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ABSTRACT 

In classical mixed finite element method, the choice of the finite element approximating spaces is restricted by the im- 
position of the LBB consistency condition. The method of H1-Galerkin mixed finite element method avoids completely 
the imposition of such a condition on the approximating spaces. In this article, we discuss and analyze error estimates 
for Convection- dominated diffusion problems using H1-Galerkin mixed finite element method, along with the method 
of characteristics. Optimal order of convergence has been achieved for the error estimates of a two-step Euler backward 
difference scheme. 
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1. Introduction 

The convection-dominated diffusion problems have been 
treated heavily using finite element methods [1-4]. Mixed 
finite element method has been proposed by Douglas et 
al. [5]. But these methods need to satisfy the Ladyzhen- 
skaya-Babuska-Brezzi (LBB), consistency condition [6-9], 
on the approximating spaces which restrict the choice of 
the finite element spaces. In this case it is a special case 
of those defined by Raviart and Thomas [10]. Pani [11] 
has proposed and analyzed an H1-Galerkin mixed finite 
element method which is not restrictive in the sense that 
the approximating finite element spaces don’t need to 
satisfy the LBB condition. Further, piecewise linear poly- 
nomials can be considered for the approximating spaces. 
Recently, an H1-Galerkin mixed finite element method 
has been discussed for a class of second order Schrödinger 
equation by LIU et al. [12].  

Moreover, in convection dominated problems, standard 
upwind finite difference methods are used for problems 
which artificially smear fronts with excessive numerical 
dispersion and produce solutions that depend strongly on 
the orientation of the difference grids relative to the 
streamlines of flow. Other standard techniques without 
unwinding produce unacceptable oscillations in the ap- 
proximations. These difficulties can be reduced sub- 
stantially by using the Modified Method of Characteris- 
tics (MMOC). This procedure was introduced and ana- 

lyzed for a single parabolic equation by Douglas [13] 
using backward single-step in the direction of charac- 
teristic. Also, this procedure using two-step in the direc- 
tion of characteristic has been analyzed by Ewing and 
Russell [14], and then extended by Russell [15] to nonlinear 
coupled systems in two and three spatial dimensions. The 
H1-Galerkin mixed finite element along with the method 
of characteristics has been applied to the convection do- 
minated diffusion problems with a single step backward 
Euler in the characteristic direction by Mohamed Ali [16]. 

In this paper, to utilize the above advantages for the 
convection dominated diffusion problems, we shall pro- 
pose an H1-Galerkin mixed finite element method com- 
bined with the method of characteristics, and examine the 
rate of convergence for a Two-Step Euler backward dif- 
ference scheme. 

2. Variational Formulation 

2.1. Consider the Convection-Dominated  
Diffusion Problem 

       

   
         0

, ,

, 0,1

0, 1, 0, ,0 ,   0,1 .

u u u
c x b x a x f x t

t x x x

x t J

u t u t u x u x x

           
 

   

  (1) 

Assume that  and , and the 0 0a a    0 0c x c 

Copyright © 2013 SciRes.                                                                                JAMP 



M. A. M. ALI 17

coefficients are smooth, where  0,1J  . The above 
problem arises in many applications involving diffusion 
processes such as heat flow in a moving material, trans- 
port of pollutants in lakes or channels, subsurface hydro- 
logy and miscible displacement in porous media. 

Setting   xv a x u

 u x

, Equation (1) can be rewritten as 

 , ,x f x tt v v            (2) 

where        x b x a x c x   and    1x c x  . 

Let        1 1 1
0 : 0 0H I H I  

1 1
0J H H 

 . We now 
state the weak formulation as follows: Find a pair 

 such that  , :u v

       
 , , x

I

f z         
0

1

 , , ,  

 , , ,  

x x x

t x x x x

a au w v w w H

b u z v z v z z H I 

  1

.




   
(3) 

Integrating by parts the first two terms of (3.b) we 
have 

     
  1 0

,

1

xv z

v z





 
      

, , ,

, 1 0

tx x x

x

u z v z v z

f z v z

  

 

  

  0 ,
 

and hence with    1x a x  , we obtain 

   
       1

1 0

, ,

, 1 1 ,

t x x

x

v v z v z v 
   
,

0 0

xz

.f z v z z H I

   

  

  

    v z 

 0

  (4) 

Here,  and 0 . We shall use the 
standard Galerkin method to solve equation , and 
the characteristics method combined with the Galerkin 
procedure to approximate (4). 

