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ABSTRACT 

In this paper, we study the random dynamical system (RDS) generated by the dissipative Hamiltonian amplitude equa- 
tion with additive noise defined on the periodic boundaries. We investigate the existence of a compact random attractor 

for the RDS associated with the equation through introducing two functions and one process in . The com- 

pactness of the RDS is established by the decomposition of solution semigroup. 
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1. Introduction 

The Hamiltonian amplitude equation 
2

i 2x tt       0 ,            (1) 

was first proposed by Tanaka, Yajima and Wadati as a 
model for the nonlinear modulation of stable plane wave 
in unstable media [1,2]. In 1992 as an improved version 
of (1), the equation 

2
i 2 0, 0x tt xt           1



,     (2) 

was proposed [3], which generalized (1) in the sense that 

  , ; 0 ,x t    x t



,             (3) 

but one can show that for most initial data 

  
0

lim , ; ,x t x


  


 t ,            (4) 

even if the two functions agree at t = 0. Both of these 
models can be derived systematically from more com- 
plicated Hamiltonian systems through a particular limit- 
ing process (nearly monochromatic waves of small am- 
plitude) corresponding to 0  . Even so, keeping 

0   in (2) is crucial because (1) is formally integrable 
but ill-posed, whereas (2) is a generalization of it which 
is apparently not integrable but well-posed. 

In this paper, we consider the following dissipative 
Hamiltonian amplitude equation governing modulated 
wave instabilities perturbed by an additive white noise 

 2

1

it t xt xx x

m

j j
j

du u dt u dt u dt u dt f u udt

h dW

  



    

 
  (5) 

      0, , ,tu x u x u x u x  1 ,         (6) 

and the periodic boundary condition 

  ,u x L t u x L t   , ,            (7) 

where  is an unknown complex valued function,  is 
the unit of imaginary number, the internal 

u i
 ,I L L  , 

,   and   are positive constants, which satisfy 
  , the functions , , are 
time independent, the random functions 

 2
jh H I 1, 2, ,j m

jW , 
1, 2j , , m  , are independent two-side real-valued 

Wiener processes on a probability space  , ,F P  
which will be specified later, and  f s  is , 1C  sf s  
is  real valued function which satisfies that 2C

 
01

lim inf 0, , 1
s

F s
s

s   
    ,          (8) 

   
01

lim inf 0, , 1
s

sf s F s
s

s 
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where 0 1  , 0  is a constant depended on   and 

 , and   s dF s f


t t  . 

The deterministic case has been studied extensively, 
for instance, Guo, B. L. and Dai, Z. D. [4] proved that 
there exists a global weak attractor 1  in 1E H H2 1   

 is actually a global strong attractor in 1E . 
Dai, Z. D. [5 proved the existence of a global attractor 

0  in 1 2
0E H  , and e equality 0 1

for (5) and it
] 

 obtained tL h    . 
Dai, Z. D L. Huang, J. [6] obtained a global at- 
tractor for the unperturbed system in 0E  and 1E  re- 

ctively ng, L., Dai, Z. D. [7] obtained the estimate 
of the Hausdorff dimension and the fractal dimension of 
a global attractor for the perturbed and unperturbed sys- 
tems separately. However, up to the best of our knowl- 
edge, the research for the dissipative Hamiltonian ampli- 
tude equation governing modulated wave instabilities 
with random attractors has not involved. 

Recen

. Yang, 

. Yaspe

tly, many authors have studied the existence of 
ra

ollows. In Section 2, for 
co

ndom attractors for other equations [8-10]. In this paper, 
for (5), we first obtain an absorbing set in 0E  and 1E  
respectively through introducing two functio  and o  
process, then by the decomposition of solution semi- 
group we derive the compactness in 0E . As far as we 
know, no one has studied stochastic e ations through 
introducing two functions, so this method enriches the 
study of stochastic equations. 

This paper is organized as f

ns ne

qu

nvenience of the reader, we recall some basic notions 
on function spaces and the theory of random dynamical 
system. In Section 3, we solve Equation (5) and get the 
corresponding RDS  . In Section 4, we prove the exis- 
tence of a random attractor in 0E  for this RDS. 

