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Abstract 
 
The unsteady magnetohydrodynamic flow of an electrically conducting viscous incompressible non-Newto- 
nian Casson fluid bounded by two parallel non-conducting porous plates has been studied with heat transfer 
considering the Hall effect. The fluid is acted upon by a uniform and exponential decaying pressure gradient. 
An external uniform magnetic field is applied perpendicular to the plates and the fluid motion is subjected to 
a uniform suction and injection. The lower plate is stationary and the upper plate is suddenly set into mo- 
tion and simultaneously suddenly isothermally heated to a temperature other than the lower plate temperature. 
Numerical solutions are obtained for the governing momentum and energy equations taking the Joule and 
viscous dissipations into consideration. The effect of unsteady pressure gradient, the Hall term, the parameter 
describing the non-Newtonian behavior on both the velocities and temperature distributions have been stud- 
ied. 
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1. Introduction 
 
The study of Couette flow in a rectangular channel of an 
electrically conducting viscous fluid under the action of a 
transversely applied magnetic field has immediate appli-
cations in many devices such as magnetohydrodynamic 
(MHD) power generators, MHD pumps, accelerators, 
aerodynamics heating, electrostatic precipitation, poly- 
mer technology, petroleum industry, purification of 
crude oil and fluid droplets sprays. Channel flows of a 
Newtonian fluid with heat transfer were studied with or 
without Hall currents by many authors [1-10]. These 
results are important for the design of the duct wall and 
the cooling arrangements. The most important non- 
Newtonian fluid possessing a yield value is the Casson 
fluid, which has significant applications in polymer 
processing industries and biomechanics. Casson fluid is a 
shear thinning liquid which has an infinite viscosity at a 
zero rate of shear. Casson’s constitutive equation repre- 
sents a nonlinear relationship between stress and rate of 
strain and has been found to be accurately applicable to 
silicon suspensions, suspensions of bentonite in water 

and lithographic varnishes used for printing inks [11-13]. 
Many authors [14-20] studied the flow or/and heat trans- 
fer of a non-Newtonian fluids in different geometries. 
The effect of time dependent pressure gradient on un- 
steady dusty fluid was studied by Rukmangadachari [21] 
in a rectangular duct and Gireesha et al. [22] in a nholo-
nomic coordinates system. 

Attia [10] studied the influence of the Hall current on 
the velocity and temperature fields of an unsteady Hart-
mann flow of a conducting Newtonian fluid between two 
infi- nite non-conducting horizontal parallel and porous 
plates. Attia and Sayed-Ahmed [17] studied the influence 
of the Hall current on the velocity and temperature fields 
of an unsteady Couettee flow of a conducting Casson 
fluid between two infinite non-conducting horizontal 
parallel plates with constant pressure gradient. The ex-
tension of such problem to the case of Couettee flow of 
non-Newtonian Casson fluid has been done in the 
present study. The upper plate is moving with a uniform 
velocity while the lower plate is stationary. The fluid is 
acted upon by an exponentially decaying pressure gra-
dient, uniform suction and injection from above and be-
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low, respectively. The fluid is also, subjected to a uni-
form magnetic field perpendicular to the plates. The Hall 
current is taken into consideration while the induced 
magnetic field is neglected by assuming a very small 
magnetic Reynolds number [5]. The two plates are kept 
at two different but constant temperatures. This configu-
ration is a good approximation of some practical situa-
tions such as heat exchangers, flow meters, and pipes 
that connect system components. The Joule and viscous 
dissipations are taken into consideration in the energy 
equation. The governing momentum and energy equa-
tions are solved numerically using the finite difference 
approximations. The inclusion of unsteady pressure gra-
dient, the Hall current, the suction and injection, and the 
non-Newtonian fluid characteristics leads to some inter-
esting effects on both the velocity and temperature fields. 
 
