub>0.5</sub>M<sub>0.5</sub>OPO<sub>4</sub> (M = Nb, Ta; M' = Ti, V) and K<sub>1-x</sub>Ti<sub>1-x</sub>V<sub>x</sub>OPO<sub>4</sub> Exhibiting Nonlinear Optical Behavior," *Journal of Solid State Chemistry*, Vol. 111, No. 1, 1994, pp. 41-47. doi:10.1006/issc.1994.1196
- [24] A. Peña, J. J. Carvajal, J. Massons, Jna. Gavaldà, F. Dĺaz and M. Aguiló, "Yb: Ta:RbTiOPO<sub>4</sub>, A New Strategy to Further Increase the Lanthanide Concentration in Crystals of the KTiOPO<sub>4</sub> Family," *Chemistry of Materials*, Vol. 19, No. 16, 2007, pp. 4069-4076. doi:/10.1021/cm070887z
- [25] T. Hikita, "35B-1 (A, B)(C, D)OPO<sub>4</sub> (A, B = H, NH<sub>4</sub>, Na, K, Rb, Ag, Cs, Tl; C, D = Ti, V, Nb)," In: Y. Shiozaki, E. Nakamura, T. Mitsui Eds., *SpringerMaterials—The Landolt-Börnstein Database*, Vol. 36B1, 2004, pp 1-28, 9e. doi:10.1007/10635019\_143
- [26] S. K. Kurtz and T. T. Perry, "A Powder Technique for the Evaluation of Nonlinear Optical Materials," *Journal of Applied Physics*, 1968. Vol. 39, No. 8, 1968, pp. 3798-3813. doi:10.1063/1.1656857
- [27] J. P. Dougherty and S. K. L. Kurtz, "A Second Harmonic Analyzer for the Detection of Non-Centrosymmetry," *Journal of Applied Crystallography*, Vol. 9, Part 2, 1976, pp. 145-158. doi:10.1107/S0021889876010789
- [28] P. D. Maker, R. W. Terhune, M. Nisenoff and C. M. Savage, "Effects of Dispersion and Focusing on the Production of Optical Harmonics," *Physical Review Letters*, Vol. 8, No. 1, 1962, pp. 21-22. doi:10.1103/PhysRevLett.8.21

- [29] J. Jerphagnon and S. K. Kurtz, "Optical Nonlinear Susceptibilities: Accurate Relative Values for Quartz, Ammonium Dihydrogen Phosphate, and Potassium Dihydrogen Phosphate," *Physical Review B*, Vol. 1, No. 4, 1970, pp. 1739-1744. doi:10.1103/PhysRevB.1.1739
- [30] P. A. Thomas and B. E. Watts, "An Nb-doped Analogue of KTiOPO<sub>4</sub>; Structural and Nonlinear Optical Properties," *Solid State Communications*, Vol. 73, No. 2, 1990, pp. 97-100. doi:10.1016/0038-1098(90)91025-C
- [31] T. Yu. Losevskaya, O. A. Alekseeva, V. K. Yanovskii, V. I. Voronkova, N. I. Sorokina, V. I. Simonov, S. Yu. Stefanovich, S. A. Ivanov, S. Eriksson and S. A. Zverkov, "Structure and Properties of Niobium-Doped Potassium Titanyl Phosphate Crystals," *Crystallography Reports*, Vol. 45, No. 5, 2000, pp. 739-743. doi:10.1134/1.1312912
- [32] O. A. Alekseeva, M. K. Blomberg, V. N. Molchanov, I. A. Verin, N. I. Sorokina, T. Yu. Losevskaya, V. I. Voronkova and V. K. Yanovskii, "Refinement of the K<sub>0.96</sub>Ti<sub>0.96</sub>Nb<sub>0.04</sub>OPO<sub>4</sub> Structure," *Crystallography Reports*, Vol. 46, No. 4, 2001, pp. 642-646. doi:10.1134/1.1387131
- [33] V. K. Yanovski, V. I. Voronkova, T. Yu. Losevskaya, S. Yu. Stefanovich, S. A. Ivanov, V. I. Simonov and N. I. Sorokina, "Growth and Properties of Nb-or Sn-Doped KTiOPO<sub>4</sub> Crystals," *Crystallography Reports*, Vol. 47, Suppl. 1, 2002, pp. S99-S104. <u>doi:10.1134/1.1529963</u>
- [34] O. A. Alekseeva, N. I. Sorokina, I. A. Verin, T. Yu. Losevskaya, V. I. Voronkova, V. K. Yanovskii and V. I. Simonov, "Structure and Properties of Potassium Titanyl Phosphate Single Crystals with 7 and 11 at. % Nb," *Crystallography Reports*, Vol. 48, No. 2, 2003, pp. 205-211. doi:10.1134/1.1564196
- [35] V. I. Voronkova, V. K. Yanovskii, T. Yu. Losevskaya, S. Yu. Stefanovich, S. A. Zver'kov, O. A. Alekseeva and N. I. Sorokina, "Electrical and Nonlinear Optical Properties of KTiOPO<sub>4</sub> Single Crystals Doped with Niobium, Antimony, and Tantalum," *Crystallography Reports*, Vol. 49, No. 1, 2004, pp. 123-129. doi:10.1134/1.1643973
- [36] A. P. Dudka, I. A. Verin, V. N. Molchanov, M. K. Blomberg, O. A. Alekseeva, N. I. Sorokina, N. E. Novikova and V. I. Simonov, "Structural Study of K<sub>0.93</sub>Ti<sub>0.93</sub>Nb<sub>0.07</sub>OPO<sub>4</sub> Single Crystals at 30 K," *Crystallography Reports*, Vol. 50, No. 1, 2005, pp. 36-41. <u>doi:10.1134/1.1857242</u>
- [37] N. I. Sorokina, V. I. Voronkova, V. K. Yanovskii, I. A. Verin and V. I. Simonov, "Crystal Structures of Compounds in the KTiOPO<sub>4</sub>-KGeOPO<sub>4</sub> System," *Crystallography Reports*, Vol. 41, No. 3, 1996, pp. 435-435.
- [38] L. Wen, N. I. Sorokina, V. I. Voronkova, V. K. Yanovskii, I. A. Verin, A. G. Vigdorchik and V. I. Simonov, "Crystal Structure of KTi<sub>0.93</sub>Sn<sub>0.07</sub>OPO<sub>4</sub>," *Crystallography Reports*, Vol. 45, No. 3, 2000, pp. 386-388. doi:10.1134/1.171203
- [39] L. Wen, V. I. Voronkova, V. K. Yanovskii, S. Y. Stefanovich, N. I. Sorokina and I. A. Verin, "Growth and Properties of KTi<sub>1-x</sub>Sn<sub>x</sub>OPO<sub>4</sub> Crystals," *Inorganic Materials*, Vol. 37, No. 3, 2001, pp. 290-293. doi:10.1023/A:1004129817488
- [40] O. D. Krotova, N. I. Sorokina, I. A. Verin, V. I. Voronkova, V. K. Yanovskii and V. I. Simonov, "Structure