 1 1   
3.a

With      2 2
x x x    , let  x   denote 

the characteristic direction associated with the operator 

tv vx  , where 

 
 
 

 
 

.
x x

x x t 
  

 
  


x x

 


   

Therefore, the term  in (4) may be re- 

placed by 

 ,t xv v z 

  ,
v

x z



 





 

.

. Defining the bilinear form 

      1, , , ,   x xA v z v z v z z H I      

Then Equation (4) can be rewritten as: 

     

           1
1 0

, ,

, 1 1 0 0 ,  x

v
x z A v z

x

.f z v z v z z H I




  

 
   

    

 

In our error analysis we shall use standard Sobolev 
spaces  mH I  with norm 

m
 . For simplicity, we 

write  mH I  as mH . 

3. Second-Order Backward Euler Method 

Let  and  be the finite dimensional subspaces of hV hW

 1H I  and  1
0H I

0r 

, respectively. Assume that h  and 
 satisfy the following approximation properties, for 

 and  integers, 

V

hW
0k 

 

      1,1,

1 1
01

1

1

inf ,   ;

inf ,

.

h h

r pp p
h h

k k
h h

v V

r
h h W IL I W Iw W

r

v v h v v Ch v v H H

w w h w w Ch w

w H



 









    

   



 1

 

We shall approximate (5) using the second-order back- 
ward Euler approximation method, using the formula 

1 23 1
2

2 2 .

n n n
n u u uu

t t

  


 
 

For the approximation along the characteristic direc- 
tion, we define 

 
 

 
 

,   2 ,
x x

x x t x x
x x

 
 

t       

   1 1 1, ,n n nu u x t u x     

and 

   1
2 2, .

n
n nu u x t u x


    

Then, the time derivative along the characteristic di- 
rection is approximated by 

1
2

2 2
1 13 31 1

2 2 2

2

2

2 2

1

n n
n n n nn v v v v v vv

t
t

  
 



 
    

 
  

  
 

2

(6) 

Then, the Galerkin procedure is to determine a pair 
   0 1, : , , , N h hU V t t t W V   such that 

     

   

         

2
13 1

2 2

1 0

 , , ,  

2
 , ,

, 1 1 0 0 ,  

n n
x x x h

n
n n

n

n n n
x h

a aU w V w w W

V V V
b z A V z

t

f z V z V z z V



  




 

           
     

(7) 

where     , ,A A ,        . Here,   is cho-
sen large enough to ensure the coercivity of A , that is 
there exists 0 0   such that 

  2

0 1
,A      

Following Wheeler [17], we now define elliptic pro- 
jections  and hU W hV V  of  and  respect- 
tively, through 

u v
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    
   

 , 0,  

 , 0,  

x x x h

h

a a u U w w W

b A v V z z V

   


   




       (8) 

Letting  and u U    v V    , it is now quite 
standard to obtain the following estimates, for 

, 1 p  

   
   

1

, 1,, 1,

1

, 1,, 1,

, 0,1;

, 0,1.

r j
t tj p r pj p r p

k j
t tj p k pj p k p

a Ch u u

b Ch v v j

 

 

 
 

 
 

   j 


    

 

Following Pani and Anderssen [18], we have the fol- 
lowing super convergence results at the knot points 

 0,1x 

      2

1
 1 0 k

k
c Ch 


  .v          (9) 

4. A Priori Error Estimates for Double-Step  
Backward Euler Method 

Let 

   u U u U U U           

and 

   v V v V V V          . 

Now, subtract (7.a) from (3.a) then use (8.a) to have 
the following error equation in   

   , , ,  n n n .x x xa w w w W     h         (10) 

Below we state the following lemma for our subse- 
quent use (the proof of this lemma is given in Mohamed 
Ali [16], page 46). 

Lemma 4.1 
Let  be an approximate solution satisfying (7.a) 

and  be the elliptic projection of  defined through 
(8.a). Then  satisfies the following estimates, 

nU
nU u

U U  

1

11
.n k

k
C h v 


   

n  

In the remaining part of this section we shall assume 
that the coefficients   and  are bounded, and  a x  
is bounded below by a positive constant, then 

 
 

 
 

d
.

d

x x
K

x x x

 
 

 
   

 
         (11) 

Now define the elliptic projection  of  through 
(8.b) and the estimates (9.b) and (9.c) are hold. 

