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ABSTRACT

In this paper, we study the random dynamical system (RDS) generated by the dissipative Hamiltonian amplitude equa-
tion with additive noise defined on the periodic boundaries. We investigate the existence of a compact random attractor

for the RDS associated with the equation through introducing two functions and one processin E, = H'x L*. The com-

pactness of the RDS is established by the decomposition of solution semigroup.

K eywords: Random Dynamical System; Random Attractor; Hamiltonian Amplitude Equation

1. Introduction

The Hamiltonian amplitude equation

i+, +20]¢ =0, @)

was first proposed by Tanaka, Yajima and Wadati as a
model for the nonlinear modulation of stable plane wave
in unstable media [1,2]. In 1992 as an improved version
of (1), the equation

il//x+l//n+26|y/|2y/—5y/xt:0, O<e<1, 2
was proposed [3], which generalized (1) in the sense that
w(xte=0)=g(xt), (©)

but one can show that for most initial data
limy (xtie) = p(xt), ©)

even if the two functions agree at t = 0. Both of these
models can be derived systematically from more com-
plicated Hamiltonian systems through a particular limit-
ing process (nearly monochromatic waves of small am-
plitude) corresponding to ¢ —0. Even so, keeping
e#0 in(2) iscrucia because (1) is formally integrable
but ill-posed, whereas (2) is a generalization of it which
is apparently not integrable but well-posed.

"This work is supported by National Natural Science Foundation of
China (11071199) and Natural Science Foundation of Chongging
(2009BB8105).
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In this paper, we consider the following dissipative
Hamiltonian amplitude equation governing modulated
wave instabilities perturbed by an additive white noise

du, + o dt — Audt — yu, dt +iu dt + f (|u|2)udt

m ©)
= ZhjdVVj
j=1
u(x7)=Uy(x), U (x7)=u(x), (6)
and the periodic boundary condition
u(x—L,t)=u(x+L,t), )

where u isan unknown complex valued function, i is
the unit of imaginary number, the internal | =(-L,L),
a,f and y are positive constants, which satisfy
B<y, the functions h, eH?*(1), j=12-.-,m, are
time independent, the random functions W, ,
j=142,---,m, are independent two-side real-valued
Wiener processes on a probability space QQ,F,P)
which will be specified later, and f(s) is C*, sf(s)
is C? real valued function which satisfies that

lim inf Fsﬁ‘:')z%w, s>7,5>1, ®)
|iminfsr(s)s;f':(s)2yo>o, s>7,6>1, (9)
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where 0< %<1, y, isaconstant depended on ¢ and
g,and F(s)=["f(t)ct.

The deterministic case has been studied extensively,
for instance, Guo, B. L. and Dai, Z. D. [4] proved that
there exists aglobal weak attractor A, in E =H?xH*
for (5) and it is actually a global strong attractor in E.
Dai, Z. D. [5] proved the existence of a global attractor
A, in E,=H'xL?, and obtained the equality A, = A,.
Dai, Z. D. Yang, L. Huang, J. [6] obtained a global at-
tractor for the unperturbed system in E, and E re-
spectively. Yang, L., Dai, Z. D. [7] obtained the estimate
of the Hausdorff dimension and the fractal dimension of
a global attractor for the perturbed and unperturbed sys-
tems separately. However, up to the best of our knowl-
edge, the research for the dissipative Hamiltonian ampli-
tude equation governing modulated wave instabilities
with random attractors has not involved.

Recently, many authors have studied the existence of
random attractors for other equations [8-10]. In this paper,
for (5), we first obtain an absorbing set in E, and E,
respectively through introducing two functions and one
process, then by the decomposition of solution semi-
group we derive the compactness in E,. As far as we
know, no one has studied stochastic equations through
introducing two functions, so this method enriches the
study of stochastic equations.

This paper is organized as follows. In Section 2, for
convenience of the reader, we recall some basic notions
on function spaces and the theory of random dynamical
system. In Section 3, we solve Equation (5) and get the
corresponding RDS ¢ . In Section 4, we prove the exis-
tence of arandom attractor in E, for this RDS.