Throughout this paper, we adopt the following nota- 
tions. We write  2 2L L I ,  1 1H H I ,  

 2 2H H I  fo  dr short. We enote by  and 
d 

the norms, 
by   ,   an ,   the inner prod ts in 1uc H  and 

2L respectively. We lso use a u  to denote the dular 
absolute value of u . 

mo
or 

2. Preliminaries 

all some basic notions on function 

2.1. Function Spaces and Operators 

g for (5). Let 

In this section, we rec
spaces [4,7], the theory of RDS [11-14] and introduce the 
method of the existence of random attractors for the con-
tinuous RDS [8,10], which we will use in this paper. 

We first consider the mathematical settin
2L , 1H , 2H be usual Sobolev space, 1 2

0E H L  , 
H  nd  T

,u v  . We define the f  
ts and no rately: 

for any  T

0,i u v E    and 

2

scalar p

1  a
uc

1E H
rod

ollowing
rms sepa

i i  T

0,u v E  , we 
have 

      
0

1 2 1 2 1 2, ,
E

u u v v    , ,
0

2 2

E
u v   , 

2

for any  T

1,i i iu v E    and , we ve  T

1,u v E  ha

      
1

1 2 2E
D u D u  , 2 2

1 2 1, , ,v v 
1

2 2 2
u v  

E
  

Let  2 1 2: 2A D D A H H L    , then A  is a 
positive self-adjoint operator, which has the firs igen-  

value 

t e

1

2

inf
u

  . 1 2u H u

2.2. Random Dynamical Systems 

Let  , ,F P  be a probability space and  
 :t R  be a family of measur

ch that  , tt
,

trans  su
t 

formations
e preserving 

    is measurable, 

0 id   and t s t s     for all ,s t R . The flow t  
together with  rresponding probability space  the co
 , , , tF    is called a measurable dynamical system. 

 2.2.1 A continuous random dynamical sys- Definition
tem(RDS) on a Polish space  ,X d  with Borel 
 -algebra on  , , , tF    is a measurable map 

: R X   ,    , , ,t x t xX      

such that . .a s   
1)  , id  on X0  ;  
2)    t  , , ,s st s      , for all ,s t R  

(cocyc
3) 

le property); 
 , :t   

random compac

  is continuous. 

 is a family of  

co

A t set   K





mpact sets indexed by such th every xat for   the 
mapping   ,x d x K   is measurable wi pect 
to 

th res
F . 

L t    e be a random set and B   . We say 
   s B  if attract

    lim , , 0, . .
t

a s 
 tdist t         , 

where  ,dist    denotes the Hausdorff semi-distan  in ce
X . We say    absorbs B  if there exists 
  0   such th all  Bt tBt at for  , 

    , . , .tt s   a     . 

   A random set is said to be a rando ctor 
fo

m attra
r the RDS   i . .a sf    
1)    i  a random ompact set; s  c
2)    is invariant, that is,  
     , tt  

)(


3)
    for all t  0 ; 

 attracts all deterministic n bou ded sets 
eore pact set 

ab

B   . 
Th m 2.2.2 If there exists a random com
sorbing every bounded set B  ，then the RDS   

possesses a random attractor   , 

       
 , 
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   0 ,
:

t s ts t  


 
   

    where is t omega-limit set 

o e the Equation and Generate a RDS 

he 

of B . 

3. S lv

We consider the probability space  , ,F P , where 

m     1 2, , , 0 0m C R        , , :R 

and F  is the Borel  -
, while

algebra induced by the com act 
ope ology of is the corresponding  

p
Wie-n top

ea
  P

ner m sure on  , F . Then, we identify   with 

        1 2 , , formW t W t W t t t R   .  ,W t

Finally, we define the time shift by  
,      t t t        ,

 a

t R

ontin

. Then  
 system. 

om dy- 
namical system urpose, 
w

dimensional Ornstein-Uhlenbeck 
eq

One may easily check that a solut
by 

Putting 

  , , , t t R
F 


  is a metric dynamical

 c uous rand
corresponding to (5). For this p


We now want to establish

e need to convert the stochastic equation with an addi- 
tive noise into a deterministic equation with a random 
parameter. 