V v

The starting procedure for (7.b) will be required to 
satisfy 

    1
2

21 1 1

1

kt K h      

This can be achieved by using a first-order method on 
a time step smaller than t , followed by several uses of 
a multi-step procedure on somewhat larger steps until 
time t  is reached, for details, see Ewing and Russell 
[14]. 

We now state and proof the following theorem. 
Theorem 4.1 
Suppose that (12) hold. Then the error   of proce-

dure (7.b) satisfies 

   

 
 

1 2 1

2 2

1

0, ; 0, ;0

3
2

3
0, ;

max

.

k
n k

tL T H L T Hn N

L T L

K v v

v
K t





  h 

 

   
 


 



 

Proof 
Choose nz   in (7.b) and note that 0 0  . Then, 

the error equation in   can be written as 

 

 

      

      

2
13 1

2 2

2
13 1

2 2

2
13 1

2 2
1

0

2
, ,

2
, ,

2
1 1 1 ,

0 0 0

n
n n
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n
n nn

n n n n

n
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n n

A
t

v v vv

t

z
t

z


  

   

      


   n    

  










      
 

         
 

        
 

 

 

So that 

 

 

1 23 1
2 2

2
13 1

2 2

2
1 1 2

1 1 1

2

2
, ,

2
, ,

1
2 , ,

2

2 , 2 ,

,
2
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n
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n
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n n

n n n n
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n n
n

A
t

v v vv

t

t t

t t

t


  

   

      


      

      

  

 





  

  



  
   

         
 

            
    

        

 




             

   

2
2

1 0

9

1

1
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2

1 1 1 0 0 0

, , ,

n
n

n

n n n n
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i

i

t
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  

     

 






        
     

 

 

(13) 
t       (12) 
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To treat the left hand side of (13), we use the following 
stability lemma. 

Lemma 4.2 
If (12) and (13) hold, then for , 2 l N 

     

   

1 1

2

41 2 2

2

4 1
, , ,

3 3

4
, 2

3

l
l l n n l l

n

l
n l l k

n

A t

F t K h t

     

 

 



 



  

    



 
 

(14) 

For proof of this lemma, refer to R.E Ewing and 
Russell [14]. 

By the lemma 4.2, theorem 4.1, will be proved if we 
can handle the terms on the right-hand side of (14). The  

first term can be ignored because of the coefficient 1
3

; a 

recursion argument would show that it could be removed 

if the other terms were multiplied by 
2

31 11
3 3

   
2

. 

For the second term, expressions of the forms 
2

1

n t    and 
2nK t   can be respectively  

hidden on the left-hand side of (13) and eliminated by the 
discrete Gronwall’s lemma. Hence, using (9.b), the first 
term on the right hand side o (13) can be handled as: 

  2 22 2

11
,n n n n k

k
Kh v      


   .  

I.e., 

 1

2 22 2
1 0, ;

2
k

l
n k

L T H
n

F t Kh v  




           (15) 

and as in Ewing and Russell [14], the following terms on 
the right-hand side of (13) is bounded by 

 
 
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23
2 4
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l
n

n L T L

v
F t K t




  


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2 1
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2 2
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n n

2
F t   

 

    t ,            (17) 
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2 2
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n n

2
F t   

 

    t ,            (18) 

2

2 22 2
5 0, ;

2
k

l
n k

t L T H
n

F t Kh u



   ,        (19) 

 1

2 22 2
6 0, ;

2
k

l
n k

L T H
n

F t Kh v  




   ,        (20) 

2

2 22 2
7 0, ;

2
k

l
n k

t L T H
n

F t Kh u



   ,        (21) 
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and as in Mohamed Ali [16], the last term is bounded by 
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Inserting these results in (14) completes the proof of 
the theorem. 

5. Conclusion 

The computational process of the classical mixed finite 
element methods faces some difficulties while choosing 
the finite element spaces due to the restrictive LBB con- 
dition which is a must for such methods. In this paper, 
the application of this condition has been avoided by 
using the H1-Galerkin mixed finite element method. For 
more accurate and fast results, we have used the mo- 
dified characteristics method for two-step backward euler 
time discretization. This allows choosing the finite ele- 
ment spaces freely and maintaining the optimality of the 
order of convergence of the analysis. This problem has a 
wide range of applications in the real life such as in the 
transport of air and water pollutants, in oil reservoir flow, 
in the modeling of semiconductor and so forth. 
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