Throughout this paper, we adopt the following nota-
tions. Wewrite L*=L?(1), H'=H*(1),

H?=H?(1) for short. We denote by || and|| the norms,

by ((~)) and (-:) the inner products in H* and
L* respectively. We also use |u| to denote the modular
or absolute value of u.

2. Preliminaries

In this section, we recall some basic notions on function
spaces [4,7], the theory of RDS[11-14] and introduce the
method of the existence of random attractors for the con-
tinuous RDS [8,10], which we will use in this paper.

2.1. Function Spaces and Operators

We first consider the mathematical setting for (5). Let
L, H', H?be usual Sobolev space, E,=H"'xL?,
E,=H?xH" and ¢=(u,v)". We define the following
scalar products and norms separately:

for any ¢ =(u,v) €E, and ¢=(uv) €E,, we
have
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(dhst)e, = (W) + (o v2) o [l =[ull M
forany ¢ =(u,v) €E and ¢=(uv) €E,, wehave

(dote)e, = (D0, D, )+ (%, v2)) [l =[au +[M”
Let A=-D*:D(A)=H'NH?*—>L*, then A is a
positive self-adjoint operator, which has the first eigen-

2
Jul
ueH?! |u|2 ’

value A, =inf

2.2. Random Dynamical Systems

Let (Q,F,P) beaprobability space and
{6,:Q—>Q,teR} be a family of measure preserving
transformations such that (t,)— 6w is measurable,
6,=id and 6., =606, for dl steR. The flow §,
together with the corresponding probability space
(Q,F,P,6,) iscalled ameasurable dynamical system.

Definition 2.2.1 A continuous random dynamical sys-
tem(RDS) on a Polish space (X,d) with Borel
o -algebraon (Q,F,P,,) isameasurable map

PR xQxX - X, (t,a),X)I—>(p(t,a))X

suchthat P-as.
1) ¢)(0,a)):id on X;
2) (p(t—i-s,a)):go(t,@sa))g)(s,a)), for dl steR*
(cocycle property);
3) ¢(t,®): X+ X iscontinuous.
A random compact set {K(w)}

compact sets indexed by » such that for every xe X the
mapping X+ d(x,K(w)) is measurable with respect
to F.

Let A(w) be a random set and Bc X . We say
A(w) attracts B if

!i_)rgdist(go(t,élta))B,A(w)):O, P-as weQ,

is a family of

where dist(-,-) denotes the Hausdorff semi-distance in
X . We say A(w) absorbs B if there exists
tg(®)>0 suchthat foral t>t;(w),

o(t,60, w)Bc A(w), P-as weQ.

A random set A(w) is said to be a random attractor
fortheRDS ¢ if P-as

1) A(w) isarandom compact set;

2) A(w) isinvariant, that is,
o(t,0)A(w)=A(6w) fordl t>0;

3) A(w) attracts all deterministic bounded sets B< X .

Theorem 2.2.2 If there exists a random compact set
absorbing every bounded set B< X , thenthe RDS ¢
possesses arandom attractor A (o),

A(@)= Y Ay (@),
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where A, (@)=n
of B.

is the omega-limit set

200> 50(t,0_10)B

3. Solvethe Equation and Generatea RDS
We consider the probability space (Q,F,P), where
Q={w=(a)l,a)2,---,a)m)eC(R, Rm):a)(O):O},

and F istheBord o -agebrainduced by the compact
open topology of Q, whileP is the corresponding Wie-
ner measureon (Q,F). Then, weidentify o with

W (t) = (W (1), W (t), - W, (t)) =a(t) forteR.

Finally, we define the time shift by
Ha)() ( t—a)(t), weQ,teR.Then
(Q F.P.(,),) isametricdynamical system.

We now want to establish a continuous random dy-
namical system corresponding to (5). For this purpose,
we need to convert the stochastic equation with an addi-
tive noise into a deterministic equation with a random
parameter.

