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ABSTRACT 

Building high confidence regression test suites to validate new system versions is a challenging problem. A model- 
based approach to build a regression test suite from a given test suite is described. The generated test suite includes 
every test that will traverse a change performed to produce the new version, and consists of only such tests to reduce the 
testing costs. Finite state machines extended with typed variables (EFSMs) are used to model systems and system 
changes are mapped to EFSM transition changes adding/deleting/replacing EFSM transitions and states. Tests are a 
sequence of input and expected output messages with concrete parameter values over the supported data types. An in-
variant is formulated to characterize tests whose runtime behavior can be accurately predicted by analyzing their de-
scriptions along with the model. Incremental procedures to efficiently evaluate the invariant and to select tests for re-
gression are developed. Overlaps among the test descriptions are exploited to extend the approach to simultaneously 
select multiple tests to reduce the test selection costs. Effectiveness of the approach is demonstrated by applying it to 
several protocols, Web services, and model programs extracted from a popular testing benchmark. Our experimental 
results show that the proposed approach is economical for regression test selection in all these examples. For all these 
examples, the proposed approach is able to identify all tests exercising changes more efficiently than brute-force sym-
bolic evaluation. 
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1. Introduction 

Maintenance and evolution of complex systems is a 
challenging problem since all the modifications made to 
obtain a new system version must be thoroughly tested to 
gain confidence that the new system functions correctly. 
Usually, this requires users to select tests that exercise the 
changes from the original test suite, evaluate the adequacy 
of selected tests, and possibly design new tests. This is a 
time consuming and error prone activity.   

Usually, regression test suites are built by selecting 
relevant tests from an available test suite. Automatically 
identifying relevant tests from a test suite to validate the 
new system version is called the regression test selection 
problem. This is an active area of research with several 
earlier works involving software programs ([1-3] are 
excellent surveys) as well as executable system models [4, 
5], which use finite state machines extended with vari-
ables (EFSMs). All of these works require the test traces 
on original versions to be maintained to select tests, which 

can be impractical for real systems using large test suites. 
The methods also tend to be safe, leading to the selection 
of many irrelevant tests that can increase the regression 
test costs.  

In this paper we present a model-based approach for 
building regression test suites consisting of all and only 
the relevant tests and without using any additional in- 
formation about prior test executions. Such an approach 
has the potential to reduce the maintenance overheads 
across versions and regression costs due to more compact 
test suites while increasing tester confidence due to the 
absence of irrelevant tests. We consider EFSMs whose 
variables range over a rich set of commonly used data 
types. System tests are derived from EFSM tests, which 
are a sequence of input and expected output messages 
with concrete parameter values over the supported data 
types. System changes are mapped to EFSM state and 
transition changes that add/delete/replace one or more 
EFSM transitions.  
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Given a change, and a test suite, the proposed approach 
automatically analyzes each test description to a priori 
determine the transitions that will be executed when the 
test is run on the EFSM. We formulate an invariant for 
each test that describes all the plausible EFSM execution 
paths that the test can potentially take when it is run on the 
EFSM. If the invariant is satisfiable, the transitions in the 
corresponding path are guaranteed to be executed by the 
test when it is run. The invariant for a test is automatically 
built using the transitions (and their post-images) match-
ing the test description. Informally, a transition is a match 
for a test description if it can process some test input in the 
description. A theorem prover is used in a push-button 
way to determine if the invariant is satisfiable and identi-
fies the associated transitions.  

Often, several tests in the given test suite have over-
lapping descriptions. For instance, it is typical for tests to 
use the same inputs to bring an EFSM to a common state 
and then exercise other specific behaviors. Such tests as 
well as others can be selected simultaneously whenever a 
given change matches these tests at the overlapping por-
tions of their descriptions. To enable analysis of a group of 
tests, a test suite is organized into a test forest whose each 
tree represents a group of tests with overlapping descrip-
tions. We describe a procedure to simultaneously select 
and discard groups of tests. Such a procedure alleviates 
regression test selection costs in many cases. 

The proposed approach has been implemented and ap-
plied to several EFSM models representing protocols, web 
services, and other applications with encouraging results. 
Our experimental results show that the proposed approach 
is economical for regression test selection in all these 
examples. For all the examples, the proposed approach 
selects every test that exercises a change while discarding 
all their relevant tests. Our experiments use a powerful 
theorem prover called Simplify [6] extended with rewrite 
rules [7]. 

Overview of the approach using a simple example fol-
lows next. Section 2 gives a brief overview of EFSM 
model. EFSM changes, tests, and change exercising tests 
are described in Section 3. In Section 4, we describe the 
formulation of invariant based on test descriptions. Sec-
tion 5 describes incremental procedures for selecting tests 
exercising changes and identifying unusable tests. Section 
6 extends the approach to handle multiple tests. Section 7 
describes related work. Section 8 describes our experi-
ments and Section 9 concludes the paper. 

