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ABSTRACT 

With the expansion of distributed generation systems and demand response programs, the need to fully utilize distribu- 
tion system capacity has increased. In addition, the potential bidirectional flow of power on distribution networks de- 
mands voltage visibility and control at all voltage levels. Distribution system state estimations, however, have tradition- 
ally been less prioritized due to the lack of enough measurement points while being the major role player in knowing 
the real-time system states of active distribution networks. The advent of smart meters at LV loads, on the other hand, is 
giving relief to this shortcoming. This study explores the potential of bottom up load flow analysis based on customer 
level Automatic Meter Reading (AMRs) to compute short time forecasts of demands and distribution network system 
states. A state estimation frame-work, which makes use of available AMR data, is proposed and discussed. 
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1. Introduction 

Distribution system state estimation provides the real- 
time system states to a Distribution Management System 
(DMS) enabling operators to monitor and control the 
operation of the distribution system. With the transfor- 
mation of distribution networks from passive networks to 
active networks, following widespread installations of 
Distributed Generation (DG) and Smart Metering (SM) 
technologies, the state estimation tool is becoming a core 
component. In fact, this tool has been used widely and 
for a long time with transmission systems. The utilization 
of the tool in distribution systems has been lagging due 
to two reasons: the first was the absence of widespread 
measurement, in distribution networks and the second is 
the low need for active management of the distribution 
network. Nowadays, however, smart meters are being 
installed down to the customer level opening up the net- 
work for more visibility. Nowadays, for effective DG 
and demand response applications, knowledge and regu- 
lation of voltage levels at every node of the active net- 
works is becoming crucial [1-3]. In addition, state esti- 
mation has a central benefit in enabling the full utiliza- 
tion of distribution system capacity [4]. 

A load modeling procedure is a requirement of any 

distribution circuit state estimator. Load modeling tech- 
niques provide real-time estimates of customer load de- 
mands. 

There has also been the emergence of innovative ideas 
from power load serving entities to increase efficiency, 
utilize assets to their utmost, and provide targeted cus- 
tomer services. The consequent impacts on feeder level 
load profile and diversity, however, are not known yet. 
The question of how far the peak load can be brought 
down still needs addressing. Therefore, the empirically 
driven, non-interactive load models need to give way to 
sophisticated models that simulate the independent be- 
havior of those components that contribute to the feeder 
load shape [5]. 

With the expansion of ICT infrastructure and the ad- 
vent of smart meters, network information such as con- 
nectivity and measurement data are assumed to be read- 
ily available in real time. Therefore, a load flow analysis 
can effectively utilize both the component based and 
measurement based load modeling outputs as shown in 
Figure 1.  

In this study customer level AMR meter reading is 
used to build day-after curves of LV node voltages and 
power. The impact of load modeling at different node 
points in the network on the load flow analysis is also 
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compared. This paper formulates and proposes a distri- 
bution system load modeling framework based on AMR 
metered consumption data. The potential of detailed cus- 
tomer level load modeling built up from component 
modeling is discussed. 

This paper presents observations from the application 
of the three building blocks of an active distribution 
network state estimation framework as shown in Figure 
1. Section 2 presents the load modeling techniques and 
their relevance in today’s active distribution network. 
Section 3 presents the test network used in this study, 
which has the topology and configuration of a typical 
Finnish sub-urban distribution network. The ARX model- 
based one day ahead load forecasting is explained in 
Section 4. Section 5 formulates and applies a simple 
AMR metering based load flow analysis technique and 
the last section will conclude the findings. 

2. Load Modeling 

In practice, domestic smart meters do not transmit data 
immediately after measurement or on an hourly basis, at 
least at the time of this study. State estimation is there- 
fore most likely to depend on the previous day’s meas- 
urement, requiring the application of very short time load 
forecasting, especially for the next day. Before perform- 
ing a load flow analysis or any sort of load estimation 
and forecasting, one has to model the consumer load. The 
term “load model” is, however, used both for component 
based and measurement based load models of the distri- 
bution system. Before continuing, we would like to clar- 
ify these definitions. 

2.1. Component Based Load Modeling 

This models customer loads as different component 
based load types explaining the relationship between the  
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Figure 1. A state estimation framework for an active dis- 
tribution network. 

power, voltage and current [6,7]. It is usually referred to 
as a ZIP model, with constant Impedance (Z), Current (I) 
or Power (P). This modeling technique is explained and 
formulated in Table 1. In fact, the ZIP model may also 
be expanded by adding an exponential load type, where 
the load power varies with the voltage magnitude in an 
exponential relationship. The general voltage-load cur- 
rent characteristic is plotted in Figure 2. 