2. Formulation of the Problem 
 
The geometry of the problem is shown in Figure 1. The 
fluid is assumed to be laminar, incompressible and ob-
eying a Casson model and flows between two infinite 
horizontal plates located at the y =  h planes and extend 
from x = - to  and from z = - to . The upper plate 
is suddenly set into motion and moves with a uniform 
velocity Uo while the lower plate is stationary. The upper 
plate is simultaneously subjected to a step change in 
temperature from T1 to T2. Then, the upper and lower 
plates are kept at two constant temperatures T2 and T1 
respectively, with T2 > T1. The fluid is acted upon by an 
exponentially decaying pressure gradient ∂p/∂x in the 
x-direction, and a uniform suction from above and injec-
tion from below which are applied at t = 0. A uniform 
magnetic field Bo is applied in the positive y-direction 
and is assumed undisturbed as the induced magnetic field 
is neglected by assuming a very small magnetic Rey-
nolds number. The Hall effect is taken into consideration 
and consequently a z-component for the velocity is ex-
pected to arise. The uniform suction implies that the 
y-component of the velocity v0 is constant. Thus, the flu-
id velocity vector is given by, 

v i j kou v w    

The fluid motion starts from rest at t = 0, and the 
no-slip condition at the plates in z-direction implies that 
the fluid velocity has no z-component at y =  h. The 
initial temperature of the fluid is assumed to be equal to 
T1. Since the plates are infinite in the x and z- directions, 
the physical quantities do not change in these directions. 

The flow of the fluid is governed by the momentum 
equation 

 v
v J Bo

D
p

Dt
               (1) 

 

Figure 1. Geometry of the problem. 
 
where  is the density of the fluid and  is the apparent 
viscosity of the model and is given by 
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where Kc
2 is the Casson’s coefficient of viscosity and o 

is the yield stress. If the Hall term is retained, the current 
density J is given by 

 J v B J Bo o                 (3) 

where  is the electric conductivity of the fluid and  is 
the Hall factor [5]. Equation (3) may be solved in J to 
yield 

   
2

2
J B i k

1
o

o

B
u mw w mu

m


       

   (4) 

where m is the Hall parameter and m =   B  o. Thus, 
the two components of the momentum Equation (1) read 
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(6) 

where atp dp
e

x dx





 is the unsteady pressure gradient 

The energy equation with viscous and Joule dissipa- 
tions is given by 

 
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(7) 
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where cp and k are, respectively, the specific heat capac- ity 
and the thermal conductivity of the fluid. The second and 
third terms on the right-hand side represent the vis- cous 
and Joule dissipations respectively. We notice that each of 
these terms has two components. This is because the Hall 
effect brings about a velocity w in the z-direc- tion. The 
initial and boundary conditions of the problem are given by 

0u w   at t  0, and 0w   at y =-h and y =h for t > 
0, 

u = 0 at y =-h for t > 0, u = Uo at y =h for t > 0,   (8) 

T = T1 at t  0, T = T2 at y =h and T = T1 at y = -h for t > 0 
(9) 

It is expedient to write the above equations in the 
non-dimensional form. To do this, we introduce the fol-
lowing non-dimensional quantities 
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In terms of the above non-dimensional variables and 
parameters Eqs.(5-9) and (2) are, respectively, written as 
(where the hats are dropped for convenience); 
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where   is the constant pressure gradient 
dp

dx
 
 
 

 and  

a is the decaying parameter. 
 