Simple Example: Consider a bank web service EFSM 
depicted in Figure 1(a) whose transitions are given in 
Figure 2. Users start by opening an account with a cash 
amount greater than or equal to a minimum balance 
amount (min), and are given a unique number as account 
id. The current balance in each account is represented by 
an array B[] mapping the account id to a non-negative  

 
(a) 

 
(b) 

Figure 1. Bank web service EFSM and tests. 
 

 

Figure 2. Bank web service transitions. 
 
number. Users operate the account by performing deposits 
and withdrawals. Withdrawals exceeding the current 
balance are ignored. That leading to a balance lesser than 
the min value results in a state where withdrawals are 
ignored and a deposit that brings the balance above the 
min value is only allowed. Accounts accrue a bonus that 
doubles the current balance provided a specified maxi-
mum max number of withdrawals (that are not ignored) 
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and deposits succeed in maintaining a balance greater than 
or equal to the min value. The bonus amount is transferred 
incrementally to the account and no operations are proc-
essed during this period. The solid arcs in Figure 1(a) are 
external transitions that can be observed by their mes-
sages. Others (dashed arcs in Figure 1(a)) are internal 
transitions. 

A test suite used to validate the EFSM is given in 
Figure 1(b). Each test starts the EFSM in the state with id 
= 0; min = 50; max = 2; (Timer) T1 = max; bonus = 0.  

Now, suppose that we delete transition t12 and add 
transition t'12 to allow withdrawals when the balance is 
below min but is non-negative. Usually, tests in the 
original test suite that are will execute (or executed) the 
added (or deleted) transition are said to exercise the 
change and selected for regression. Test λ1 is not selected 
because it does not exercise the change whereas tests λ2 
and λ3 are selected because they exercise the change. 

The descriptions of these tests can be automatically 
analyzed to accurately predict whether they will exercise 
the change when run. So these tests can be selected and/or 
discarded without running them. The proposed approach 
develops procedures that analyze test descriptions to se-
lect and discard tests to build a high confidence regression 
test suite. 

2. Preliminaries 

This section is mostly derived from earlier works [7-11], 
where more details can be found. 

Extended Finite State Machines: An EFSM E = (I, O, 
S, V, T) [9], is a 5-tuple where I, O, S, V , and T are finite 
sets of parameterized input and output messages, states, 
variables, and transitions respectively. Each message in I 
and O has a finite number of parameters; finite set of 
variables, V = X ∪ {IQ, OQ}, is the union of the set of 
data variables X and two message queue variables IQ and 
OQ denoting the input and output queues from and to the 
environment respectively. A transition, t: im(p[]), Pt, st→ 
qt, om(e[]), At, where p[] = p1, …, pn are distinct, typed 
parameter variables, Pt is the guard, At is an ordered se-
quence of assignments, and e[] = e1, …, ew is a list of 
expressions over V and parameters p[]. Transitions hav-
ing an input and an output message are called external 
transitions; others are internal transitions. 

The global state of an EFSM consists of a state from S 
and a set of constraints over variables. The state is con-
crete if each variable is constrained to a constant value. 
A state is initial, if the constraints satisfy the initial con-
ditions of the system. A transition is enabled in a system 
global state if the message in the global state is an in-
stance of the input message of the transition and the 
global state satisfies the guard of the transition. Execu-
tion step, g → tg′, transitions from global state g to g′ 
using t enabled in g. A run is a sequence of consecutive 

steps starting and ending in initial global states.  
The most general post-image of a transition t, Mgpos 

(t), is a global state representing all the concrete global 
states that can result after executing the transition t. The 
concrete post-image of transition t from a global state g, 
Cpos(t, g), is the concrete global state produced by exe- 
cuting transition t in the global state g. If t is not enabled 
in g then Cpos(t, g) has the value false. Concrete post- 
images to deal with the dynamic behavior of tests. We 
relate the static and the dynamic behaviors of a transi- 
tion by relating their most-general and concrete post- 
images with respect to a concrete a global state as: Cpos 
(t, g) = Mgpos(t) ∧ g. 

3. EFSM Changes and Tests 

3.1. Changes 

Changes to the EFSM are specified at the transition level. 
An addition change, δ = <+, ta>, adds a new external 
transition ta to an EFSM. A deletion change, δ = <−, td>, 
deletes an existing external transition td from an EFSM. 
A replacement change, δ = <−/+, (td, ta) >, replaces an 
existing external transition td in an EFSM by a new ex-
ternal transition ta. Certain transition changes may have 
larger impacts and can modify the EFSM interface itself. 
For instance, an addition change can introduce new 
EFSM messages and states. Similarly, a deletion change 
can result in the removal of existing messages and states. 
Other EFSM changes such as addition or deletion of 
states and/or variables can all be expressed in terms of 
changes to the transitions. All the EFSM changes are 
assumed to produce a new EFSM that is deterministic 
and consistent. 