and Properties of Single Crystals of Tin-Doped Potassium Titanyl Phosphate," *Crystallography Reports*, Vol. 48, No. 6, 2003, pp. 925-932. doi:10.1134/1.1627433

- [41] V. I. Voronkova, V. K. Yanovskii, I. N. Leont'eva, E. I. Agapova, E. P. Kharitonova, S. Y. Stefanovich and S. A. Zver'kov, "Growth and Properties of Zr-Doped KTiOPO<sub>4</sub> Crystals," *Inorganic Materials*, Vol. 40, No. 12, 2004, pp. 1321-1323. doi:10.1007/s10789-005-0018-z
- [42] O. A. Alekseeva, A. P. Dudka, N. I. Sorokina, A. Pietraszko, M. Kh. Rabadanov, E. I. Agapova, V. I. Voronkova and V. I. Simonov, "Crystal Structure of Potassium Titanyl Phosphate Doped with Zirconium," *Crystallography Reports*, Vol. 52, No. 4, 2007, pp. 659-667. doi:10.1134/S106377450704013X
- [43] N. E. Novikova, I. A. Verin, N. I. Sorokina, O. A. Alekseeva, E. I. Agapova and V. I. Voronkova, "Structural Reasons for the Nonlinear Optical Properties of KTi<sub>0.96</sub>Zr<sub>0.04</sub>OPO<sub>4</sub> Single Crystals," *Crystallography Reports*, Vol. 54, No. 2, 2009, pp. 219-227. doi:10.1134/S1063774509020096
- [44] O. A. Alekseeva, O. D. Krotova, N. I. Sorokina, I. A. Verin, T. Y. Losevskaya, V. I. Voronkova, V. K. Yanovskii and V. I. Simonov, "Structure and Properties of Antimony-Doped Potassium Titanyl Phosphate Single Crystals," *Crystallography Reports*, Vol. 50, No. 4, 2005, pp. 554-565.
- [45] V. V. Atuchin, O. A. Alekseeva, V. G. Kesler, L. D. Pokrovsky, N. I. Sorokina and V. I. Voronkova, "Chemical Shifts of Atomic Core Levels and Structure of K<sub>1-x</sub>Ti<sub>1-x</sub>Sb<sub>x</sub>OPO<sub>4</sub>, x=0-0.23, Solid Solutions," *Journal of Solid State Chemistry*, Vol. 179, No. 8, 2006, pp. 2349-2355. doi:10.1016/j.jssc.2006.04.025
- [46] V. I. Voronkova, I. N. Leont'eva, N. I. Sorokina, T. I. Ovsetsina and I. A. Verin, "Growth, Structure, and Properties of KTiOPO<sub>4</sub> Crystals Doped with Iron," *Crystallography Reports*, Vol. 51, No. 6, 2006, pp. 977-981. doi:10.1134/S1063774506060071
- [47] E. I. Orlova, E. P. Kharitonova, N. E. Novikova, I. A. Verin, O. A. Alekseeva, N. I. Sorokina and V. I. Voronkova, "Synthesis, Properties, and Structure of Potassium Titanyl Phosphate Single Crystals Doped with Hafnium," *Crystallography Reports*, Vol. 55, No. 3, 2010, pp. 404-411. doi:10.1134/S1063774510030077
- [48] E. I. Orlova, N. E. Novikova, A. Gagor, I. A. Verin, A. Pietraszko, D. A. Belov and V. I. Voronkova, "Growth of KTiOPO<sub>4</sub> Crystals Doped with Zinc and Studies of Their Physical Properties and Specific Structural Features,"