3. Numerical Solution 
 
Equations (10,11,15) represent coupled system of non- 
linear partial differential equations which are solved nu-
merically under the initial and boundary conditions (13) 
using the finite difference approximations. A lineariza-
tion technique is first applied to replace the nonlinear 
terms at a linear stage, with the corrections incorporated 
in subsequent iterative steps until convergence is reached. 
Then the Crank-Nicolson implicit method is used at two 
successive time levels [23]. An iterative scheme is used 
to solve the linearized system of difference equations. 
The solution at a certain time step is chosen as an initial 
guess for next time step and the iterations are continued 
till convergence, within a prescribed accuracy. Finally, 
the resulting block tridiagonal system is solved using the 
generalized Thomas-algorithm [23]. The energy Equa-
tion (12) is a linear non-homogeneous second-order par-
tial differential equation whose right- hand side is known 
from the solutions of the flow Equations (10,11,15) sub-
ject to the conditions (13). The values of the velocity 
components are substituted in the right-hand side of Eq-
uation (12) which is solved numerically with the initial 
and boundary conditions (14) using central differences 
and Thomas-algorithm to obtain the temperature distri-
bution. Finite difference equations relating the variables 
are obtained by writing the equations at the mid-point of 
the computational cell and then replacing the different 
terms by their second order central difference approxi-
mations in the y-direction. The diffusion terms are re-
placed by the average of the central differences at two 
successive time-levels. The computational domain is 
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divided into meshes of dimension t and y in time and 
space respectively as shown in Figure 2. We define the 
variables ,y yv = u , B = w  yH  and y=   to re-
duce the second order differential Equations (10,11,12) 
to first order differential equations. The finite difference 
representations for the resulting first order differential 
Equations (10,11) take the form (see Equations (16,17)). 
where 

1, 1 1, , 1 ,
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i j i j i j i j
i j

   
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The variables with bars are given initial guesses from 
the previous time step and an iterative scheme is used at 
every time to solve the linearized system of difference 
equations. Then the finite difference form for the energy 
Equation (12) can be written as 
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(18) 

where DISP represents the Joule and viscous dissipation 
terms which are known from the solution of the momen- 
tum equations and can be evaluated at the mid point 
(i+1/2,j+1/2) of the computational cell. Computations 
have been made for α = 5, Pr = 1, Re = 1, Ha = 3 and Ec 
= 0.2. Grid-independence studies show that the computa-
tional domain 0<t< and –1< y <1 can be divided into 
intervals with step sizes t = 0.0001 and y = 0.005 for 
time and space respectively. The truncation error of the 
central difference schemes of the governing equations is 
 2 2O ,t y  . Stability and rate of convergence are func- 

 

Figure 2. Mesh layout. 
 
tions of the flow and heat parameters. Smaller step sizes 
do not show any significant change in the results. Con- 
vergence of the scheme is assumed when all of the un- 
knowns u, v, w, B, θ and H for the last two approxima- 
tions differ from unity by less than 10-6 for all values of y 
in –1 < y < 1 at every time step. Less than 7 approxima- 
tions are required to satisfy this convergence criteria for 
all ranges of the parameters studied here. 
 
4. Results and Discussions 

Figures 3-5 show the variation of the velocity compo-
nents u and w and the temperature θ at the central 
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(a) 0D   

 

 

(b) 0.05D   

 

 
(c) 0.1D   

 

Figure 3. Effect of decaying parameter a on u at y = 0 for 
various values of τD (m = 3, S = 1). 
 
plane of the channel (y = 0) with time. These figures 
show the results for various values of the decaying pa-
rameter a = 0, 1 and 2 and for yield stress D = 0.0, 0.05 
and 0.1. In these figures S = 1 and m = 3. Figure 3 
shows that u decreases with increasing a for all values of 
D. It is observed also that the time at which u reaches its 
steady state value decreases with increasing a for a > 0 
but that occurs earlier for constant pressure gradient (a = 
0). Increasing D increases u for all values of a but with 

 

(a) 0D   

 

 

(b) 0.05D   

 

 

(c) 0.1D   

 

Figure 4. Effect of decaying parameter a on w at y = 0 for 
various values of τD (m = 3, S = 1). 
 
small differences. 

In Figure 4, the velocity component w decreases with 
increasing a. This figure indicates that the influence of D 
on w depends on t and becomes more clear when the 
decaying parameter a = 0 but this influence is small for 
large a. It is observed that increasing D more decreases 
w for a = 0. Figure 5 shows that the influence of a on θ 
depends on t. It is observed that increasing a decreases θ 
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(a) 0D  

 

 

(b) 05.0D  

 

 

(c) 1.0D  

 

Figure 5. Effect of decaying parameter a on the time devel-
opment of q at y = 0 for various values of τD (m = 3, S = 1). 
 
while it is not greatly affected by changing D. The figure 
shows also that the time at which θ reaches its steady 
state value decreases with increasing a while it is not 
greatly affected by changing D. 