3.2. EFSM Tests 

An EFSM test, λ = <g0, [i1/o1, …,in/on]>, is a pair, whose 
first component is a concrete global state g0 and the sec-
ond component is a finite sequence of test elements of 
the form: test input/expected test output. Each input (and 
output) is a sequence of assignments to the message 
queue and/or data variables. Only constants appear in an 
input. Both constants and data variables can appear in an 
output. For brevity, our test inputs and outputs only refer 
to the messages (queues are implicit) and not to the data 
variables. 

Example: The EFSM tests for the bank example are 
depicted in Figure 1(b). Test inputs of all these tests as-
sign a single message having constant parameter values 
to the input message queue and expected outputs assign 
constant values and variables to the output message 
queue.  

Now, we extend EFSM executions to handle test inputs. 
A test input extended concrete global state of EFSM 

is a global state of the EFSM in which the message pa-
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rameters are bound to the constant values specified by 
the test input. Transition t processes the test input i in the 
concrete global state g if the transition t is enabled in the 
extended concrete global state gi.  

Test λ is applied to EFSM E by starting E in concrete 
global state g0. Transition t0 enabled in g0 is executed to 
generate concrete global state, say, g1, and the process 
repeated until no more transitions are enabled in the last 
generated concrete global state, say, gm. Extend gm with 
the first test input i1 and execute the enabled transition tm 
to generate the state gm+1. Transition enabled in gm+1 is 
executed to produce the next state and the process is re-
peated. The process terminates on either reaching the 
initial concrete global state after processing all test inputs 
or if no progress can be made. 

4. Structural Test Invariant 

Transitions matching test inputs and sequences of sets of 
transitions matching a test description are described. Test 
extended most general pre- and post-images are then 
defined and used to formulate the invariant for tests. 

4.1. Matching Transitions and Sequences 

Definition: A transition matches a test input if 1) the test 
input is an instance of the input message of the transition 
and 2) the instantiated transition guard is satisfiable. 

Example: In Figure 2, t5 matches the input wdraw 
(1,110) of test λ2 since wdraw(1,100) is an instance of 
wdraw(i, v) with i = 1, and v = 110, and the instantiated 
guard of t5: (1 == id) ∧ (110 >0) ∧ 0 <= (B[1] - 110) ∧ 
(B[1] - 110) < min ∧ (T1 >0), is a satisfiable formula.   

The match operation only checks the input message 
and the guard but ignores the input state of the transition. 
Hence the operation is conservative i.e., a transition may 
match a test input but may not able to process that input 
when the test is actually applied. However, as shown 
below, the operation will include all the transitions that 
can process the test input. 

Several EFSM transitions can match a test input. Let 
T(ik) be the (possibly empty) set of all transitions match-
ing the test input ik. A matching sequence, ϕ(λ) = 
[T(i1), …, T(in)], of a test λ is a sequence of sets of transi-
tions constructed by point-wise matching of the inputs of 
the test λ. A transition sequence, ρ = [t1, …, tn] ∈ϕ(λ) if 
each tk ∈ T(ik), k = 1n. 

Example: Matching sequence ϕ(λ2) = [{t1}, {t2, t6}, {t3, t4, 
t5, t12}, {t3, t4, t5, t12}, {t7, t8}] for the test λ2 in Figure 1(b). 
A transition sequence of ϕ(λ2) is ρ = [t1, t2, t3, t3, t7].   

4.2. Deriving Invariant from a Test Description 

Recall from Section 2 that the most general post-image, 
of a transition tw, Mgpos(tw),is a global state representing 

all the concrete global states that can result after execut-
ing the transition. The most general pre-image of tran-
sition tw, Mgpre(tw), is a global state representing all the 
concrete global states in which the transition is enabled. 

Let the transition tw match the test input iw. The test 
extended most general post-image of tw with respect to 
input iw, denoted as Emgpos(tw), is the set of all global 
states that can be produced by executing transition tw 
instantiated with input iw. Emgpos(tw) = false (empty set 
of global states) if tw does not match iw. 

The test extended most general pre-image of tw with 
respect to input iw, denoted as Emgpre(tw), is the set of all 
global states where transition tw instantiated with input iw 
is enabled. Emgpre(tw) = false, if tw does not match iw. 

A structural invariant for a test λ = <g0, [i1/o1, …, 
in/on]>, can be formulated using test description and test 
extended post-images of the matching transitions as: 

( ) ( )0
( ) 1

Init( Emgpos ,k

n

k n
g t

ρ φ λ
ψ λ

∈ =
= ∨ ∧ ∧  

where the predicate Init checks if its argument is an ini-
tial global state and ρ is the transition sequence [t1, …, tn]. 
Each disjunct of ψ(λ) corresponds to a transition se-
quence ρ from the matching sequence ϕ(λ) and is made of 
n + 1 conjunctions. First conjunct is the concrete global 
state g0 in which the test λ starts and the remaining n 
conjuncts are the test extended post-images of the n tran-
sitions in ρ. 