According to [7], residential areas have a ratio of con- 
stant power/constant impedance of 70/30 in strong sum- 
mer peaking and 30/70 in winter peaking days. In the 
coming sections the component based modeling used in 
the load flow analysis is presented. Section 3 presents the 
component load model of a typical Finnish household. 
 

Table 1. Component based load modeling [6]. 

 2 1.3

1 2 3o oP P a aV a V a V    8  

 2 1.38

1 2 3o oQ Q b bV b V b V     

1 2 3 1 2 3 1o oa a a a b b b b         

Type Explanation Example loads 

Constant  
Impedance 
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square of the  

voltage magnitude 
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Electric heating 
Incandescent lighting
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Figure 2. V-I characteristics curves for ZIP model. 
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2.2. Measurement Based Load Modeling 

This establishes a relationship between certain inde- 
pendent variables such as weather conditions, the day 
type and the total load. It aims to extract regression coef- 
ficients from static past data for possible future forecast- 
ing. These models could also incorporate dynamic be- 
havior such as in ARMAX (Auto Regressive Moving 
Average and Explanatory variable (X)). The multiple 
regressions in (1) explain the formulation of such mod- 
eling [8]. 

t t tS c x t                  (1) 

where 

t

t sampling time, 
S  measured system load data, 

tx  vector of adapted variables such as time, tempera- 
ture, light intensity, wind speed, humidity, day type 
(workday, weekend), etc., 

tc  regression coefficients, and 

t  model error at time t. 
Households belonging to the direct electric heating 

group, for instance, will have different regression coeffi- 
cients to those belonging to the district heating group. 
The target of this load modeling type is estimating un- 
measured load points based on statistical information and 
other variable measurements, or forecasting future load. 
A pure time series model with no additional explanatory 
variables is proposed in [9], as shown in (2). 

before

before

1,today
,today ,day

1,day

i
i

i

kWh
kWh kWh

kWh




  i      (2) 

The model in (2) requires the past hour consumption 
of customer i. Smart meters, however, collect electricity 
consumption data at half hour or one hour intervals and 
this metering data will be sent to the utility the following 
day. The model proposed in [9] would not be practical in 
today’s infrastructure. With one day data delay other 
time series models such as Autoregressive Moving-Av- 
erage (ARMA) and Autoregressive Integrated Moving- 
Average (ARIMA) will also fail to keep up with the dy- 
namism of the load [8]. These models start to lose their 
relevance as they tend to depend on their own previous 
hour estimations. We applied the ARX (Auto Regressive 
with eXogeneous input) model, which utilizes previous 
day AMR metered consumption data as well as same day 
explanatory variables such as temperature, day structure, 
humidity, etc. Section 4 presents the detailed formulation 
of the ARX model. 

2.3. The State Estimation Framework 

The state estimation framework presented in Figure1 
consists of three fundamental functions: the measurement 
based modeling, the component based modeling and the 

load flow analysis. The measurement based modeling 
explained in Section 2.2 provides real time or near future 
forecasts of the loading situation while the component 
based modeling in Section 2.1 is used to undertake an 
effective and detailed load flow analysis by translating 
nodal power demand to voltage magnitude and phase 
(see Figure 1). Not being limited to hourly metered 
household consumption the framework in Figure 1 pro- 
poses a more detailed load flow analysis based on com- 
ponent level consumptions. The load-voltage characteris- 
tics will be comprehensive in including the special char- 
acteristics of certain load types with voltage; besides, the 
disaggregated load is essential for real-time and proactive 
demand response programs [10]. 

Load disaggregation is also needed for component 
based modeling. However, since the resolution of AMR 
metering is usually 15 minutes or above, the use of load 
disaggregation techniques through feature recognition 
(Non-Intrusive Load Monitoring systems) are not practi- 
cal options. Statistical load analysis techniques such as 
Conditional Demand Analysis (CDA), on the other hand, 
can be used to disaggregate measurements at connection 
boxes to individual appliances as long as a detailed ap- 
pliance survey is undertaken in the area, at least for sam- 
ple households [11]. Using the CDA technique the 
household hourly metered kWh can be disaggregated into 
major appliance consumptions, which can consequently 
be grouped under the ZIP classification of loads shown in 
Table 1.  

In this study we do not include component based mod- 
eling from the disaggregation results of the CDA tech- 
nique applied to certain Finnish households. Nevertheless, 
measurement based modeling is applied and explained in 
section 4.The load flow analysis without the inclusion of 
component level disaggregation is presented in section 5. 
We believe, in this study, the introduction of a frame- 
work for load flow analysis and the presentation of illus- 
trative applications will at least indicate the possibilities. 