Figures 6-8 show the profiles of the velocity com- 
ponents u and w and the temperature θ, respectively, for 
various values of time a and for t = 0.2, 1, and 2. The fig- 
ures are evaluated for m =3, D = 0.05 and S = 1. It is 
clear from Figures 6 and 7 that the effect of decaying  

 

(a) t = 0.2 
 

 

(b) t = 1 
 

 

(c) t = 2 

 

Figure 6. Effect of decaying parameter a on the time devel-
opment of the velocity u for various values of t (m = 3, S = 1, 
τD = 0.05 ). 
 
parameter a on u and w depends on t and y. Figure 6 
shows that, for small t, increasing a decreases u (with 
small differences) for all values of y and a. It is also ob-
served that increasing a (a > 0) decreases u for all values 
of y with significant differences at medium and large t. It 
is also observed that the constant pressure gradient (a = 0) 
is greatly different from unsteady pressure gradients (a > 
0). This can be attributed to the fact that increasing a will 
decrease the pressure gradient which mainly generates 
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(a) t = 0.2 
 

 

(b) t = 1 
 

 
(c) t = 2 

 

Figure 7. Effect of decaying parameter a on the distribution 
of w with y for various values of t (m = 3, S = 1, τD = 0.05 ). 
 
the velocity u. Figure 7 shows that, for small t, increas-
ing a increases w (with no significant differences ) for all 
y. For large t, increasing a decreases w (with no signify- 
cant difference between a=1 and a=2) for all y. The fig- 
ures show also that the velocity components u and w do 
not reach their steady state monotonically. The velocities 
u and w increase with time up till a maximum value and 
then decrease up to the steady state. Figure 8 shows that 
the temperature profile does not reach its steady state  

 

(a) t = 0.2 
 

 

(b) t = 1 
 

 

(c) t = 2 

 

Figure 8. Effect of decaying parameter a on the distribution 
of w q with y for various values of t (m = 3, S = 1, τD = 0.05 ). 
 
monotonically. Increasing a decreases θ for all y and t. It 
is observed also that the velocity component u reaches 
the steady state faster than w which, in turn, reaches the 
steady state faster than θ. This is expected as u is the 
source of w, while both u and w act as sources for the 
temperature. 

Figures 9-11 show the variation of the velocity com-
ponents u and w and the temperature θ at the central  
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(a) 0D  

 

 

(b) 05.0D  

 

 

(c) 1.0D  

 

Figure 9. Effect of the Hall current m on u at y = 0 for var-
ious values τD (S = 0, a=1). 

 
plane of the channel (y = 0) with time for various values 
of the Hall parameter m and for D = 0.0, 0.05, and 0.1. In 
these figures S = 0. Figure 9 shows that u increases with 
increasing m for all values of D as the effective conduc-
tivity ( /(1+m2)) decreases with increasing m which 
reduces the magnetic damping force on u. It is observed 
also from the figure that the time at which u reaches its 
steady state value increases with increasing m. Increasing 

 

(a) 0D  

 

 

(b) 05.0D  

 

 

(c) 1.0D  

 

Figure 10. Effect of the Hall current m on w at y = 0 for 
various values τD (S = 0, a = 1). 
 
