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ABSTRACT 

In this article, we study the problem of predicting future records and order statistics (two-sample prediction) based on 
progressive type-II censored with random removals, where the number of units removed at each failure time has a dis- 
crete binomial distribution. We use the Bayes procedure to derive both point and interval bounds prediction. Bayesian 
point prediction under symmetric and symmetric loss functions is discussed. The maximum likelihood (ML) prediction 
intervals using “plug-in” procedure for future records and order statistics are derived. An example is discussed to illus- 
trate the application of the results under this censoring scheme. 
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1. Introduction 

In many practical problems of statistics, one wishes to 
use the results of previous data (past samples) to predict 
a future observation (a future sample) from the same 
population. One way to do this is to construct an interval 
which will contain the future observation with a specified 
probability. This interval is called a prediction interval. 
Prediction has been applied in medicine, engineering, 
business, and other areas as well. Hahn and Meeker [1] 
have recently discussed the usefulness of constructing 
prediction intervals. Bayesian prediction bounds for a 
future observation based on certain distributions have 
been discussed by several authors. Bayesian prediction 
bounds for future observations from the exponential dis- 
tribution are considered by Dunsmore [2], Lingappaiah 
[3], Evans and Nigm [4], and Al-Hussaini and Jaheen [5]. 
Bayesian prediction bounds for future lifetime under the 
Weibull model have been derived by Evans and Nigm 
[6,7], and Bayesian prediction bounds for observable 
having the Burr type-XII distribution were obtained by 
Nigm [8], Al-Hussaini and Jaheen [9,10], and Ali Mousa 
and Jaheen [11,12]. Prediction was reviewed by Patel 
[13], Nagraja [14], Kaminsky and Nelson [15], and Al- 
Hussaini [16], and for details on the history of statistical 

prediction, analysis, and applications, see, for example, 
Aitchison and Dunsmore [17], Geisser [18]. Bayesian 
prediction bounds for the Burr type-X model based on 
records have been derived from Ali Mousa [19], and 
Bayesian prediction bounds from the scaled Burr type X 
model were obtained by Jaheen and AL-Matrafi [20]. 
Bayesian prediction with Outliers and random sample 
size for the Burr-X model was obtained by Soliman [21], 
Bayesian prediction bounds for order statistics in the one 
and two-sample cases from the Burr type X model were 
obtained by Sartawi and Abu-Salih [22]. Recently, Ah- 
madi and Balakrishnan [23] discussed how one can pre- 
dict future usual records (order statistics) from an inde- 
pendent Y-sequence based on order statistics (usual re- 
cords) from an independent X-sequence and developed 
nonparametric prediction intervals. Ahmadi and Mir Mo- 
stafaee [24], Ahmadi et al. [25] obtained prediction in- 
tervals for order statistics as well as for the mean lifetime 
from a future sample based on observed usual records 
from an exponential distribution using the classical and 
Bayesian approaches, respectively. 

The rest of the paper is as follows. In Section 2, we 
present some preliminaries as the model, priors and the 
posterior distribution. In Section 3, Bayesian predictive 
distribution for the future lower records (two-sample pre- 
diction) is based on progressive type-II censored with *Corresponding author. 
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random removals. In Section 4, the ML prediction both 
point and interval prediction using “plug-in” procedure 
are derived. In Section 5, Bayesian predictive distribution 
for the future order statistics based on progressive type-II 
censored with random removals. In Section 6, the ML 
prediction both point and interval prediction using “plug- 
in” procedure for the future order statistics are derived. A 
practical example using generating data set Progressively 
type-II censored random sample from Burr-X distribu- 
tion, and a simulation study has been carried out in or- 
der to compare the performance of different methods of 
prediction are presented in Section 8. Finally we con- 
clude the paper in Section 8. 