Given 1, 2, ,j m  , consider the stochastic station- 
ary solution of the one-

uation 

 j j jdz z dt dW t  .            (10) 

ion to (10) is given 

     e d ,
t t s   .      (11) j jz t W s t R


1

m

j jj
z h


  z , by (10) we have 

1

m

j jt h dW . 
j

dz zd




We also need two facts 

    
2 0 2 1

e d 0
2

 


   ,  (12) 

as 

2
0 0j jE z E z

  . We also have 

 
lim j

t

z t

t
 0, . .a s              (13) 

Assumed . Then 
ding theorem

  2
jh D A H 

,  
by Sobolev embed- 

 2 1H I C I , we have  1
jh C I . 

In particular, all jDh  are bou
ts a 0 0

nded continuous functions. 
Thus there exis    (d ly onepending on  jh ) 
such that 

   0
1

sup
x I

Dz


, , , . .
m

j
j

x t z t t R a s


        (14) 

where j jz h z  and jz  is the Ornstein-Uh

process defined by (11). It is also easy to prove that 

lenbeck 

 2
1

1

m

j
j

z D z t


  ,         (15) z D z 

where only depends on jh . 
a ran

1 0   
To s at (5) generates dom

tem, we let 
how th  dynamical sys- 

      v t u t u t z t   ,
atis es

  where  is 
 

t

the solution of (5), then u , v  s fi
u , tu

     

 
     

2

0 1 0

,

,

, , , ,

t

t

u v u

v Au u v i


    

 
       x

x x

z

u

v z z f u u

u u v u u z

 

  

     



 
    


   

    (16) 

where 1
0u H , 2

0v L , and  

0    T

0 0, ,u v0 E   
 proof as 

.
dete

 
rministic case [4], one can 

et that 
By the same

easily g for . .sa  ,  , the following results 
hold 

 sa

Theorem 3.1 If  T

0 0 0,u v E , there exists a unique 
solution   T

0, ,t u E     of (16),  
which

   ,t v t ,
tisfies 

    1, ;C T H  , ,u t    , ,v t C  2;T L . 

If  T

0 0 1,u v E , there exists a unique solution 
E   T

1, ,v t    , ,t u t   isf of (16), which sat ies 

    2;u x H ,   , ,t C T  1, , ;v t C T H  . 

the solution of From the above discussion, we denote 
(5) by    0  , ; ,u t u t u   (denote sometimes by 
  , 0; ,u t u  ;u t  ,  ,u t  ,  u t  or even  if no 

E  by 

u
confusions). Then we can define a mapping  

: R   0 0E 

   0 0, : , ;0,t t     

   0 0, ;0, ;0, , 0,u t u v t , ,v t 
,      (17) 

by the definition 2.2.1, it is easy to show that   is a 
continuous RDS on with the following fact 0E

   0 0, 0, ; ,           , 

for    T
, , , 0.u v E    0 0 0 0     

4. Random Attractors 

ng Set in 4.1. Absorbi E0  

In this subsection, we prove that the RDS   defined by 
rb  set , which 

. Recall that 
(17) has a bounded abso ing
absorbs, in fact, all the bounded sets 

  
0B E
 i

0B E


      T

0 0 0, ; , , ; , , , ; ,t u t u v t v        s the solu- 
tion of (16) with   0u u   and  
   v u u z v  1 0 0    . 
We then rewrite (16) as follows 
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  ,L F u    T
, , , , , ,v t              , 

(18) 

where 

,  
u

v


 
  
     

I I
L

A I I


     

 
     

, 

     2,
x x x

z
F

i u v z z f u
 

   

 
 
      u
 

. 

We now can prove the absorption of RDS 



  (defin  
by (17)) in . 