The invariant ψ(λ) simply checks that the matching 
sequence ϕ(λ) contains at least one feasible run from the 
concrete global state g0 in which the test λ is applied. 
Each disjunct in ψ(λ) considers a transition sequence 
from the matching sequence and incrementally checks its 
feasibility. The transition sequence is a feasible run if the 
disjunct is satisfiable. Since EFSMs are deterministic, 
each test has at most one test run and therefore, at most 
one of the disjuncts is satisfiable. Hence the invariant is 
satisfiable if and only if the test run consists of the transi-
tions appearing in the corresponding disjunct. Therefore, 
all the transitions that will appear in a test run can be 
accurately predicted (without running the test) if the in-
variant of the test is satisfied. 

An efficient approach to check the satisfiability of the 
invariant employs a directed transition control graph 
TCG(λ) consisting of transitions belonging to the match-
ing sequence ϕ(λ). The graph has a special start node and 
one node for each occurrence of each transition in the 
matching sequence ϕ(λ). Node twj denotes the occurrence 
of transition twin the jth matching set T(ij) in ϕ(λ). TCG(λ) 
is a levelized graph with level 0 having the start node 
and level k, k ≥ 1, consisting of nodes representing all 
transitions in matching set T(ik). 

Edges in the graph connect a node in a level to zero or 
more nodes in the next level. Edges can have a label s 
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(single successor) or a label c (a potential successor). Let 
tv and tw be nodes at levels k and k +1 respectively. Edge 
(tvk, tw(k+1), s) belongs to the graph if the transition tw 
must follow tv in all runs. Otherwise, the edge (tvk, 
tw(k+1), c) belongs to the graph. An edge from start toa 
node tw1 with label s is added if tw is enabled in the ini-
tial state g0. 

Example: The Figure 3 depicts the transition control 
graph TCG(λ2) for the test λ2.   

The procedure to check the invariant is described in 
Figure 4. It takes a test λ and the graph TCG(λ) as inputs 
and outputs Success if the transitions executed by the test 
can be accurately predicted and Fail otherwise. The 
graph is traversed level by level starting at the level 0 to 
see if any path in the graph forms a feasible run from the 
concrete global state g0. At each level, a node is marked 
by the procedure if the sequence of transitions in the path 
from the start node to the marked node in the graph 
forms a feasible path from the concrete state g0of the test 
λ. A label, L(tk), is associated with the marked node tk in 
each level k. Let ρ = [t1, …,tw] be the transition sequence 
that forms a feasible path from g0 when the procedure 
reaches the current level (clevel in Figure 4). The label 
associated with a node tk belonging to the sequence ρ is 
L(tk) = g0 ∧ Emgpos(t1) ∧ …∧ Emgpos(tk−1). 

To extend the feasible path to the w + 1thlevel, first, the 
candidate immediate successor nodes of the marked node 
at the current level are identified. If the marked node 
corresponding to tw has an immediate successor linked by 
 

 

Figure 3. TCG for λ2. 

 

Figure 4. Check procedure. 
 
an s edge, then this is the only candidate immediate suc-
cessor. In this case, the other immediate successors of the 
node corresponding to tw, if any, are deleted from the 
graph. Deleting these edges from the graph may make 
certain nodes dangling i.e., nodes that do not have any 
successor and/or a predecessor. Such nodes cannot par-
ticipate in the feasible run, if any, and hence are deleted 
from the graph along with the resulting dangling edges. 
Such deletion of dangling nodes and edges is repeated 
until no more such nodes and edges remain. If the 
marked node corresponding to tw has no immediate suc-
cess or linked by an s edge, then all the nodes are candi-
date immediate successors. 

Then, we propagate the label L(tw) to each of the can-
didate immediate successors tw+1 and compute a formula 
F = (L(tw) ∧ Emgpos(tw)) ⇒ Emgpre(tw+1). The formula F 
states that processing the test input w using transition twin 
the concrete global state g0 ∧ Emgpos(t1) ∧ …∧ 
Emgpos(tw−1) will result in a concrete global state in 
which the immediate successor transition tw+1 processing 
the test input iw+1 is enabled. If F is valid then that im-
mediate successor node is marked and the label L(tw+1) is 
set. The current level is incremented and the procedure is 
continued. If the propagated formula F is not valid for 
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any of the candidate successors then this implies that no 
transition in the matching set T(iw+1) can process the test 
input iw+1 in the concrete global state obtained after 
processing the first w test inputs. And, the procedure fails. 
If the path can be extended up to the last level (level n) of 
the graph and the L(tn) ∧ Emgpos(tn) is an initial concrete 
global state then the procedure returns Success. Other-
wise, the procedure returns Fail. 

5. Selecting Tests 

The model-based regression test selection problem using 
the EFSMs is analogous to that for programs [10]. It 
takes as inputs–a deterministic, consistent EFSM E1 with 
a test suite T, and a change δ that produces a modified, 
deterministic and consistent EFSM E2. It outputs a test 
suite T′ ∧ T, consisting of subset of tests of T guaranteed 
to exercise the change δ on E2.  