D increases u for all m and its effect on u becomes more 
pronounced for higher values of m. In Figure 10 the ve-
locity component w increases with increasing m as w is a 
result of the Hall effect. On the other hand, at small times, 
w decreases when m increases. This happens due to the 
fact that, at small times w is very small and then the 
source term of w is proportional to (m u/(1+m2) ) which 
decreases with increasing m (m > 1 ). This accounts for  
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(a) 0D  

 

 

(b) 05.0D  

 

 

(c) 1.0D  

 

Figure 11. Effect of m on t at y = 0 for various values τD (S = 
0, a = 1). 

 
the crossing of the curves of w with t for all values of D. 
Figure 10 indicates that the influence of D on w depends 
on t and becomes more clear when m is large. It is ob-
served that, increasing D decreases w and increasing m 
increases w. Figure 11 shows that the influence of m on 
θ depends on t. Increasing m decreases θ at small times,  

 

(a) 0D  

 

 

(b) 05.0D  

 

 

(c) 1.0D  

 
Figure 12. The variation of u profiles with t for various 
values of τD (m = 3, S = 1, a = 1). 
 
but this is reversed at large times. This is due to the fact 
that, for small times, u and w are small and an increase in 
m increases u but decreases w. Then, the Joule dissipa-
tion which is also proportional to (1/1+m2) decreases. For 
large times, increasing m increases both u and w and, in 
turn, increases the Joule and viscous dissipations. This 
accounts for the crossing of the curves of θ with time for  
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(a) 0D  

 

 

(b) 05.0D  

 

 

(c) 1.0D  

 

Figure 13. The variation of w profiles with t for various 
values of τD (m = 3, S = 1, a = 1). 
 
all values of D. It is also observed that increasing D 
decreases the temperature θ for all values of m. This is 
because increasing D decreases both u and w and their 
gradients which decreases the Joule and viscous dissipa- 
tions. The figure shows also that the time at which θ 
reaches its steady state value increases with increasing m 
while it is not greatly affected by changing D. 

Figures (12-14) present the profiles of the velocity 
components u and w and the temperature θ for various-
values of time t and for D = 0.0, 0.05 and 0.1. The fig-  

 

(a) 0D  

 

 

(b) 05.0D  

 

 

(c) 1.0D  

 

Figure 14. The variation of q profiles with t for various val-
ues of τD (m = 3, S = 1, a = 1). 
 
ures are evaluated for m = 3 and S = 1. It is clear from 
Figures 12 and 13 that the effect of yield stress D on u 
and w depends on t and y. Figure 12 shows that, for 
small t, increasing the yield stress D decreases u for 
small y, but this is reversed for large y. As time develops, 
increasing D increases u for all y. Figure 13 shows that 
increasing D increases w for all values of y, but increas-
ing D more decreases w for large y. 
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For large t, increasing D decreases w for small t and 
all values of y. This can be attributed to the fact that in-
creasing D will delay the attainment of maxima of u and 
w. It is also observed, from Figures 12 and 13, that the 
velocity components u and w do not reach their steady 
state monotonically. Figure 14 shows that the tempera-
ture profile does not reach its steady state monotonically. 
Increasing D increases θ for all y and t as a result of in-
creasing the dissipations. It is observed also that the ve-
locity component u reaches the steady state faster than w 
which, in turn, reaches the steady state faster than θ. This 
is expected as u is the source of w, while both u and w 
act as sources for the temperature. 
 
5. Conclusions 
 
A finite difference method is used to solve the transient 
Couette flow and heat transfer of a Casson non-Newto- 
nian fluid under the influence of unsteady pressure gra-
dient and uniform magnetic field. In the present work, 
we study Hall effect. The effects of the decaying para-
meter a, Casson yield stress D, and the Hall parameter m 
on the velocity and temperature distributions are studied. 
The decaying parameter a affects the main velocity 
components u and w and the temperature θ. The Hall 
term affects the main velocity component u in the 
x-direction and gives rise to another velocity component 
w in the z-direction. The results show that the influence 
of the parameters a and D on u and w depend on time 
and the Hall parameter m. It is also found that the effect 
of m on w and θ depends on time for all values of D 
which accounts for a crossover in the w-t and θ-t graphs 
for various values of m. The effect of m on the magni-
tude of θ depends on D and becomes more pronounced 
in case of small D. It is also found that the effect of a on 
the magnitude of θ depends on D and becomes more 
pronounced in case of smallD. 
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