Given j=12,---,m, consider the stochastic station-
ary solution of the one-dimensional Ornstein-Uhlenbeck

equation
dz, +az,dt = dw, (t). (10)

One may easily check that a solution to (10) is given
by

=[ e“ldw (s), teR. (11)
Putting z= z ".hz,, by (10) we have
dz+azdt=jz:1hjdvvj.
We also need two facts
2 2 0 2ar _ 1
(Elz(0)) <E[z(0) =] e dr=———0, (1)
as a—o.Weadso have
(t
im2U 0 poas (13)

t—o t

Assumed h, e D(A)< H?. Then by Sobolev embed-
ding theorem, H?(1)=C*(T), we have h eC*(T)
In particular, all Dh; are bounded continuous functions.
Thus there exists a £, >0 (depending only on h;)
such that
)| VteR, P-as

sup|Dz(x.t)) < ﬂozm:|zj (t (14)
Xel j=1

where z=)"hz; and % is the Ornstein-Uhlenbeck
process defined by (11). It is also easy to prove that
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|7+|D7+|D*Z|< ﬂli|zj (1), (15)
=

where S, >0 only dependson h; .

To show that (5) generates a random dynamica sys
tem, welet v(t)=u,(t)+eu(t)-z(t), where u, u, is
the solution of (5),then u, v sdisfies

U =V—gu+2z,
v, =—yAU+¢e(a—¢)u+(e—a)v-
+ PV, +ez+ Bz, — | (|u|2)u,

u(zr,@)=u,, v(z,0)=u+eUy—2(7),

(i +2p)u,
(16)

where u, e H', v, e L2 and
& =¢(7-w) =(U01V0) ek.

By the same proof as deterministic case [4], one can
easily get that for P—as., @o<Q, thefollowing results
hold

Theorem 3.1 If (uy,v,) €
solution ¢(t,w)=(u(t,®),v(t,
which satisfies

ek, there exists a unique

)) cE, of (16),

u(t,a)) IS C([T,T]; Hl) , v(t,a)) IS C([T,T]; L2) .

If (UpV) €E, there exists a unique solution
¢(t,0)=(u(t,0),v(t,®)) €E, of (16), which satisfies

u(xt)eC([r,Tl;H?), v(t,w)eC([z,T];H").

From the above discussion, we denote the solution of
(5) by u(t)=u(t,®;z,u,) (denote sometimes by
u(t;z,ug), u(t;z), u(t,®), u(t) or even u if no
confusions). Then we can define a mapping

9:R"xQxE;— E, by

o(t,0)d, = $(t,0;0,4,)

=(u(t,®;0,uy),v(t,;0,v,)), t=0,’ a7

by the definition 2.2.1, it is easy to show that ¢ is a
continuous RDS on Eq with the following fact

(0(719710))% = ¢(0, , —T,¢0) )
for ¢, =¢(7,0) =(uo,vo)T ek, r20.

4. Random Attractors
4.1. Absorbing Set in  E,

In this subsection, we prove that the RDS ¢ defined by
(17) has a bounded absorbing set B(w)c< E,, which
absorbs, in fact, all the bounded sets Bck. Recall that
#(t,wir,dy) = (u(t, @ 7,U,) V(L @i7,V,)) is the solu-
tion of (16) with u(z)=u, and
V(7)=u+euy—-2z(7)=V,.

We then rewrite (16) as follows
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t>7,

(18)

$+Lp=F(¢,0),¢(r,0)=(u(r,0) ,v(r,a)))T ,

¢:[3j' L:(m_gl—e)l (0‘:'5)']’

F (¢4 ) :{_(i +&B) U, + BV, +ez+ Bz, — | (|u|2)u]'

We now can prove the absorption of RDS ¢ (defined
by (17))in E,.