Lemma 4.1 or any no random bounded , there 
ex

ed

0E
 F set B

ists a random variable  1 0    satisfying the fol- 
lowing property: for every  T

u B  ere 
ex

0 1,u u 0 , th
ists   1BT    , such that, for any  BT  , the 

following estimate holds 

 

. .a s  

   
0

0 1; , ,
E

       

Proof. Taking the inn u

, 1,0t t . 

er prod ct of (18) with   in 
, we obtain that 0E

    , , ,
2 d

L F
t

21 d        .      19) 

Taking the real pa

(

rt of (19), we find that 

      

     
       

      

2 2 2

2

2 d

Re ,

t

u v v       

2

1 d
1 Re ,

Re , Re , Re ,

Re , Re , Re ,

x x

x

u v u u v

z u i u v v v

z v z v f u u v

 

 

 

   

    

  

.  (20) 

Since 

    
   

      2 2

1 Re ,

1 Re ,

1 d
1 1 Re

2 d

t

u v

u u u z

u u
t



,u z



   



 


    

,  (21) 

and 

 

  
  
        
       

2

2

2 2

2 2

Re ,

2

2

,

Re , Re , Re ,

1 d
d Re , Re ,

2 d

t

t

f u u v

f u u u u zRe

 
     

     
      

  

2 2 2

2

2

2

d 1 1
d

d 2 2 2

Re ,

Re , Re ,

Re , Re , Re ,

Re , 0

x

x

u v F u x u
t

u v v

i u v f u u u

u z z v z v

f u u z

 

    

 

  

    
 

   

  

  

 


2

.   (23) 

We introduce two functions 

   2 2 2

1

1 1
, d

2 2 2
g u v u v F u x


    ,      (24) 

       
     

f u u u f u u u f u u z

F u x f u u u f u u z
t







 

  

  

,

(22) 

it follows from (20)-(22), we get that 



      

  

2 2

1

2

2

, Re ,

Re , Re ,

Re , Re , Re ,

Re ,

x

x

G u v u u v v

i u v f u u

u z z v z v

f u u z

     

 

  

    

  

  



, (25) 

an

u

d one process 

   1
1

m

j
j

C t z t


  .     

So that (23) gives 

       (26) 

   1 1

d
, ,

d
g u v G u v

t
  0 .        (27) 

In the following, we denote by any constant depend- 
ing only on the data 

c

 , , , , ,I f
 th
s

   
e or even in e 
 positive con tant

, which can be dif- 
ferent from line to lin same line. Now we 

xist s can prove there e 0 , d  and 1d  
such that 

   

     

1 0 1

2 2

1 ,
d

u v  1 1

, ,

2
2

G u v g u v

C t g t c



 



    
,   (28) 

  21
1 ,

d
g

2
u v c  ,              (29) 

where 1  is defined by (15) and  g t  will be defined 
in the following paper, hence we obtain 

     1 0 1 1

d
, , ,

d
g u v g u v u    .      (3 ) v

t
0

In fact we have 

     
     

    
      

    

1 0 1 1
2 2

2 2 20 0

, , ,

Re ,

Re ,

Re , Re ,
2 2

x

x

G u v g u v u v

u u v v

i u v f u

z v f u u z

 
     

 


 


 

    

  

  



(31) 

2 2
du x . 

20 d Re , Re ,
2

F u x u z z v   
u v
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By estimating every terms on the right side in (31), let- 
ting 

1
2

12 3


 




,              (32) 

where 1  is the first eigenvalue of A , then by (32), we
find

 
 that 

     

   

 

 

2 2

2 2 2 2

2

2

1

2 2

2

Re ,

3
Re ,

4 2 2 4

2 4 2 2 4

3 3

2 2 4 2 2

2 4 2

2 4 2

3

u u v v

u v v u u v

v u v v u

u v v u v v

u v v u v

v u u v

     

      

   



   


  

   

     

    

         
 

      
 

    



2 2 2 2 23 3

2

      
 

2 2 2  

2 2 23 3

4 2
u

      

2

2

2 2 2

2 2 2

3

2 2

3 3

4 2 2 2 2

3

4 2 2

v

u v v u v

u v v



    

  

  
 

 
      

 

  

,  
(33) 

and 

   2 2

2 2
2 2

Re , 1

1

2 2

xi u v u v

u v

  

  


   


 

.    (34) 

Using f


 uniformly bounded, we get 

         
 