Test λ = <g0, [i1/o1, …, in/on]> exercises an addition 
change δ = <+, ta> on E2 if there exists a feasible path ρ = 
[t1, …, ta] from g0 on E2. Test λ exercises a deletion 
change δ = <−, td> on E2 if there exists a feasible path ρ 
= [t1, …,td] from g0 on E1. Test λ exercises a replacement 
change, δ = <−/+, (td, ta)> on E2 if it either exercises the 
addition change <+, ta> on E2 or it exercises the deletion 
change <−, td> on E2. 

For test selection, we slightly generalize the satisfi-
ability of the invariant. Let λ be any test for an EFSM E. 

Definition: Let ρ = [t1, …,tk] be a transition sequence 
obtained from a path: start → t1→ …→ tk of TCG(λ). 

The invariant ψ(λ) is k-satisfiable if ρ is a feasible path 
over E for the test λ.  

5.1. Selecting Tests for Addition Changes 

The main steps of an incremental procedure to determine 
if the test λ is a candidate for an addition change δ are 
given below. The procedure takes the original model E1, 
the matching sequence, the graph TCG(λ), and the added 
transition ta as its inputs and returns 1 if λ is a candidate 
test for δ and returns 0 otherwise. It also outputs the up-
dated compatibility graph to be used for future changes. 

1) Update the original matching sequence ϕ(λ) by 
adding ta to the appropriate matching sets. 

2) Suppose that ta occurs exactly once in the kth set of 
ϕ(λ). Check if ψ(λ) is k-satisfiable on E1using the original 
graph TCG(λ). If so then not ta, but some original transi-
tion, will process the kth test input on new EFSM E2. If 
ψ(λ) is only(k − 1)-satisfiable, let F = (L(tk−1) ∧ Emgpos 
(tk−1)) ⇒ Emgpre(ta), where tk−1 is the node marked at 
level k − 1. If F is not a valid, ta will not process the kth 

input on E2 (this is also the case when ψ(λ) is satisfiable 
to a level less than k − 1). So, λ is not a candidate; the 
graph is unchanged. 

If ψ(λ) is (k – 1)-satisfiable, but not k-satisfiable and F 

is a valid then λ is a candidate and the transition ta will 
process the kth input on E2. Update TCG(λ) by adding 
node ta at level k and edge (tk−1, ta, s). Attempt to extend 
the feasible path to level k + 1 using the procedure de-
scribed in Figure 4, using the updated graph. If success-
ful and tk+1 is the marked, add edge, (ta, tk+1, s), to the 
updated graph and output the resulting graph. 

3) If ta occurs in many sets of sequence ϕ(λ), all in the 
interval [l, m] and ψ(λ) is satisfiable up to level m or 
higher, then λ is not a candidate and the graph is un-
changed. Otherwise, process each level in the interval, 
starting at level l, as described above. Go to next level 
only if ta will not process inputs at the previous levels. 

4) Finally, if ta does not occur in sequence ϕ(λ), the 
test λ is not a candidate and the graph is unchanged. 

The above incremental procedure uses the original 
graph to identify candidate tests. The graph is locally 
updated so that they can be similarly used in selecting 
tests for future changes. Such an incremental procedure 
can be effective in practice since it is bounded by the size 
of the matching sequence elements affected by the 
change and is independent of the overall size of the 
EFSM. Further, focusing on the earliest occurrence of 
change transition can reduce the analysis time, especially 
for long tests.  

5.2. Selecting Tests for Deletion Changes 

The main steps of the procedure are similar to those of 
the procedure for the addition change described above. 
The only difference is in the updating of the compatibil-
ity graph. While handling a deletion change, if a node 
corresponding to transition td in the graph is marked by 
the invariant checking procedure run on E1, the corre-
sponding test is selected. In this case, the updated graph 
is obtained by deleting every node and the resulting dan-
gling edges from the graph corresponding to transition td. 
The process is repeated with all the nodes that do not 
have an immediate predecessor or an immediate succes-
sor until no more such nodes can be found and the re-
sulting graph is returned as the updated graph. 

Replacement changes are viewed as a pair of addition 
and deletion changes. Tests are selected if they are cho-
sen for either. 

6. Simultaneous Test Selection 

Often, several tests in the given test suite start in the 
same concrete global state and have overlapping test in-
puts. For instance, it is typical for tests to use the same 
inputs to bring the EFSM to a common state and then 
exercise other specific behaviors. Such tests can be se-
lected simultaneously whenever a change matches these 
tests at the overlapping portions of their test inputs. To 
simultaneously select and discard tests, the test suite T = 
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{λ1, …, λn} of the original EFSM E1 is partitioned into 
groups of tests. Each group G = {λ1, …, λk} ⊆ T consists 
of tests that are applied in the same concrete global state 
g0 and share a non-empty prefix of their test inputs, i.e., 
they have at least the same first test input. 