Lemma 4.1 For any no random bounded set B, there
exists a random variable p,(@)>0 satisfying the fol-
lowing property: for every (u0 u1+gu0) e B, there
exists Ty(w)<-1, such that, for any 7<T;(w), the
following estimate holds P-a.s.

||¢5(t,a);r,¢0)||Eo <p (), te[-1,0].

Proof. Taking the inner product of (18) with ¢ in
E, . we obtain that

LA (- (Fo)d) 09

Taking the real part of (19), we find that

L8 (o ) el + (7D Rel(09)
—e(a-¢)Re(u,v)+(a- )|v|2 @)
=Re((zu))+Re(-(i +£8)u,,v)+ SRe(V,,V)

+eRe(z,v)+ BRe(z,V)- Re(f (|u|2)u,v)
Since
(-DRe((u)
:(;/—1) Re((u,u, +gu—z)) (21)

7-1)Re((1,2))

Y R ¥

Re( f (|u|2)u,v)
= Re( f (|u|2)u,ut +eu- z)
= Re( f (|u|2)u,ut)+g Re( f (|u|2)u,u)—

=%% F(|u|2)dx+eRe(f (|u|2)u,u)—

Re( f (|u|2)u, z) '
Re( f (|u|2)u, z)

(22)
it follows from (20)-(22), we get that
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d 1 1
Ll S+ ST (o ol

—g(a —5) Re(u,v)+(a —£)|V|2

+Re((i+88)u,.V)+e Re( f (|u|2)u,u) (23)
-y Re((u,z))-£Re(z,v)- fRe(z,,V)
—Re(f (|u|2)u,z) =0
We introduce two functions
gl(u,v):Z||u||2+l|v|2+l [F(uF)ex @9
G, (uv) =gy |uf’ —&(a-¢&)Re(uv)+(a—e)M*
+Re((i +&f)u,,V)+eRe ul Ju,u
—y R(e(((u, z)))—g Ile( z,v)(— /£|R|e()zxv)) (3
—Re(f (|u|2)u,z)
and one process
=z (1) (26)
So that (23) gives a
Egl(u,v)+Gl(u,v):0. 27)

dt

In the following, we denote by c any constant depend-
ing only on the data («, 8,7,¢,1, f), which can be dif-
ferent from line to line or even in the same line. Now we
can prove there exist positive constants ¢,, d and d,
such that

G1(u V)_ Ogl(u V)
. (28)
= (u,v) —||¢|| ~26C, (V)[4 -
g, (u,v) > 31||¢||2 -c (29)

where f, is defined by (15) and g(t) will be defined
in the following paper, hence we obtain

ggl(u,v)+§ogl(u,v)=—zc1(u,v). (30)

dt
In fact we have

G, (u,v) =840, (u,v) = &, (u,v)
= g;/"u”2 —¢(a—¢)Re(u,v)+(a —5)|V|2
+Re((i+&p)u,,v)+e[ f (|u|2)|u|2 dx

% (e~ R (1,2)) e Re(z)

- () -e{ (b 2] ol -4
(31)
JAMP
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By estimating every terms on the right sidein (31), let-
ting
e=— WA (32)
20" +3y4,

where 4, isthefirst eigenvalue of A, then by (32), we
find that

g}/"u”2 -¢(a —g) Re(u,v)+(a —e;")|v|2

35
“JuF+2

SV S+ T~ e (- e) Re(u,v)

a 3¢ 35)/ &y
+(;——j|| > S S+ S+ Lo

—e(a—e>|u|-|v|+(%——)M2ﬁnun%ﬁM%fW
&y a 3¢ ey
e e A TR

£ &y ea a 3
+§MZ+TIIUIIZWHUIHVI{;;)MZ
7(a—3¢)

2
ey a £ &y a-3¢
R ST

> 2L+ E
(33)
and
Re((i +&B)u,.V) < y1+£28% |u|-M
1+ 232 a2 (34)
R
Using |f|  uniformly bounded, we get