2. The Model, Prior and Posterior  
Distribution 

Let random variable X have an Burr-X distribution with 
Parameter . the probability density function and the 
cumulative distribution function of X are respectively 
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If the parameter  is unknown, from the In-likelihood 
function given by (3), the MLEs, MLE
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consider a gamma conjugate prior for  in the form 
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From (3) and (8) the conditional posterior (pdf) of  is 
given by 
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3. Bayesian Prediction for Record Value 

Suppose n independent items are put on a test and the 
lifetime distribution of each item is given by (2). Let 

1 2 3, , , , mX X X X  be the ordered m-failures observed 
under the type-II progressively censoring plan with bi- 
nomial removals  1, , mR R , and that 

11 2  be 
a second independent sample (of size m1) of future lower 
record observed from the same distribution (future sam- 
ple). Our aim is to make Bayesian prediction about the 

, , , mY Y Y

,ths  then the marginal pdf of  is given by see 
Ahmadi and Mir Mostafaee [24] is 
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Applying (11), (12) in (10) we obtain 
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Combining the posterior density (9) with (13) and in-
tegrating out  we obtain the Bayes predictive density 
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The Bayesian prediction bounds for the future  
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The predictive bounds of a two-sided interval with 
cover   100%   for the future lower record S , may 
thus obtained by solving the following two equation for 
the lower 
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where  L SI Y  and  U SI Y  are given by Equation (16). 
Now by using (14) the Bayesian point prediction of the 

future lower record values YS under SE (BS) and LINEX 
loss functions (BL) are given, respectively, as 
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where 
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One can use a numerical integration technique to get 
the above integration, given by (21), (22). 

Special case: In special case it is important to predict 
the first unobserved lower record value . 1

When s = 1, in (17) and (18), the lower and upper 
Bayesian prediction bounds with cover 

Y

  of 1Y  are 
obtained from the numerical solution of the following 
equations 

 

   

1

1

1

1

1
0 0

0 0

1
,

2
1,

m

m

m

m

rr

L
k k

rr
m

k
k k

GI Y

B m Gq 





 

 

 






 

 




    (23) 

and 

 

   

1

1

1

1

1
0 0

0 0

1
,

2
1,

m

m

m

m

rr

U
k k

rr
m

k
k k

GI Y

B m Gq 





 

 

 






 

 




    (24) 

where  1LI Y  and  1UI Y  given by Equation (16), and 
solving the resulting equations numerically. 

4. ML Prediction for Record Value 

The commonly used frequentist approaches such as the 
maximum likelihood estimate and the “plug-in” proce- 
dure, which is to substitute a point estimate of the un- 
known parameters into the predictive distribution are 
reviewed and discussed. In this section the ML prediction 
both point and interval using “plug-in” procedure for 
future lower record based on progressive type-II cen- 
sored sample defined by (2). By replacing  in the mar- 
ginal pdf of S  (13) by V ̂  which we can find it from 
the numerical solution of the Equation (7), then 
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Therefore, from (9) and (34), the Bayes predictive 
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are given by Equation (12). 
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6. ML Prediction for Order Statistics 

In this section the ML prediction both point and in
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7. Illustrative Example and Simulation 
Study 

E
 

. 
Algorithm 1. 
1) Specify the value of n. 
2) Specify the value of m. 

 Specify the value of parameters  and p 
Generate a random sample with size m from Burr-X 

and sort it. 
5) Generate a random number r1 from    

,


 for each .

7) Set rm according to the following relation, 
1

the exact value of  
and P are respectively 1.6374, 0.4 and n = 10 and m = 7, 

xample 1: In this example, a progressive type-II cen- 
sored sample with random removals from the Burr-X 
distribution have been generated using the following al- 
gorithm

3)
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In these sample, we assumed that 

the sample obtained is given as follows  ,i iX R
(1.2655,1)

: 
(0. 0.5449,1), (0.6728,0), (0.9914,0), , 

95% Bayesian prediction intervals of the 

4406,1), (
(1.3680,0), (1.4271,0). 

We used the above sample to compute: 

1) Bayesian point prediction, under SE and LINEX 
loss function; 

2) The ths  
un ecords (order statistics); 

d prediction ML; 
elihood prediction intervals 

of

observed lower r
3) The maximum likelihoo
4) The 95% maximum lik
 the ths  unobserved lower records (order statistics); 

 Simulation Study In this example, we 
di paring the pe
fo d in this paper. 
Firstly we generate ( wer record values (order 
statistics) from the Burr-X distribution  = 1.63 . By 
usin gene nd 95% 
B ervations 

lower record (order statistics) from the the Burr-X 
ution and by repeated the generations 1 00 time 

we can find the Percentage (C.P) and we use prior 

5) The results obtained are given in Tables 1-4. 
Example 2:
scuss results of a simulation study com r- 
rmance of the prediction results obtaine

m1 = 5) lo
74

g the rating data we predict the 90% a
ayesian prediction intervals for the future obs
thS  

distrib 0

 ,   equal (2,3). Tables 5-8 show the 90% and 95% 
Bayesian (B) and maximum likelihood (ML) prediction 
intervals for the future thS  lower record (order statis- 
tics). The sample obtained is given as follows, (0.4640,1), 
(0.5124,1), (0.7323,0), (0.8293,1), (0.8665,0), (0.8713,1), 
(1.1322,0), (1.4969,0). 