Each group G is represented using a test suite tree 
(TST). Each node of the TST tree denotes a test input 
occurring at a particular position in the non-empty prefix 
of the test inputs of the tests in G. The root node of TST 
denotes test input of the tests in G occurring at the first 
position of the prefix. Node v is a child of node u in TST 
if in some test in G, the test input iu at a position p in the 
prefix is an immediate predecessor of the test input iv at 
position p + 1. The edge between a parent node u and 
child node v is labeled by the set consisting of all tests 
where this is the case. Further, the set of tests labeling an 
edge between a parent and a child node is the union of all 
tests appearing in the subtree rooted at the child node. 

Example: TST in Figure 5 represents the test suite of 
Figure 1(b). 

Below, we describe a procedure to simultaneously se-
lect and discard tests from T to build a test suite T′ for the 
new EFSM E2 for addition change δ = ⟨+, ta⟩. 

Consider a TST comprised of a group of tests G all 
starting in the concrete global state g0. To select tests 
from this TST, for each node u, the set of transitions of 
the EFSM E2 matching the test input iu, T(iu), is com-
puted. Each matching set T(u) of the node u is main-
tained at that node. If ta does not appear in any matching 
sets, none of the tests in the TST are chosen. 

Suppose that ta appears in some matching set T(iu) at 
node u of the TST. Let the sequence of matching sets 
from the root node of the TST to the node u be the 
matching sequence α = [T(i1), …, T(in), T(iu)]. We build a 
control graph using the transitions appearing in α and use  
 

 

Figure 5. TST for bank example. 

the procedure in Figure 4 with the graph and g0 as its 
inputs to determine if some transition sequence belong-
ing to α forms a feasible path from g0 on E2. If the pro-
cedure returns Success and transition ta is the transition 
marked by the procedure in the matching set T(iu), all 
tests labeling the edge between in and iu in the TST are 
chosen. Node iu and its descendants are removed. 

If the procedure returns Fail because only a prefix of 
the matching sequence α, say, [T(i1), …, T(im)] contains a 
feasible path then the TST is updated by setting the sets 
T(i1), …, T(im) to the respective transitions marked by the 
procedure. The subtree of TST rooted at the node im+1 is 
removed (all tests in this subtree are discarded since they 
do not exercise the addition change). 

The procedure can also return Success but ta may not 
be the marked transition in the matching set T(iu). In this 
case, we update the matching sets with the transitions 
marked by the procedure to incrementally continue ana-
lyzing the extensions of the matching sequence α reach-
ing other nodes of the TST whose sets include ta. 

The left-right traversal of the updated TST (and the 
test suite T) is continued until all nodes in the TST whose 
sets contain ta have been analyzed. All the tests chosen in 
are included in T′ and the same process is repeated with 
each TST. Procedures to select multiple tests for deletion 
and replacement changes are similar. 

Example: The matching nodes u for the bank example 
are highlighted in Figure 5. A left-to-right traversal of 
this tree selects tests λ2, λ3 at level 4 after which the 
nodes at the lower levels can be removed.  

7. Related Work 

Approaches for regression testing have been broadly 
classified as being code-based or model-based. Yoo and 
Harman [3] is a recent survey on regression test selection 
and related problems. Rothermal and Harrold [2] and 
Harrold and Orso [1] are two other surveys emphasizing 
code-based approaches. 

Code-Based Approaches: Code-based approaches 
work on Programs and have been extensively studied 
earlier. The above surveys discuss many of these ap-
proaches in detail. Most of these approaches perform 
control and data flow analysis to determine the difference 
between original and modified programs and use avail-
able test traces to determine if the test should be selected 
for regression. However, these methods are conservative 
do not target precise selection of tests [12]. On the other 
hand, precisely selecting tests is a primary goal of this 
paper, which is crucial for high-confidence test suites.  

Model-Based Approaches: Model-based approaches 
use executable models and model-programs instead of 
actual code to select regression tests. Recently, there has 
been a lot of interest in this area due to the advent of 
embedded systems such as automobiles [13] and com-
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plex component based systems [14], where early testing 
of models can alleviate the validation costs of actual sys-
tems. Earlier works on model-based regression testing 
include works by Briand et al. [15,16] using UML mod-
els and that by Korel et al. [5,17,18] using EFSM models. 
The approach described in [15,16] extracts changes by 
comparing two versions of a class, use case/sequence 
diagrams in a UML design. These changes are then used 
to classify a test as obsolete, retestable, re-usable by 
mapping a test to a complete message sequence in a se-
quence diagram. Earlier works using EFSMs have fo-
cused on regression test minimization, and prioritization 
problems, unlike test selection considered in this paper.  