-y Re((u,z))-£Re(zv)- BRe(z,,V)- Re( f (|u|2)u, z)
sy||z||-||u||+e|z|-|v|+ﬂ|a|~|v|+Hf ) 12

<ZHGO, e o+ LSO,

+BC, (M

+ﬂ :31(:1( ) C :Bl ( "u"
a4

+AC(OM'+
28 0| 41+ (—+—+ﬂ—2+ )ﬂl 0

~2pa Ol v S B

=2pC (t)”¢” +9(t)
(35)
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roe g c
where g(t)=| —+—+—
O e (U]
2(1+ &% B2
Taking &,, such that &, << and ws -
2 ay
where¢ isdefined in (32), and letting
d =min(8,7,5,) (36)
we find that
2 p2
ﬁ_ﬂ_ﬂzgl (37)
4 2a 2 2
a2 a %, d (38)
2 2 2 2 2

Noting that j—o < % <1, by (8) and (9), we have
&

2 N
ef f (|u|2)|u|2dx—?° JF(Juf" b= e |u[** ox, (39)
using
1
j|u| dx < (2D)ws (_[|u|2+25 dx)m

S 2Ds 2
i‘l—g“uf P+ —"g, 0

where ¢, isany positive number. Choosing

1
o < (MJ |

d

<

we find that
eyo[ U dx2%|u|2 -c. (40)
Combining (31)-(40), we infer that

Gy(uv)- (Ol -9(t)-c
(4

In order to prove (29), and similarly to (40), we have

—||¢|| —25G

ogl UV

uv) 2 Zjuf +%|v|2 —c. (42)

Taking d, =min(y,1), weget (29).
From (27)-(30), we infer that

e (u)+a0, V) <268 O +()+c. @3

Taking u> max(i4} , we have
Y

%gl(u,v) < (=0 +uB.C, (1)) g, (u,v)+g(t)+c. (44)
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Putting
f(t) = =G+ uBC.(t) =—So + uB,Y |7, ()|, (45)
j=1
then by the Gronwall Lemma, we get, for t>7
0, (u:v) < & 4% g, (wv,) + [ () )y
(46)
In particular, we have, for te[-1,0], r<-1
0, (uv) < 6 g, Uy, (47)
0 s)as
+e[” (a(n)+c)er"*an,
where ¢ =€, in view of the following fact: for
-1<t<0,
o fuman _ eff fl(’i)d”e’,‘xo ty(7)dy

< ej? fl(n)dﬂefr?odﬂ <egh e,f? fi(n)dn

To estimate al integration terms on the right side in
(47), wechoose « >0 such that

HBEC, (0)= B> E|z (0) <=2
=1
This is possible since by (12), EC,(0)—>0 as

a — 0. Thus, since z,(t) is stationary and ergodic, it
is easy to get

nm—jf )dn = Ef, (0 )——50+,uﬂ1EC1(O)<—§—2°,
T—>—0 T
(48)
which implies that
lime " —0, p-as (49)
Z ()

By (13), T—>O as 7— -, thus C/(t) and

further g(t) is at most 1-times polynomoal growth at
—oo , Which, together with (49), implies that

6.(0)=[" (9(n)+c)e" " dp <o, P-as (50)
and also implies that
6 (@) = supe” " |z(c)ff <o, (51)

r<-1

Noting that
6 (UorYo) = Z o[+ Ivol s I F (Juol” ax,

dy = (U1 +£Uy — 2(7))

and u, e H', u el?, weget

Copyright © 2013 SciRes.
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] (Umvo) < C("¢o"2 +1) ;
then it follows from (29) and (47)-(52), we obtain that

d, ) 2
Lol

(52)

< cclefgfl(”)d"( Uy +|u1+,su0|2 +|z(r)|2 +1) (53)
+qj’_ow(g( )+c)e” et 9y +c.
We now take
) 26’ 2c
Pl (w)= 5 (2c+0ﬂ(a))+cq2(a)))+d— and choose
1 1