3. Test Network 

The test network used in this study was laid out by a 
network planning algorithm capable of producing opti- 
mized Greenfield networks or expansion and upgrade 
plans that utilize existing network. A fully radially oper- 
ated network without distributed generation is used. 
However, the motivation of this study, as stated in Sec- 
tion 1, is to utilize load flow analysis techniques and 
AMR metering data for active distribution network 
management. The profile of households type connected 
to the test network is shown in Table 2 and Figure 3 lays 
out the positions of the household as well as the west side 
network. 

As shown in Table 3, there are 1800 households be- 
longing to one of the four primary heating type groups.  
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Table 2. Distribution of LV customers of the four heating 
types under the sixteen secondary substations. 

No. DE DIST GSHP STORE 

1 151 6 0 0 

2 116 0 0 0 

3 85 0 0 0 

4 101 0 0 0 

5 20 75 0 0 

6 101 8 0 0 

7 99 0 0 0 

8 0 213 0 5 

9 0 126 0 26 

10 0 150 0 0 

11 0 84 0 0 

12 0 70 0 27 

13 0 105 3 0 

14 0 119 4 0 

15 0 0 56 0 

16 0 4 46 0 

 
Table 3. Greenfield radial distribution network data. 

1 Primary Substation (40 MVA, 110/20 kV) 

16 secondary substations (1.6 MVA, 20/0.4 kV) 

Heating type No. 

Direct Electric (DE) 673 

District heating (DIST) 960 

Ground Source HP (GSHP) 109 

1800 Households 

Electric storageheating (STORE) 58 

 
These households are geographically distributed to build 
the simulated MV/LV network following geographical 
boundaries, street grids and the availability of, for exam- 
ple, district heating, as shown in Figure 3(a). On the 
other hand, we have actual hourly metered consumptions 
of one year between 2008 and 2009 for the same number 
of households and heating type profile. For both load 
forecasting and load flow analysis the actual one year 
hourly consumptions are randomly assigned to the indi- 
vidual households connected to the simulated network 
(see Figure 3(b)). 

4. One Day Ahead Load Forecasting 

The day ahead load forecasting is based on a simple 

autoregressive model supported by exogenous variables; 
it is also called the ARX model. The model has lagging 
hourly consumption information from the same hour in 
the previous week and the previous day same hour load, 
since available measurements are only from the previous 
day’s metering. The effects of the previous two hours’ 
temperatures together with real time temperature are in- 
cluded in the explanatory variable. The day structure 
effect is included through weekday and weekend dummy 
variables, as shown in (3). 

1 24 2 168 3 4 1

5 2 6 7 8

t t t t t

t d

Y c Y Y T T

T DL WD WE

   

t   
  



    

    
     (3) 

where: 
:tY
:T
 kWh consumption at hour t 

t

DL
 Temperature at hour t (˚C) 

:d  Day length to represent the light amount of day 
d 

:  Weekday dummy variables (0 or 1) WD
:WE  Weekend dummy variables (0 or 1) 

c: Constant 
:t  White noise 

The ARX based one day ahead load forecasting is car- 
ried out at three points in the network. The parameters 

1 2 3 8, , ,     are estimated using an Ordinary Least 
Squares (OLS) estimator. The results are plotted in Fig- 
ure 4 and the corresponding Root Mean Square Errors 
(RMSE) and Mean Absolute Percentage Errors (MAPE) 
are given for comparison in Table 4. 

Case 1:  
Forecasting individual customers: Each and every 

household is modeled individually and a one day ahead 
forecast is carried out. The consumptions are then 
aggregated hierarchically at their feeding secondary 
substation and then the primary substation.  

Case 2:  
Forecasting at secondary substations: Consumptions 

of individual households connected to a secondary 
substation are aggregated before application of the 
forecasting technique. 

Case 3:  
Forecasting at the primary substation: All consump- 

tions under the primary substation are aggregated and the 
aggregated load is modeled and forecasted for the next 
day. 
 

Table 4. RMSE and MAPE comparisons. 

 RMSE (kWh) MAPE (%) 

Feeder 0 0 

Case 1 196.61 9.27 

Case 2 160.06 6.88 

Case 3 173.46 7.36 
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(a) 

 
(b) 

Figure 3. The Greenfield test network. (a) Showing the distribution of household types, MV/LV and HV/MV substations; (b) 
WEST side network. 
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Figure 4. kWh at primary substation connecting 1800 
households in Figure 3. 
 

The error is expected to be greater with the attempt to 
model individual customer level electric loads as these 
loads do not follow any known distribution function [12]. 
There is, therefore, a trade-off between the interest in a 
customer level detailed load flow analysis and obtaining 
a model with an acceptable error margin. Nevertheless, 
the results in our study suggest that individual customer 
level modeling can be attained with a low error differ- 

ence compared to the secondary substation or primary 
substation level load modeling (see Table 5 and Figure 4). 
However, the modeling technique needs to be robust and 
capable of providing error margins. It has to take into 
consideration coincidence and correlation factors among 
individual customers. 