The proposed approach differs from the above model- 
based approaches in its focus on constructing accurate 
regression test suites based on models. Unlike the earlier 
approaches, in the proposed approach no test exercising a 
change in the EFSM is missed and every test that does 
not exercise any change in the EFSM is selected. Second, 
our EFSM models and the analysis procedures handle a 
rich set of data types and allow test cases to have con- 
stant values involving all these data types including ag- 
gregate data types. Finally, the proposed approach ex- 
ploits the overlap in test descriptions to simultaneously 
select or discard tests for building a regression test suite.  

8. Experiments 

We refer to the proposed approach as SPG (selection 
with provable guarantees) in this section. We have im-
plemented SPG and applied it several web services, pro-
tocols, as well as many model programs taken from a 
well-known testing benchmark [19]. Our objectives for 
these experiments are: study the efficiency of SPG for 
regression test selection for EFSMs. Our prototype is 
coded in Perl and C on a Linux server with 4GB memory 
and employs built-in graph libraries. It uses the reasoning 
framework, SAIL, implemented based on the theorem 
prover Simplify [6] extended with queues [11]. 

Change and Test Generation: We use the changes 
provided by the applications whenever they are available. 
In addition, changes are synthetically generated using the 
following simple process. Given an EFSM model (text 
files), the number of transitions to be changed, and the 
overall number of mutated EFSMs, the input EFSM is 
first compiled into a graph. A new graph corresponding to 
each new EFSM is got from the original graph by marking 
the number of transitions given as input with the change 
actions a (addition) or d (deletion), chosen randomly. The 
process is repeated to generate the new EFSMs. 

The test suite for the original EFSM is hand crafted 
wherever possible, such as those for model programs from 
[19]. Tests were also automatically generated using the 
model-based test generator ParTeg [20]. 

8.1. Case Studies 

We have applied the prototype to ten examples from the 
literature: completion (Cmp), two-phase commit (Tcp), 
and conference (Cnf), and third-party call (Thp), Cruise 
Control (Con), Printtokens (Pri)2, automatic teller ma-
chine (Atm) [4,5], bank (Bnk),vending machine (Ven), and 
a Microwave oven (Mic) [21]. The completion, two-phase 
commit, and conference protocols described on the 
web-site3 have been used earlier to evaluate formal testing 
approaches. The completion protocol Cmp is used by an 
application to tell the coordinator to try, commit, or abort 
an atomic transaction. Two-phase commit Tcp is a coor-
dination protocol that defines how participants reach an 
agreement on the outcome of an atomic transaction. 

The conference protocol, Cnf, is a chatbox-like protocol. 
The EFSM models for Cmp and Tcp were manually cre-
ated using their graphical and textual descriptions and 
contain 7 and 14 transitions respectively. Their test suites 
have 300 and 800 tests respectively. For the Cnf protocol, 
we used the EFSM description (c) available from the 
website referred above. This model has 19 transitions and 
the test suite has 723 tests. The website gives two EFSMs 
called (c) and (d) and describes four changes to transform 
EFSM (c) to EFSM (d). The four changes specified there 
are all additions that allow members to send data before 
joining the conference. The third-party call (Thp) is a 
protocol from Praxis with 15 transitions and 837 tests 
[22]. 

Cruise Control (Con) and Printtokens (Pri) are pro-
grams from the popular test benchmark [19]. These pro-
grams are manually translated to obtain the EFSM models. 
The EFSM for Con has 13 transitions and 1000 tests. 
EFSM for Prn has 89 transitions and 1439 tests. Micro-
wave Oven (Mic) is originally described as a Kripke 
structure [21]. We simply modified the labels on the arcs 
to obtain EFSM transitions by adding input and output 
messages. The model has 12 transitions and 1160 tests. 
The remaining examples web automatic teller machine 
(Atm) (6 transitions and 800 tests), bank (Bnk) (9 transi-
tions and 1124 tests), a vending machine example (Ven) 
(8 transitions and 87 tests) all appear as EFSMs in an 
earlier testing paper [23] and were used as such. 

8.2. Results 

Overview: Our results for the SPG approach are summa-
rized in a table in Table 1. The first column of the table 
lists the ten examples along with the number of EFSM 
transitions. The second column lists the test suite size 
and the average test length for each example.  

Columns three, four, and five show C1, the cost for 
running the full test suite, C2, the cost for running the 
selected tests, and C3, the cost for performing analysis 
respectively. These columns list the average costs per  
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Table 1. Regression test selection costs for SPG. 

TestSuite 
Case 

Size Avg length 

C1 
sec 

C2 
sec 

C3 
sec 

Select
Tests

Avg time
Save (%)

Con (13) 1000 78 2152 837 629 386 32 

Prn (89) 1439 102 6345 3511 2035 798 13 

Atm (6) 800 50 1210 842 214 486 13 

Mic (12) 1160 12 289 92 7 614 66 

Bnk (9) 1124 35 2483 738 1041 364 28 

Thp (15) 837 66 1249 367 232 203 52 

Ven (8) 87 37 92 23 50 20 20 

Cnf (19) 723 47 629 328 187 257 18 

Cmp (7) 800 59 532 252 132 316 28 

Tcp (14) 311 18 147 48 27 102 49 

 
change. Next column is the average number of selected 
tests per change. Finally, the last column lists the average 
time savings per change, defined as the percentage (C1 - 
(C2 + C3))/C1, based on the cost model of [24].  