Ty () suchthat
g (Il +Ju, + ) <1
foral r<T,(w),thenweget

ot oirgo)l <pi(), te[-10]. (54)

4.2. Absorbing Set in  E,

In order to prove the absorption property in E , we also
need the following change for (18).
D|fferent|at|ng (18) with respect to x and letting

n=u, &=V, v=(n¢) =(u,v)" , wehave
w+Lw=F(w,w),
, (55)
l//(r,a)):(n(r,a)),(f(r,a))) , t>1,

where

el —I
L:[}/A—g(a—g)l (a—g)l}
F(y,o)
z
—(i+&B)ny + Bé+ 62, + Pz — f’(|u|2)|u|277 _

~£(|ul?)ui = £ (o)

We now can prove the absorption of RDS ¢ (defined
by (17)) in E,.

Lemma 4.2 For any no random bounded set B, there
exists a random variable p,(w)>0 satisfying the fol-
lowing property: for every (n,.m,+¢n,) €B, there
exists Ty (w)<-1, such that, for any 7<T,(w), the
following estimate holds P —a.s.

#(t.0ic.db),, < p2(@), te[-10]

Proof. Taking the inner product of (55) with y in
E,, we obtain that

JAMP
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W+ ()= (Fw.o)p). (56)

Taking the real part of (56), we find that

28 10ff 412 cloff + (-1 Re((.))
—e(a—¢)Re(n,&)+(a—¢ |§|

=Re((2.7))+Re(~(i +&p)n,.&)+ Re(&,.¢)  (B7)
+gRe(zx,§)+,BRe(zxx,§)—Re(f'(|u|2)|u|277,§)

- Re( f ’(|u|2)u277,§)— Re( f (|u|2)77,§).
Dueto
(r —1)Re((77 &)=(r —1)Re((f7,m+er7—zx))
, (58)
= 2 Olt||77|| ve(r=1lul - Re((1.2,))
and

Re( f'(|uf)uf*7.¢) =
Zdtjf (1uf* ul? il ax = £ (Juf? " Re(uih ) o
T
-Re{1(uf uf n.2).

Re( f ’(|u|2)|u|2 n,n +en— ZX)

uf* ) " Re(u ) e & £(|uf? ) ol rf” ox

(59)
and

Re(f (1% )m¢)=
=3 dtj F(Juf® )l ax [ £(|ul® ) nf* Re(ud )ebx  (60)
w2 1 (|uf ) f* ox—Re( 1 ()., ).

In view of (57)-(60), we get that

(Ll 31+ 2 (o Yo of

2 (f o e ol ()R, )
+(a—¢)|éf - rRe((n.2,))+ Re((i + £8) 1, &)
—eRe(A,f)—ﬂRe(a,§)+R6( (o) 77,5)

~2f £'(|uf*)lnf” Re itk abe— [ £ (|uf® ) |n|* Re(um, ) x
w7 |uf” Juf ] - Re( £ (Juf® Juf* ;)

w1 (|uf)nf* dx—Re(  (Juf ) .2 ) =0

Re( f (|u|2)77,77t +en— ;)

(61)

Copyright © 2013 SciRes.

Letting
0, (1) =Ll + 316l + 51 /(1 JuP of
+> j f (|u| )|77|2 dx
and
Gz(’%é)
= eyl - s(a-s)Re(n,&)+(a-s)|e - 7Re((n.2,))
+Re((i+&B)n,,&)-cRe(z,,&) - BRe(z,, &)

+Re( £(uf)u7.¢) -2 £ (1o nf Refu )
= (lluF [2f" Re(ud e+ & £ ((uf)uf " ox
R (ol 2o ) o

-Rel ()2

(63)
Then it comes from (61)-(63) that
d
Egz(nv‘f)*'Gz(ﬂaég):O- (64)
Now similarly to the above arguments (Lemma 4.1),

we can prove that there exist 6,>0, d,>0 and
d, > 0, such that

G (77 f) 6,9, (77 Cf)
) . (65)
=13 (¢ >—IIV/II ~26C (V)] -9 (1)-c
9, (1.¢) 273"'//" -c, (66)

where g, isdefined by (15) and go(t) will be defined
in the following paper, therefore we have