8.

In on
ensored sam- 

stribution 
fo

 
pr

ate

i n

y. 

using “plug-in” procedure (MLPI) 
ediction intervals using Bayes 

results show that, for all cases (low- 

 Conclusions 

 this paper, we consider the two-sample predicti  
wherein the observed progressive Type-II c
ples with random removals from the Burr-X di

rm the informative samples and discussed how point 
prediction and prediction intervals can be constructed for 
fu d MLture lower records (order statistics). Bayesian an

edictions both the point prediction and the prediction 
intervals are presented and discussed in this paper. 

The commonly used frequentist approaches such as the 
maximum likelihood estimate and the “plug-in” proce- 
dure, which is to substitute a point estimate of the un- 
known parameters into the predictive distribution are 
reviewed and discussed. Numerical example using simu- 
l d data were used to illustrate the procedures devel- 
oped here. Finally, simulation studies are presented to 
compare the performance of different methods of predic- 
t o . A study of 1000 randomly generated future samples 
from the same distribution shows that the actual predic- 
tion levels are satisfactor From the results we note the 
following: 

1) The results in Tables 1-4 show that the lengths of 
the prediction intervals 
are shorter than that of pr
procedure. 

2) The simulation 
er records and order statistics), the proposed prediction 
levels are satisfactory compared with the actual predic- 
tion levels 90% and 95%. 
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Table 1. Point and interval BP

LINEX 

 the future lower record SY . 

95% BPI for SY  
SY  SE 

c1 = −1 c2 = 0.00 c01 3 = 1 [Lower, Upper] Length 

Y1 0.9681 1.0863 0.9735 0.8672 [0.1892,1.9866] 1.7973 

Y2 0.5931 0.6535 0.5933

Y3 0.3998 0.4366 0.4010

Y4 0.2799 0.3033 0.2849

Y5 0.2000 0.2150 0.233

 

 [0.0305,1.0073] 0.9768 

 

5 

0.5407 [0.0727,1.3417] 1.2690 

0.3679 

0.2596 [0.0133,0.7844] 0.7711 

0.1869 [0.0059,0.6211] 0.6152 

 
Table 2. Point and interva

Length 

l 95% MLPI for SY . 

SY  ML [Lower, Upper] 

Y1 1.0686 [0.3295,2.0415] 201.71  

Y2 0.6966 [0.1810,1. 1.2245 

3 0.4958 [0.1082,1. 0.9635 

4 0.3644 [0.0671,0. 0.7784 

5 0.2721 [0.0426,0. 0.6343 

4055] 

Y 0717] 

Y 8455] 

Y 6769] 

 
Table t and interva e future tatistics

LINEX 95% BPI for 

 SY 3. Poin l BP for th  order s . 

SY  
SY  SE 

c [Lower, Upper] Length 1 = −1 c2 = 0.0001 c3 = 1 

Y1 0.4847 0.5150 0.4848 [0.0777,0.9992] 0.9215 0.4563 

Y 0.7202 7540 0.7201 [0.2425,1.2453] 1.0028 

Y 0.9334 9716 0.9334 [0.4145,1.4887] 1.0742 

Y 1.1730 2201 1.1730 [0.6040,1.7968] 1.1928 

Y 1.5292 6070 1.5292 [0.8470,2.3554] 1.5085 

2 0. 0.6875 

3 0. 0.8963 

4 1. 1.1278 

5 1. 1.4592 

 
Table 4. Point and interval 95

Length 

SY . % MLPI for 

SY  ML [Lower, Upper] 

Y1 0.5895 [0.1978,1.0525] 0.8546 

Y2 0.8301 [0.4219,1. 0.8754 

3 1.0394 [0.6046,1. 0.9361 

4 1.2707 [0.7848, 1.0634 

5 1.6134 [1.0033, 1.3990 

2973] 

Y 5407] 

Y 1.8482] 

Y 1.4023] 

 
Table 5. Two sample p ion for th re lower reco  and 95%  for d their actu e-

tion with  = 2,  = 3, 374, p = 0.4  = 12, m = 8. 