As seen from Table 1, SPG achieves an average time 
savings of around 30% while achieving an average re-
duction of around 40% in the size of the test suite se-
lected for all attempted examples.  

Time Savings: Varying amount of time savings ob-
tained across these examples can be mainly attributed to 
three reasons: complexity of the data values, and data 
types used in the EFSMs and the tests, exploiting overlap 
in the test descriptions, and the compatibility of transi-
tions. Time savings higher than 50% for Mic are mainly 
due to simple data types such as boolean and integers 
whereas Atmand Bnk do not have as much time savings 
since their EFSMs and tests involve arrays. Time savings 
are significant for Thp because the input messages in its 
EFSM have no parameters. Consequently, its tests do not 
involve any concrete values and allow for lot more over-
laps in the test descriptions. These overlaps are effec-
tively exploited by our simultaneous test selection pro-
cedures using the TST trees. 

Reduction in Test Suites: The variance in the number 
of selected tests largely depends on the number of transi-
tions in the EFSM models, and those appearing in loops. 
Consider the examples Atm with 6 transitions and high 
(486) average number of selected tests and Ven with 8 
transitions and a very low (20) average number of se-
lected tests. The difference in the average number of se-
lected tests in these examples can be attributed to the 
number of transitions appearing in loops. Almost all 
transitions of example Atm appear together in one or 
more loops. Hence a feasible run corresponding to each 
test is likely to contain all of the transitions and this leads 

to high number of selected tests. This is in contrast with 
Ven where loops contain at most one or two transitions. 
Reduction in test suite size is directly related to time 
savings in examples such as Prn, Atm, and Thp. However, 
in Con, almost 70% of the tests are discarded but time 
savings are not as much. This is because discarded do not 
take much time to run. Similarly, in Mic few tests are 
eliminated but the time savings are higher. 

Fault Detection Using SPG: We also studied whether 
faults in the system under test can be detected by SPG.  

We considered faults that are caused solely due to the 
changes in the model. The criterion for test selection 
used by SPG is a necessary condition for detecting such 
faults. We used the popular TCAS example from the test 
benchmark [19] with 41 versions and 1590 tests. We 
chose the faulty versions Ver1, Ver2, Ver6, Ver7, Ver8, 
and Ver9 produced by mutation analysis. We created 
models from each of the faulty versions of the code and 
translated the code-based tests to model based tests. SPG 
was used to select the model-based tests. The corre-
sponding code-based tests were run on the original and 
modified code to identify the model-based tests revealing 
faults. Our results are depicted in Table 2. The first 
column gives the faulty versions; the second column 
gives the tests selected by SPG; the third column gives 
the number of selected tests that reveal faults.  

As shown, SPG was able to identify a non-zero num-
ber of fault-revealing tests for each version. To further 
check if SPG missed any of the fault-revealing tests, we 
ran all the code-based tests in the original test suite on 
both the original and modified C programs and collected 
the tests producing different outputs. These tests were the 
same as those identified using SPG in all cases. Hence 
SPG selects all the fault-revealing tests in all the ver-
sions. 

SPG vs. SYM: The first and third bars in Figure 6 
depict the results of our comparison of the analysis costs 
(C3) of the SPG and brute-force symbolic execution 
(SYM) [25]. The X-axis plots the examples and the 
Y-axis plots the analysis cost in seconds. Results show 
that cost of SYM is higher than that of SPG in all exam- 
ples. This is because, first, SYM does not exploit the test  
 

Table 2. Regression test selection costs for SPG. 

TCAS (1590 tests) Selected tests Fault Reveal tests 

Ver1 432 130 

Ver2 527 61 

Ver6 331 12 

Ver7 1560 36 

Ver8 1560 1 

Ver9 508 9 
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Figure 6. Regression test selection costs for SPG. 
 
description and hence considers every transition in each 
execution step and second, SYM analyzes non-modifi- 
cation traversing tests in their entirety.  

9. Conclusion 

An EFSM model-based formal approach to accurately 
select tests for regression testing is described. Test de-
scriptions are statically analyzed using the model to for-
mulate a structural invariant such that the transitions that 
will be executed by the test can be provably predicted 
whenever the invariant is satisfiable. Bounded, incre-
mental procedures for selecting tests guaranteed to exer-
cise addition/deletion/replacement changes and identify 
unusable tests are described. We also extend the proce-
dures to simultaneously select and discard multiple tests 
from a test suite by exploiting the overlap in the test de-
scriptions. The effectiveness of the approach is illustrated 
on several examples including programs from a popular 
benchmark, web services, and protocols. Our results 
show that our approach achieves an efficiency of around 
30% in all these examples and reduces test suit sizes up 
to 40%, while being fully inclusive and precise.  
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