20,(1.6)+0.9,(1.0)=x.(n8). @)

Infact,
G, (1,£)~ 6,9, (1.6) = &, (n.€)
=€}/||7]||2—8 a—g)Re(ﬂ,§)+(a—5)|§|2
+Re((i +8)n,.£)-rRe((n.2,))-£Re(z,.£)

~fRe(z,.&)+Re( 1'(u)u'7.£)

_Zj f’(|u|2)|77|2 Re(uq)dx—j f”(|u|2)|u|2|77|2 Re(ut, ) dx
v £(uf ) nf* de—Re( £ ([uf* )l .2,

o] () cx—Rel (1 )12 ) - 22 -2
2 o o =2 ¢ o of e

(68)
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Teking o0,, d, arethesameas o,, d respectively
|n(36)andusmg |77| | ol L. [F,

2 ( u 2) and uniformly bounded in time, we ma-
joring every term on theright side in (68) to get
g}/||77|| —s(a—-&)Re(n,&)+(a-¢) |§|

ey &y
= 3Tt 21 o e+ T

- e(a-c)Re(né) [ £- L

&
~llf

277" 431 + Sl +

(=)l e+ 25 )ef

ey a £ &y
> =l + el + S 1l + =l

{55 e

ﬁ 2 Oy 2 )2
> 3T ot 21+ e,

where ¢ is defined by (32) and 4, is the first eigen-
valueof A, and we have

(69)

(i+28)08) =+ [l e
., (70
LD S

and
~7Re((1.2,)) -2 Re(z,.¢) - fRe(2,.£)
—Re( f (|u|2)77, ;)— Re( f ’(|u|2)|u|2 7, ;)
< 7||77||-||A||+8|A|'|§|+ﬁ|2xx|'|<f|

+Hf
chl“uﬁlcl O + /’1 1()+ﬂ1C1 (Olef
LG g v renci(n)
_28C, (O (§+£+%2+CJ,BC1(t)
=28C (VI + o (1),
(7)
where go(t):[y—;+87:+%2+c]ﬁlcl(t).

By |77|f4 < c|;7x|1/2 |77|3“2 and young inequality, we have
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Re( f ’(|u|2)u277,§)

2\ |2 2 Ay, 2 (72)
<[ (1 i) 11l < el + 5102,
= f'(|u|2)|n|2 Re(ut )
@
ol e < S el
| f"(u|2)|u| I Re(ui ) i
<l (1 VP 2 <$ 2 2’ (74)
<o (Yol e e < Sl >+l
(g-‘izzj £ () o
5 d - (79)
(o= [ o s <l sl
[g_éj T (0P nf
. . (78)
(o= )|t ). e = St sehl
Then it follows from (68)-(76) that
(77 f)_ 292(77 5)
2||W|| —2B8C, (O] -9 () -cnl . (D)
> Sy 286 (- (1)

Similarly, with d, =min(y,1), we can easily derive
that

0.(1.€)> [ . (7)

From (64)-(67), we infer that

(O] +g0(t) +o
(79)

agz(ﬂ 5)"'5292(77 §)<2ﬂ1

it follows from (44) that, for the same 2, we have

9 (ﬂaf)g(_52+ﬂﬁlcl(t))gz (ﬂv§)+go(t)+c

dt
(80)
Putting
f,(t)= =8, + uBC,(t) = =0, + up Y |z (t)] . (8D)
j=1
then by the Gronwall Lemma, we have, for t>17
9 (771 5) < ejr fo(e)ae 9, (770 ) fo)
. ool (82
+ L ( (o} (0') + C) o 29%q 5
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The same as (47), we have, for te[-1,0], r<-1,
e[?fz(c)da
gz(ﬂaf)sg 92(770150)
+ C.I_I_Ow(go (O-) + C) ej.g fZ(S)deG
where ¢, =€, and