       

       

    

 

2

2

2 21 1 1 1
1 1 1 1

2 2
21 1 1 1

1 1 1 1
1

2

1 1
1

2 2 2 2
2

1 1
1

Re , Re , Re , Re ,

4 4

4 4

4 4 4 4

2
4 4 4 4

x

x
L

u z z v z v f u u z

z u z v z v f u u z

C t C t
C t u C t v

C t c C t
C t v C t

u C t

c
C t

  

  

  
 

  
 





   




   

       

  

   


 

 
 

     
 

 

 

2 2


2
u

2 2 2
2 2

1 12
c

C t v
  


     

   
2 2 2 2

1 1
14 4 4 4

c
g t C

   


 
    
 

. 

 

1 1

2

1 12 ,

C t

C t g t



  
(35) 

where t

Taking  and 
 2 2

0

2 1  





 , , such that 0 2

 0

where  is ned in (32), and letting  defi

 0 0min ,d                 (36) 

we find that 
2 2

03 1

4 2 2

d   



2

   ,          (37) 

0

2 2 2 2 2

d  
    .           (38) 

Noting that 0 1
1

2 4



  , by (8) and (9), we have 

   2 2 2 2 2
f 
 0

0d d d
2

u u x F u x u x


   , (39) 

using 

   
1

2 2 2 1

1
2 20 d

1 1
u x

 1d 2 du x D u x



1

0

2D 
 

 

 


 

 
, 

wh

 




 

ere 0  is any positive number. Choosing 

 
1

1
0

0

2 1

d

 


 
  


, 


we find that 

2 2 2
d

d
x u c  .          0 2

u
 

 (40) 

Combining (31)-(40), we infer that 

       2 2

1G u 0 1 1 1, , 2
2

d
v g u v C t g t c        . 

(41) 

In order to prove (29), and similarly to (40), we have 

  2 2

1

1
,

2 2
g u v u v c


   .        (42) 

ng Taki  1 min ,1d  , we get (29). 
From ( r that 27)-(30), we infe

       2

1 0 1 1 1

d
, , 2

d
g u v g u v C t g t c

t
      . (43) 

Taking 
4

max , 4


 
  

 
, we have 

     1 0 1 1 1, ,
d

  d
g u v C t g u

t
  v g t c     . (44) 
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Putting 

     1 0 1 1 0 1
1

m

j
j

f t C t z t   


       ,   

th

(45) 

en by the Gronwall Lemma, we get, for t   

       1 d

1 1 0 0, e ,
t tf

g u v g u v g  


  1 d
e d

t f s s
c   .   

(46) 

In particular, we have, for  1,0t , 1   , 

     

    

0
1

0
1

d

1 1 1 0 0

0 d

1

, e ,

e d

f

f s s

g u v c g u v

c g c





 

, 








 
      (47) 

where 0
1 ec 

1 0 , 
, in view of the following fact: for 

t 

     

   

0 0
1 1 1

0 0 0
1 0 10

d d d

d d d

e e e

e e e e

t
t

t

f f f

f f

 

 

     

     

  

  



 
. 

To estimate all integration terms on the righ
(47), we choose 

t side in 
0   such that 

    0
1 1 1

1

0 0
2

m

j
j

EC E z


 


  . 

This is possible since by (12), 0 1 0EC   as 
  . Thus, since  jz t  ry

 get 
is stationa ic, it  and ergod

is easy to

     0

1 1 0 1

1
lim d 0

2
f Ef EC



0
1 0


   


   

 
(48) 

p s th

          (49) 

By (13), 

  , 

which im lie at 

 0
1 d

lim e 0, . .
f

a s  



   

 
0jz 


  as    , thus  C t1

further  

 and  

g t  is at st 1-times p mo olynomoal growth at 
, wh ether with (49), implies that 

. .a s   (50) 

an

 ich, tog

      0
10 d

1 e d ,
f s s

q g c   


     
d also implies that 

     
0

1 2d

2q
1

sup e
f

z  


 



   .        (51) 

Noting that 

   2 2 2

1 0 0 0 0 0

1 1
, d

2 2 2
g u v u v F u x


    , 

 0 0 1 0,u u u z    

2

, 

and , we get 1
0u H , 1u L

   2

1 0 0 0, 1g u v c       

llow

,        (52) 

then it fo s from (29) and (47)-(52), we obtain that 

 
    
    

0

0
1

0
1

0

22 2d
1 0 1 0

d

1

2

e 1

e d .