5. Load Flow Analysis Based on Customer  
Level Load Measurement 

Bidirectional load flow and the integration of DG are the  
driving forces behind the interest in customer connection 
point voltage levels in real time. The load flow analysis 
we implemented uses a simple Backward/Forward sweep 
technique as formulated in Equations (4) to (7). Due to 
the different voltage levels a per-unit analysis is used. 

  2

node node * *brh brhS S PM D I Z  .      (4) 

 *

node nodebrhI S V                      (5) 

*brh brh brhV I Z                        (6) 
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node 1 * brhV PM  V                    (7) 

where: 

node

PM: is the node path matrix from the primary substa- 
tion to every node  

:S  is  in kWh at a node P jQ

D: is a diagonal matrix of equal size to PM 
:brhI  current flowing on the branch between two 

nodes (A) 
:brhZ  is the impedance of a branch between two 

nodes  (ohms) R jX
:brhV  Voltage phasor difference over a branch be- 

tween two nodes  

node :V
.*

 voltage level at a node 
 Matrix element-by-element multiplication 

Including the secondary substations there are 1816 
node points in the test network where the voltage magni- 
tude and angle are evaluated. 

Results in Figures 5-7 show the hourly voltage pro- 
files of the distribution network up to the LV customer 
level node. In this load flow analysis no voltage regula- 
tion is involved and the results show a cyclic voltage 
profile following the trend of the power itself. With this  
 
Table 5. RMSE (kWh)comparisons between individual cus- 
tomer forecasts and secondary substation forecasts for the 
16 substations. 

No. Sub. Customer. No. Sub. Customer. 

1 25.59 26.42 9 14.37 16.86 

2 20.15 21.04 10 9.8 15.48 

3 14.46 14.93 11 6.55 10 

4 16.71 16.34 12 10.58 11.02 

5 8.69 11.1 13 8.34 13.4 

6 17.97 18.2 14 8.8 13.48 

7 17.02 17.55 15 15.62 15.97 

8 14.38 23.69 16 13.08 12.92 

resolution, the impact of intermittent energy sources such 
as solar panels can be studied more clearly. As the sub- 
station voltage profile in Figure 8 shows, load forecasts 
of individual customers can be also used to forecast 
voltage profiles one day ahead. It gets more interesting 
when forecasts of wind and sun radiation are included 
together with individual load forecasts to give real-time 
and one day ahead visibility of the network state. 

6. Conclusions and Discussions 

Indeed load forecasting at secondary substations experi- 
ences lower error than customer level forecasting, as 
shown in Tables 4 and 5. The quest for customer level 
voltage visibility, however, requires the redistribution of 
substation level forecasted load to individual households 
using statistical information. Referring to the results 
shown in Tables 4 and 5, it is encouraging that there is 
little difference in the errors committed when load fore- 
casting is performed at customer points and at secondary 
substations. The RMSE of voltage forecast using cus- 
tomer forecasted loads was about 0.004 pu and the 
MAPE is less than 1% (see Figure 8). Therefore cus- 
tomer level load forecasting can be used to conduct load 
flow analysis giving forecasted customer level voltages. 

A load flow analysis based on customer point meter 
reading can be used to compute LV node voltage levels. 
The results in Figures 5-7 show meaningful voltages. 
These results also show that in a traditional suburban 
distribution network (i.e. without DGs), there seems to be 
no voltage level problem, as it stayed in the acceptable 
margin of ±5%. 

The component based load modeling which defines the 
relationship between power and voltage plays a great role 
in distribution system state estimation. The disaggrega- 
tion of customer consumption to household appliances is  
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Figure 5. One year hourly voltage profile of the node experiencing the highest voltage drop in the network (MV/LV: 20/0.4 
kV). This is without the intrusion of voltage regulation mechanisms such as capacitor banks or tap changing transformers. 
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Figure 6. Secondary substation voltages at the hour of the year where the highest voltage drop is experienced at the LV node 
in Figure 5. (i.e. 01-Jan-2009 23:00:00-00:00:00). 
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Figure 7. Voltage profile of nodes along the longest path in the network for their mean hourly consumption. On the path 
there are four secondary substations and 22 LV customers. 
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Figure 8. Average voltage profile of the 16 secondary substations for 10 days using real AMR measurement and forecasted- 
customer load (Case 1 in Section 4). 
 
the prerequisite for component modeling. Through load 
disaggregation and component based modeling, the im- 
pact of active demand response programs on distribution 
networks can be viewed more clearly. 

In our following research plan, the current network 
will be expanded to include DGs. Component based 
modeling will be included in the load flow analysis  

where the impact of real time demand response programs 
on the active distribution network will be investigated. 
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