6 ()= (9(c)+ ) <o, (84

(83)

qé(w):wpe[ng(“)d“|;(r)|2 <. (85)

7<-1

Noting that
9, (770150)

1 1.,
= %"770"2 +§|§O|2 +§.[ f (|u0|2)|u0|2 | dx.
1
+= [ (|u0|2)|770|2 dx
Yo :(770'771"'5770 _%((T)) )
we get
9, (10:&) < (lwol” +1). (86)
then from (66) and (83)-(86), we obtain that
d
Lo,
<00 W (|o|f + + oo + [z, +1). (8)
+01J1(90 (a)+c)e[3 2905 + ¢

We now take

O
pf(w)=252(2c+0ﬂ’(w)+oq§(w))+? and choose
2 2

Tz (@) such that

ej.rofz(ff)do ("770"2 n |771 i 8770|2) <1,

forall 7<T,(w),thenwe get
[t @iz <3 (@), te[-10]. (89

4.3. The Compactnessin E,

In this subsection, we prove the compactness in E,
through the decomposition of solution semigroup.

Let u(t) be aTsqution of (5) with initia vaue
(uo,u1+guo—z(r); . We make the decomposition
u(t)=y,(t)+y,(t), where y, (t) and vy,(t) satisfy

dy, +ay,dt— By, dt - yy,,dt+iy;,dt =0,
Vi(X%7)=U(X),  Yu(X7)=u(X), (89)
Y (x=Lt)=y (x+Lt).
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and
dy,, +ay,dt— gy, dt—yy, dt +iy, dt

+ £ (uf Judt = > h dw,
(o oa-Snow,

Y,(x7)=0, y,(%7)=0,

Yo (x=Lt)=y,(x+L,t).

Lemma 4.3 For any no random bounded set B, we
have, for any (up,u, +&u,)" € B

YO, =[O +[y: (0)+ 2% (0)

< £(||u0||2 +luy + o e
d,

(91)

and there exists a random variable p,(@)>0 such that
for P-as weQ

|oY, (o, a);z',Yz(r,a)))”; < p? (@), (92)

where Y, =(y,, Y, +¢y)  and
Y, =(Y,, Yu +€Y,—2) satisfy (89) and (90) respect-
tively.

Proof. Taking the inner product of $89) with Y, in
E, whoseinitial valueis (u,,u, +¢u,) , after asimple
computation similarly as Lemma4.1, we obtain (91).

Taking the inner product of (90) with AY, in E,
whose initial value is (0,-z(z)) , after a simple com-
putation similarly as Lemma 4.2, we obtain (92).

Let By,(w) betheball of E =H?xH" of random
variable p,(w)>0 . From the compact embedding
E, =H’xH'>E,=H'xL*, we see that B, (w) is
compact. For any no random bounded set B of Eg, pick
any ¢(0)egp(t,0,0)B. From Lemma 4.3, we have
Y,(0)=¢(0)-Y,(0)e B, (@) , where Y,(t,®) is
given by Lemma 4.3. Therefore, again by Lemma4.3,

. 2
«(O)LQL(M) "¢(O) -4 (0)"50
<M (O, =2 (Juff + o + o), <0
1

So
diSt(g)(t,Hfta)) B,By, (a))) —0, ast— +oo,

Corollary 4.4 The RDS ¢(t,w) associated with (17)
possesses a uniformly attracting compact set
By, (@) c E,,s0the RDS ¢(t,) isuniformly asymp-
totically compact inEg.

By applying Theorem 2.2.2, Lemma 4.1 and corollary
4.4, we obtain the fina conclusion of thiswhole paper.

Theorem 4.5 Assume h; e D(A)=H*NH?, then
the RDS ¢ modeling the dissipative Hamiltonian am-
plitude equation governing modulated wave instabilities
possesses a compact random attractor A(w) which
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atracts all bounded setsof E, = H"'xL”.
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