E

f

f s s

cc u u u z

c g c c





   

 






21 , ; ,
d

t   

0

    

  
We now take  

  (53) 

      
0

2 2e
 1 1 2

1 1

2
2

c
c q cq

d d
      and choose 

 BT   such that 

   0
1 2 2d

0 1 0e 1
f

u u u       , 

for all  BT  , then we get 

     1,0 .      (54) 
0

2 2
0 1, ; , ,

E
t t      

4.2. Absorbing Set in E1  

In order to prove the absorption property in , we also 
need the following change for (18). 

Differentiating (18) with respect to 

1E

x  and letting 

xu  , xv  ,    TT
, ,x xu v    , we have 

 
      T

, ,

, , , , ,

F

t

 

,

L 

         

 

 
 


    (55) 

where 

   
I I

L
A I I


     


     

, 
 

 

   
   22

,

.

x

x x x xx

z

i z z f u

u f u

2 2
u

2
f u

F  

    



 
 

      
 




  

 


We now can prove the absorption of RDS   (defined 
by (17)) in 1E . 

Lemma 4.2 For any ded set B , there 
atisfying th

 no random boun
exists a random variable s e fol- 
lowing property: for ev  there 
exists 

 2 0    
ery 0 1,  T

0 B ,
  1BT     BT, such that, for any  , the 

following olds  estimate h . .a s   

     
1

0 2, ; , , 1,0 .
E

t t         

Proof. Taking the inner product of (55) ith w    in 
, we obtain that 0E
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    21 d
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2 d
L F

t
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Taking the real part of (56), we find that 
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Due to 
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 view of (57)-(60), we get that In

 
     

       
      
       

    
    

2 2 2 2 2

2 2 2

2

2 2

2 2 2 2 2

2 2 2 2 2

2 2 2

d 1 1

d 2 2 2

1
Re ,

2

Re , Re ,

Re , Re , Re ,

2 Re d Re

d Re ,

d Re , 0.

x x

x xx

t

x

x

f u u dx
t

f u dx

z i

z z f u u

dtf u uu x f u u uu x

f u u x f u u z

f u x f u z

   

       

       

     

 

  

  

  


   


    

  

 

  

  










(61) 
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Then it comes from (61)-(63) that 
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d
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ilarly to the above arguments (Lemma 
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In fact, 
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2 , 2d  0 , d  respectivelyTaking are the same as  
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u f
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Similarly, with  3 min ,1d  , we can easily derive 
that 
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From (64)-(67), we infer that 
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 1,0t  , 1   , The same as (47), we have, for 
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We now take  
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4.3. The Compactness in E0  

In this subsection, we prove the compactness in 
through the decomposition of solution semigroup. 

Let  be a solution of (5) with initial value 
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Lemma 4.3 For any no random bound
have, for any 

y x L t

 

ed set B , we 

0 T

1 0,u u u B   

       

 
0

3

2 2 2

1 1 1 1

2 2

1 0

0 0 0 0

2
e

tE
Y y y y

u u u  





  

  
,    (91) 

and there exists a random variable 
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Proof. Taking the 
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Taking the inner product of (90) with 
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Corollary 4.4 The RDS  ,t   associated with (17) 
pact set  possesses a uniformly attracting com

 1 2 0B E  ,t   

.2, Lem

  , so the RDS is uniformly asymp- 
totically compact in

By applying Th  2.2 ma 4.1
 obtain the final con  this whole paper. 

 4.5 Assum
S

0E . 
eorem  and corollary 

4.4, we clusion of
Theorem e  jh D A H H   , then 

the RD

1 2

   modeling 

po

the dissipative Hamiltonian am- 
plitude equation governing modulated wave instabilities 

ssesses a compact random attractor    which 
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