90% BPI for YS 95% BPI for YS 

 , 1,2, ,SY S 5   an al prredict e futu rd.-90%  BPI

 = 1.6 , n  dic

SY  [Lower, Uppe Length C.P per] Length C.P r] [Lowe, Up

Y1 [0.2723,1.79 1.5247 0.911  1.7912 0.960 70] [0.1902,1.9814]

Y2 [0.1174,1.19 1.0793 0.921  1.2589 0.964 

Y3 [0.0550,0.88 0.8261 0.911  0.9644 0.959 

Y4 [0.0266,0.67 0.6443 0.903  0.7573 0.949 

Y5 [0.0131,0.5184] 0.5053 0.909 [0.0064,0.6070] 0.6006 0.954 

67] [0.0743,1.3332]

10] [0.0318,0.9962]

09] [0.0141,0.7715]



A. A. SOLIMAN  ET  AL. 169

Table 6. T o sample predictio e future lower record-90% I for 5w n for th  and 95% MLP  , 1,2, ,SY S    an actual pre- 

iction with  = 2,  = 3,  = 1.6374, p = 0.4, n = 12, m = 8. 

95% MLPI for YS 

d their 

d

90% MLPI for YS 

SY  [L ] Length C.owe, Upper P [Lower, Upper] Length C.P 

Y1 [0.3850,1. 1.4589 0.896 [0.3018,2.0242] 24 0.949 8439] 1.72

Y2 2 1.0397 0.913 ]   

[0.1 0.8091 0. ]  

[0.0 0.6434 0. ]  

[0.0 0.5144 0. ]  

 [0. 104,1.2501] [0.1593,1.3820 1.2227 0.960

Y3 250,0.9341] 908 [0.0918,1.0444 0.9526 0.955 

Y4 770,0.7204] 899 [0.0550,0.8160 0.7610 0.945 

Y5 484,0.5628] 910 [0.0338,0.6464 0.6126 0.953 

 
Tab  Two sample p e future tatis -90% andle 7. rediction for th order s tics.  95% BPI for  , 1,2, ,SY S 5   and their a re- 

dict with  = 2, 4, p = 0.4, n  = 8 5.  

95% BPI for YS 

ctual p

ion  = 3,  = 1.637  = 12, m m  = 2

90% BPI for YS 

SY  [Lower, Upper] Length C.P [Lowe, Upper] L C.P ength 

Y1 1201,0. 0.7796 0.912 [0.0801,0.9867] 0.952  [0. 8999] 0.9065 

Y2 ] 8 7  

 4  

 1  

 8  

 [0.3104,1.1472 0.836 0.89 [0.2470,1.2344] 0.9874 0.943

Y3 [0.4938,1.3862] 0.892 0.916 [0.4191,1.4797] 1.0606 0.963 

Y4 [0.6910,1.6811] 0.990 0.924 [0.6075,1.7900] 1.1825 0.963 

Y5 [0.9442,2.1960] 1.251 0.920 [0.8483,2.3511] 1.5028 0.971 

 
Table 8. Two sa n for th rder statistics-90% an or 5 and their actual 

rediction with  = 2,  = 3,  = 1.6374, p = 0.4, n = 12, m = 8 m  = 5. 

95% MLPI for YS 

mple predictio e future o d 95% MLPI f  ,SY S   1,2, ,
p 2

90% MLPI for YS 

SY  [Lowe, Upper] Length C.P [Lower, Upper] Length C.P 

Y1 [0.22 0.7224 0.906 [0.1752,1.0249] 98 0.952 

2 5]  97 ] 

Y3 4]  4 ] 

Y4 6]  4 ] 

Y5 1]  1 ] 

21,0.9442] 0.84

Y [0.4488,1.190 0.7417 0.8 [0.3924,1.2725 0.8801 0.950 

[0.6356,1.429 0.7938 0.91 [0.5740,1.5187 0.9447 0.961 

[0.8232,1.723 0.9004 0.91 [0.7548,1.8292 1.0744 0.955 

[1.0568,2.235 1.1784 0.90 [0.9753,2.3875 1.4122 0.955 

 
3) In general on results show that 

plug-in” procedure (MLPI) performs better than the 
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