*Crystallography Reports*, Vol. 55, No. 4, 2010, pp. 594-601. doi:10.1134/S1063774510040103

- [49] L. Wen, V. I. Voronkova, V. K. Yanovskii, N. I. Sorokina, I. A. Verin and V. I. Simonov, "Synthesis, Atomic Structure, and Properties of Crystals in the RbTiOPO<sub>4</sub>-CsTiPO<sub>5</sub> System," *Crystallography Reports*, Vol. 45, No. 3, 2000, pp. 380-385. doi:10.1134/1.171202
- [50] E. I. Agapova, V. I. Voronkova, E. P. Kharitonova, I. N. Leont'eva, S. Y. Stefanovich, N. I. Sorokina, A. P. Dudka, O. A. Alekseeva and N. N. Kononkova, "Synthesis and Properties of Zirconium-Doped RbTiOPO<sub>4</sub> Single Crystals," *Crystallography Reports*, Vol. 53, No. 2, 2008, pp. 285-290. doi:10.1134/S1063774508020181
- [51] O. A. Alekseeva, A. P. Dudka, N. E. Novikova, N. I. Sorokina, E. I. Agapova and V. I. Voronkova, "Structure of the RbTi<sub>0.98</sub>Zr<sub>0.02</sub>OPO<sub>4</sub> Single Crystal at Temperatures of 293 and 105 K," *Crystallography Reports*, Vol. 53, No. 4, 2008, pp. 557-564. <u>doi:10.1134/S1063774508040056</u>
- [52] A. R. Peña, "Ytterbium and Erbium Doped RbTi<sub>1-x</sub>M<sub>x</sub>OPO<sub>4</sub> (M=Nb or Ta) Crystals. New Laser and Nonlinear Bifunctional Materials," Doctoral Thesis, Física I Cristallografia de Materials (FiCMA), Tarragona, 2007. http://www.tesisenred.net/handle/10803/9087
- [53] M. T. Anderson, M. L. F. Phillips, M. B. Sinclair and G. D. Stucky, "Synthesis of Transition-Metal-Doped KTiOPO<sub>4</sub> and Lanthanide-Doped RbTiOAsO<sub>4</sub> Isomorphs that Absorb Visible Light," *Chemistry of Materials*, Vol. 8, No. 1, 1996, pp. 248-256. <u>doi:10.1021/cm950352i</u>
- [54] N. V. Somov and E. V. Chuprunov, "Pseudosymmetry of Atomic Crystal Structures," In: E. V. Chuprunov, Ed., *Crystallography: Laboratory Workshop*, Fizmatlit, Moskow, 2005, pp. 80-90.
- [55] T. Hahn, "International Tables for Crystallography. Vol. A: Space-Group Symmetry," Springer, Berlin, 2005. <u>doi:10.1107/97809553602060000100</u>
- [56] Inorganic Crystal Structure Data-base. Version 2010-1. http://www.fiz-karlsruhe.de/icsd.html/
- [57] T. Nakagawa, T. Matsumoto, V. I. Chani and T. Fukuda, "K<sub>2</sub>NbAlO<sub>2</sub>[(As,Nb)O<sub>4</sub>]<sub>2</sub>, Isostructural with KTiOPO<sub>4</sub>," *Acta Crystallographica Section C*, Vol. 55, 1999, pp. 1391-1393. doi:10.1107/S0108270199005144
- [58] K. W. Godfrey, P. A. Thomas and B. E. Watts, "The Structural and Optical Properties of Potassium Titanyl Phosphate and Its Analogues," *Materials Science and Engineering B*, Vol. 9, No. 4, 1991, pp. 479-483.